
Central JSM Computer Science & Engineering

Cite this article: Lopez-Benitez N (2014) Functional Representations of Scientific Workflows. Comput Sci Eng 1(1): 1001.

*Corresponding author
Noe Lopez-Benitez, Department of Computer 
Science, Texas Tech University, Lubbock, Texas, 
79409-3104, USA, Email: noe.lopez-benitez@ttu.edu

Submitted: 16 December 2013

Accepted: 17 December 2013

Published: 18 December 2013

Copyright
© 2014 Lopez-Benitez

  OPEN ACCESS  

Editorial

Functional Representations of  
Scientific Workflows
Noe Lopez-Benitez*
Department of Computer Science, Texas Tech University, USA

EDITORIAL
Workflows describe not only a collection of component 

functions, but also their dependencies, which predefine a 
constrained order of execution. Scientific workflows are used to 
describe not only computational and service requirements but also 
the location of such services or computational units. Instruments 
in scientific laboratories, robots in remote inaccessible areas, 
a satellite unit in outer space, a set of databases, storage units 
as well as computational units, all provide services that must 
be orchestrated to satisfy an overall scientific objective. In this 
paper functional representations of workflows are discussed as 
a convenient alternative abstractions that can provide the basis 
for dynamic management of service requests; furthermore they 
can be regarded as a paradigm to organize and easily develop 
entire applications via the use of functional languages to explore 
not only fine-grained parallelisms, but also functional dynamic 
parallelisms suitable for grid and cloud execution environments.

Functional representations are proposed in the context  
of functional languages such as Haskell [1], Parallel Haskell 
[2], SequenceL [3], and others. Functional languages provide 
users the ability to specify and/or generate possible parallel 
operations for fine-grained computational platforms. Haskell 
has been extended to Cloud Haskell to provide message-passing 
support [4]. Translation of functional code may lead to fine-
grain parallelism; sequenceL, for example, generates n-tuples 
of independent computations that can be mapped into multiple 
independent threads of execution; consequently, fine-grain 
parallelisms can be mapped into high-level languages such as 
MCUDA suitable for multi-core execution platforms.

Background Work

Abstract-to-concrete workflow is a transformation that 
prevails in a cloud environment [5], where an orchestration 
process completes the mapping into a concrete web-based 
executable workflow. In [6] a series of workflow transformations 
referred to as ‘sequence’, ‘and split’ and ‘and join’ patterns lead to 
single node reductions. These transformations provide the basis 
for the reduction schemes discussed in this paper as applied to 
functional representations. The grouping of tasks reported in 
GridSolve [7] is intended to minimize transfer delays by either 
having a multiple-resource site execute all tasks or supporting 
the transfer of data between different parallel tasks executing in 
different service sites. Furthermore, fundamental work has been 
reported on workflow optimization for grid environments, on 

scheduling parallel clusters through Condor in [8], on schedule-
based workflow balancing [9], on performance and overhead 
of high-performance applications [10], on task clustering for 
balanced workflows in [11] task clustering is of interest because 
the functional representation models described in this paper are 
based on partitioning an entire workflow into sub-workflows, 
similar to the heuristics reported in [12] and complemented with 
the integration of resource provisioning as reported in [13].

Functional Representation of Workflows

A workflow, used as a typical directed acyclic graph (DAG) is 
described by a set of vertices representing individual tasks and 
a set of edges representing data dependencies.  It is possible to 
regard each task in a workflow as a functional unit depending 
on the execution of its predecessors. For example, if a task A is 
followed by independent tasks B and C in the workflow, then a 
notation [B,C]A will model not only such dependencies but also 
indicates that tasks B and C can be executed in parallel. Using 
this representational approach, a functional description of a 
workflow W can be described as:

W = [TF1[..], TF2[…], … , TFn[…] ]            (1)

Where TFi[…] represents a collection of nodes describing a 
path of dependent functions. If we let TFi represent a terminal 
node (function) in the workflow, then each TFi […] in equation (1) 
can be described as:

