
Central JSM Computer Science & Engineering

Cite this article: Lopez-Benitez N (2014) Functional Representations of Scientific Workflows. Comput Sci Eng 1(1): 1001.

*Corresponding author
Noe Lopez-Benitez, Department of Computer
Science, Texas Tech University, Lubbock, Texas,
79409-3104, USA, Email: noe.lopez-benitez@ttu.edu

Submitted: 16 December 2013

Accepted: 17 December 2013

Published: 18 December 2013

Copyright
© 2014 Lopez-Benitez

 OPEN ACCESS

Editorial

Functional Representations of
Scientific Workflows
Noe Lopez-Benitez*
Department of Computer Science, Texas Tech University, USA

EDITORIAL
Workflows describe not only a collection of component

functions, but also their dependencies, which predefine a
constrained order of execution. Scientific workflows are used to
describe not only computational and service requirements but also
the location of such services or computational units. Instruments
in scientific laboratories, robots in remote inaccessible areas,
a satellite unit in outer space, a set of databases, storage units
as well as computational units, all provide services that must
be orchestrated to satisfy an overall scientific objective. In this
paper functional representations of workflows are discussed as
a convenient alternative abstractions that can provide the basis
for dynamic management of service requests; furthermore they
can be regarded as a paradigm to organize and easily develop
entire applications via the use of functional languages to explore
not only fine-grained parallelisms, but also functional dynamic
parallelisms suitable for grid and cloud execution environments.

Functional representations are proposed in the context
of functional languages such as Haskell [1], Parallel Haskell
[2], SequenceL [3], and others. Functional languages provide
users the ability to specify and/or generate possible parallel
operations for fine-grained computational platforms. Haskell
has been extended to Cloud Haskell to provide message-passing
support [4]. Translation of functional code may lead to fine-
grain parallelism; sequenceL, for example, generates n-tuples
of independent computations that can be mapped into multiple
independent threads of execution; consequently, fine-grain
parallelisms can be mapped into high-level languages such as
MCUDA suitable for multi-core execution platforms.

Background Work

Abstract-to-concrete workflow is a transformation that
prevails in a cloud environment [5], where an orchestration
process completes the mapping into a concrete web-based
executable workflow. In [6] a series of workflow transformations
referred to as ‘sequence’, ‘and split’ and ‘and join’ patterns lead to
single node reductions. These transformations provide the basis
for the reduction schemes discussed in this paper as applied to
functional representations. The grouping of tasks reported in
GridSolve [7] is intended to minimize transfer delays by either
having a multiple-resource site execute all tasks or supporting
the transfer of data between different parallel tasks executing in
different service sites. Furthermore, fundamental work has been
reported on workflow optimization for grid environments, on

scheduling parallel clusters through Condor in [8], on schedule-
based workflow balancing [9], on performance and overhead
of high-performance applications [10], on task clustering for
balanced workflows in [11] task clustering is of interest because
the functional representation models described in this paper are
based on partitioning an entire workflow into sub-workflows,
similar to the heuristics reported in [12] and complemented with
the integration of resource provisioning as reported in [13].

Functional Representation of Workflows

A workflow, used as a typical directed acyclic graph (DAG) is
described by a set of vertices representing individual tasks and
a set of edges representing data dependencies. It is possible to
regard each task in a workflow as a functional unit depending
on the execution of its predecessors. For example, if a task A is
followed by independent tasks B and C in the workflow, then a
notation [B,C]A will model not only such dependencies but also
indicates that tasks B and C can be executed in parallel. Using
this representational approach, a functional description of a
workflow W can be described as:

W = [TF1[..], TF2[…], … , TFn[…]] (1)

Where TFi[…] represents a collection of nodes describing a
path of dependent functions. If we let TFi represent a terminal
node (function) in the workflow, then each TFi […] in equation (1)
can be described as:

TFi [Tx [Ty[…] …]], i=1,…,n

Where Tx and Ty are nodes in one of the execution paths
leading to terminal node TFi. Thus, each node in the workflow is
expressed as a function of all previous nodes in its execution path.
The collection of functions forms a queue of dependent functions
that must be executed in sequence. Each queue structure includes
an initial task i.e., with no incoming arcs, identified as a root task.
A set of root tasks corresponds to independent tasks that can be
dynamically scheduled for a parallel execution [14]. Consider
for example the workflow shown in [Figure. 1a]. A functional
representation can be derived from the workflow shown in Fig.
1b, where each node is expressed as a function of all previous
computing nodes in its path. To maintain the order of execution
each terminal node tails each queue derived from [Figure.1b]
which, following a functional representation, can be expressed as
follows:

Central

Lopez-Benitez (2014)
Email: noe.lopez-benitez@ttu.edu

Comput Sci Eng 1(1): 1001 (2014) 2/4

W = [[F[D[B[A]]], G[D[B[A]],E[B[A]], C[A]]] (2)

Removing the square brackets from equation (2) then a set of
queues given by all paths in the workflow are shown:

{FDBA, GDBA, GEBA, GCA}

The right most function in each queue corresponds to a “root”
function and the tail function corresponds to a terminal node in
the workflow. These structures can be easily obtained applying
well-known depth-first search algorithms.