TFi [Tx [Ty[  …  ] …]],  i=1,…,n

Where Tx and Ty are nodes in one of the execution paths 
leading to terminal node TFi. Thus, each node in the workflow is 
expressed as a function of all previous nodes in its execution path. 
The collection of functions forms a queue of dependent functions 
that must be executed in sequence. Each queue structure includes 
an initial task i.e., with no incoming arcs, identified as a root task. 
A set of root tasks corresponds to independent tasks that can be 
dynamically scheduled for a parallel execution [14]. Consider 
for example the workflow shown in [Figure. 1a]. A functional 
representation can be derived from the workflow shown in Fig. 
1b, where each node is expressed as a function of all previous 
computing nodes in its path. To maintain the order of execution 
each terminal node tails each queue derived from [Figure.1b] 
which, following a functional representation, can be expressed as 
follows: 
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W = [[F[D[B[A]]], G[D[B[A]],E[B[A]], C[A]] ]                       (2)

Removing the square brackets from equation (2) then a set of 
queues given by all paths in the workflow are shown: 

{FDBA, GDBA, GEBA, GCA}

The right most function in each queue corresponds to a “root” 
function and the tail function corresponds to a terminal node in 
the workflow. These structures can be easily obtained applying 
well-known depth-first search algorithms.

Systematic Partitioning of Workflows

Extracting sets of root functions leads to possible partitions 
of the original workflow. Consider for example the following 
partitions from the set of queues generated for the workflow in 
(Figure 1a)

1. { FDB, GDB, GEB, GC\} [A]

2. { FD, GD, GE \} [B,C][A]

3. [F, G][D, E][B, C][A]

Partition 1 is formed by extracting root A to the right. The set 
of roots {B, C} are shown as heads of the remaining set of queues 
and are extracted to the right as two parallel functions as shown 
in partition 2. Likewise the sequence shown in partition 3 shows 
sets of functions that are unique, i.e., no function is contained in 
any other set. Identifying partitions of a workflow composed of 
sequential and/or parallel patterns in a workflow may lead to a 
reduced representation without altering the functionality of the 
original workflow. 

The notation used this far describes parallel functions 
separated by commas; otherwise, a sequential execution is 
indicated. Using square brackets enforces serialization. As 
illustrated, to preserve the dependencies explicit in each queue, 
root functions are always extracted to the right. Also, if different 
roots are extracted from different queues they are indicated as a 
parallel structure.

The following rules are intended to formalize the 
manipulation of workflows and obtain alternate representations 
whenever possible. The general description of sequential and 
parallel patterns assumes that xi ,  i =  1, …, n, identifies the ith 
node in a pattern with n number of nodes (functions). 

Extraction Rules

Extracting common functions leads to the generation of 
parallel structures amenable to the reduction rules discussed 
this far.

1. Right Extraction Rule:  This rule extracts a common 
function or a common composition to the right. Extracting a 
common function y results in a parallel composition in which y 
becomes a root node that precedes the parallel execution of all 
nodes xi:

{xny ,..., x2y, x1y} = { [xn ,..., x2, x1] y}

Extracting an entire composition to the right leads to a 
sequence of two parallel compositions.

2. Left Extraction Rule: Extracting a node y to the left 
results in a parallel composition in which y is a terminal node 
following the parallel execution of all xi nodes:

{ yxn , ... , yx2, yx1 } = { y[xn ,..., x2, x1]}

Extracting an entire composition to the left also leads to a 
sequence of two parallel compositions.

Sequential Composition Rules

This composition describes a functional description of a 
workflow in which all nodes x1 to xn  must be executed in sequence  
xn[xn-1 … x2 x1]; in this pattern xn is the terminal function and it 
is dependent on the sequential execution of all the functions in 
the set {xn-1 ,…, x2 , x1}.  The following rules apply to sequential 
embedded patterns:

3. Sequential Reduction Rule 1: A sequential 
composition of functions in the set {xn  ,…, x2, x1} can be embedded 
in a functional representation as follows:

xn [xn-1 … x2 x1], xn[y]      

 where y ∉ {xn  ,…, x2, x1}. Then a reduction functionally 
equivalent is of the form:

xn [xn-1 … x2 x1, y ]

4. Sequential Reduction Rule 2: This rule applies if the 
sequential composition of the set {xn  ,…, x2, x1} is embedded in a 
functional representation of the form:

xn [xn-1 … x2 x1], y[xn-1 … x2 x1 ]  

Figure 1 A workflow and its functional representation derivation.
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which can be reduced to the functionally equivalent form:  