Systematic Partitioning of Workflows

Extracting sets of root functions leads to possible partitions
of the original workflow. Consider for example the following
partitions from the set of queues generated for the workflow in
(Figure 1a)

1. { FDB, GDB, GEB, GC\} [A]

2. { FD, GD, GE \} [B,C][A]

3. [F, G][D, E][B, C][A]

Partition 1 is formed by extracting root A to the right. The set
of roots {B, C} are shown as heads of the remaining set of queues
and are extracted to the right as two parallel functions as shown
in partition 2. Likewise the sequence shown in partition 3 shows
sets of functions that are unique, i.e., no function is contained in
any other set. Identifying partitions of a workflow composed of
sequential and/or parallel patterns in a workflow may lead to a
reduced representation without altering the functionality of the
original workflow.

The notation used this far describes parallel functions
separated by commas; otherwise, a sequential execution is
indicated. Using square brackets enforces serialization. As
illustrated, to preserve the dependencies explicit in each queue,
root functions are always extracted to the right. Also, if different
roots are extracted from different queues they are indicated as a
parallel structure.

The following rules are intended to formalize the
manipulation of workflows and obtain alternate representations
whenever possible. The general description of sequential and
parallel patterns assumes that xi , i = 1, …, n, identifies the ith
node in a pattern with n number of nodes (functions).

Extraction Rules

Extracting common functions leads to the generation of
parallel structures amenable to the reduction rules discussed
this far.

1. Right Extraction Rule: This rule extracts a common
function or a common composition to the right. Extracting a
common function y results in a parallel composition in which y
becomes a root node that precedes the parallel execution of all
nodes xi:

{xny ,..., x2y, x1y} = { [xn ,..., x2, x1] y}

Extracting an entire composition to the right leads to a
sequence of two parallel compositions.

2. Left Extraction Rule: Extracting a node y to the left
results in a parallel composition in which y is a terminal node
following the parallel execution of all xi nodes:

{ yxn , ... , yx2, yx1 } = { y[xn ,..., x2, x1]}

Extracting an entire composition to the left also leads to a
sequence of two parallel compositions.

Sequential Composition Rules

This composition describes a functional description of a
workflow in which all nodes x1 to xn must be executed in sequence
xn[xn-1 … x2 x1]; in this pattern xn is the terminal function and it
is dependent on the sequential execution of all the functions in
the set {xn-1 ,…, x2 , x1}. The following rules apply to sequential
embedded patterns:

3. Sequential Reduction Rule 1: A sequential
composition of functions in the set {xn ,…, x2, x1} can be embedded
in a functional representation as follows:

xn [xn-1 … x2 x1], xn[y]

 where y ∉ {xn ,…, x2, x1}. Then a reduction functionally
equivalent is of the form:

xn [xn-1 … x2 x1, y]

4. Sequential Reduction Rule 2: This rule applies if the
sequential composition of the set {xn ,…, x2, x1} is embedded in a
functional representation of the form:

xn [xn-1 … x2 x1], y[xn-1 … x2 x1]

Figure 1 A workflow and its functional representation derivation.

Central

Lopez-Benitez (2014)
Email: noe.lopez-benitez@ttu.edu

Comput Sci Eng 1(1): 1001 (2014) 3/4

which can be reduced to the functionally equivalent form:

[xn , y][xn-1 … x2 x1]

Parallel Composition Rules

A parallel-to-series pattern transformation to transform and
reduce embedded parallel patterns. Using a parallel functional
expression can be transformed into a series expression indicated
as follows:

[xn ,…, x2, x1] = xn … x2 x1

A parallel pattern can appear in two forms. A join or a fork
structure. A join structure is identified in the following form:

y [xn ,…, x2, x1]

In this composition y is a terminal node that depends on the
parallel execution of all functions in the set {xn ,…, x2, x1}. Extracting
to the left a common function results in a common n-degree node
y which defines an embedded join structure.

The following pattern identifies a fork composition:

[xn ,…, x2, x1] y

This composition shows that the set of parallel functions {xn
,…, x2, x1 } can be executed but only after node y (which is not in the
parallel set) executes successfully.