[xn  , y][xn-1 … x2 x1] 

Parallel Composition Rules

A parallel-to-series pattern transformation to transform and 
reduce embedded parallel patterns. Using a parallel functional 
expression can be transformed into a series expression indicated 
as follows:

[xn  ,…, x2, x1] =  xn  … x2 x1

A parallel pattern can appear in two forms. A join or a fork 
structure.  A join structure is identified in the following form:

y [xn  ,…, x2, x1]   

In this composition y is a terminal node that depends on the 
parallel execution of all functions in the set {xn  ,…, x2, x1}. Extracting 
to the left a common function results in a common n-degree node 
y which defines an embedded join structure.

The following pattern identifies a fork composition:  

[xn  ,…, x2, x1] y

This composition shows that the set of parallel functions {xn  
,…, x2, x1 } can be executed but only after node y (which is not in the 
parallel set) executes successfully. 

5. Parallel Fork Composition Rule: A functional 
representation given as follows:

[xn  ,…, x2, x1]xi, xk y

contains and embedded fork composition x’i = [xn  ,…, x2, x1] 
xi. If xk  ∈ {xn  ,…, x2, x1 },  and y  ∉  {xn  ,…, x2, x1 } then the following 
reduced sequential compositions  are functionally equivalent:

[xn  ,…, x2, x1] [xi, y] = [xn  ,…, x2, x1] xiy

6. Parallel Join Composition Rule: If a functional 
description of a workflow is given as follows:

xi [xn  ,…, x2, x1], [y xk]

Then for any pair y  ∉  {xn  ,…, x2, x1 } and xk ∈ {xn  ,…, x2, x1 }, the 
following sequential compositions are  functionally equivalent:

[y, xi][xn  ,…, x2, x1] = yxi][xn  ,…, x2, x1]

To illustrate the application of these rules consider the 
workflow shown in (Figure 2a). The set of paths for this workflow 
are given as follows:

{ FCA, FDA, FDB, HDA, HDB, HEB }

Extracting to the right the initial two roots results in the 
following partition:

{ FC, FD, FD, HD, HD, HE } [A, B]

Extracting each time the root functions from the remaining 
queues, the following sequence is reached:

[F. H] [C,D,E][A,B]

This partition set corresponds to three parallel compositions 
shown in (Figure 2a). Alternatively, the first two parallel 
compositions can be merged into a single partition as shown 

(Figure 2b). Using square brackets to separate different partitions 
then:

[F. H] [C,D,E][A,B]  = [F. H] [ [C,D,E][A,B] ]

Applying the reduction rules described previously, alternate 
partitions can be derived as follows:

{ FC, FD, FD, HD, HD, HE }  =  {FC, FD, H[ D, E]}

= { F[C,D], H[ D, E] }

= { FCD, H[D,E] }

= { FCH [D,E] }

The overall expressions are shown in (Figure 2c) and [Figure 
2d] which correspond to the following functionally equivalent 
representations:

FCH [D,E] [A,B] =  FCH [ [D,E] [A,B] ] 

CONCLUSIONS
This paper illustrates the feasibility of generating alternate 

representations of workflows. Partitions are derived based on 
a functional representation of the original workflow to which a 
set of reduction rules are systematically applied.  Each partition 
corresponds to a sub-workflow represented by a composition 
in the functional representation. Each composition therefore 
can be orchestrated for submission and execution in a grid or a 
cloud environment. Resource provisioning can be functionally 
integrated for each composition. As each sub-workflow demands 

Figure 2 Illustration of workflow partition rules. a) A workflow with a sequence 
of three parallel compositions, b) with a sequence of two parallel compositions, 
c) with a sequence of three compositions, two are parallel compositions, the 
third one is a series composition, and d) with a sequence of two compositions 
with reduced data transfers.
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fewer resources for a shorter amount of time, a particular set of 
submissions can be optimized to require less data transfers, or to 
seek a balanced computational and data exchange requirements. 
The workflow partitioning heuristics reported in [12] and the 
integration of resource provisioning reported in [13] provide 
a context in which the partitioning rules discussed in this 
paper can be useful. In addition, a functional representation 
addresses coarse levels of granularity present in small (desktop) 
applications written using a functional language or any modern 
language with functional expressiveness. 
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