5. Parallel Fork Composition Rule: A functional
representation given as follows:

[xn ,…, x2, x1]xi, xk y

contains and embedded fork composition x’i = [xn ,…, x2, x1]
xi. If xk ∈ {xn ,…, x2, x1 }, and y ∉ {xn ,…, x2, x1 } then the following
reduced sequential compositions are functionally equivalent:

[xn ,…, x2, x1] [xi, y] = [xn ,…, x2, x1] xiy

6. Parallel Join Composition Rule: If a functional
description of a workflow is given as follows:

xi [xn ,…, x2, x1], [y xk]

Then for any pair y ∉ {xn ,…, x2, x1 } and xk ∈ {xn ,…, x2, x1 }, the
following sequential compositions are functionally equivalent:

[y, xi][xn ,…, x2, x1] = yxi][xn ,…, x2, x1]

To illustrate the application of these rules consider the
workflow shown in (Figure 2a). The set of paths for this workflow
are given as follows:

{ FCA, FDA, FDB, HDA, HDB, HEB }

Extracting to the right the initial two roots results in the
following partition:

{ FC, FD, FD, HD, HD, HE } [A, B]

Extracting each time the root functions from the remaining
queues, the following sequence is reached:

[F. H] [C,D,E][A,B]

This partition set corresponds to three parallel compositions
shown in (Figure 2a). Alternatively, the first two parallel
compositions can be merged into a single partition as shown

(Figure 2b). Using square brackets to separate different partitions
then:

[F. H] [C,D,E][A,B] = [F. H] [[C,D,E][A,B]]

Applying the reduction rules described previously, alternate
partitions can be derived as follows:

{ FC, FD, FD, HD, HD, HE } = {FC, FD, H[D, E]}

= { F[C,D], H[D, E] }

= { FCD, H[D,E] }

= { FCH [D,E] }

The overall expressions are shown in (Figure 2c) and [Figure
2d] which correspond to the following functionally equivalent
representations:

FCH [D,E] [A,B] = FCH [[D,E] [A,B]]

CONCLUSIONS
This paper illustrates the feasibility of generating alternate

representations of workflows. Partitions are derived based on
a functional representation of the original workflow to which a
set of reduction rules are systematically applied. Each partition
corresponds to a sub-workflow represented by a composition
in the functional representation. Each composition therefore
can be orchestrated for submission and execution in a grid or a
cloud environment. Resource provisioning can be functionally
integrated for each composition. As each sub-workflow demands

Figure 2 Illustration of workflow partition rules. a) A workflow with a sequence
of three parallel compositions, b) with a sequence of two parallel compositions,
c) with a sequence of three compositions, two are parallel compositions, the
third one is a series composition, and d) with a sequence of two compositions
with reduced data transfers.

Central

Lopez-Benitez (2014)
Email: noe.lopez-benitez@ttu.edu

Comput Sci Eng 1(1): 1001 (2014) 4/4

Lopez-Benitez N (2014) Functional Representations of Scientific Workflows. Comput Sci Eng 1(1): 1001.

Cite this article

fewer resources for a shorter amount of time, a particular set of
submissions can be optimized to require less data transfers, or to
seek a balanced computational and data exchange requirements.
The workflow partitioning heuristics reported in [12] and the
integration of resource provisioning reported in [13] provide
a context in which the partitioning rules discussed in this
paper can be useful. In addition, a functional representation
addresses coarse levels of granularity present in small (desktop)
applications written using a functional language or any modern
language with functional expressiveness.

REFERENCES
1. Hudak P, Hughes J, Jones S P, Wadler P. A History of Haskell: Being

Lazy with Class, The Third ACM SIGPLAN History of Programming
Languages Conference (HOPL-III). 2007.

2. Marlow S, Parallel. Concurrent Programming in Haskell. version 1.2,
Mircrosoft Research Ltd., Cambridge, U.K.. 2012.

3. Cooke D E, Rushton N J, Nemanich B, Watson R G, Andersen P.
Normalize, Transpose, and Distribute: An Automatic Approach for
Handling Nonscalars. ACM Transactions on Programming Language
Systems. 2008.

4. Epstein J, Black A P, Peyton-Jones S. Towards Haskell in the Cloud},
ACM Haskell’11. 2011.

5. Juve G, Deelman E, Cafaro M, Alisio G. Scientific Workflows in the
Cloud, in Grids, Clouds and Virtualization, Compute Communications
and Networks. Springer-Verlag. 2011; 71-91.

6. Jaeger, M.C. Rojec-Goldmann, G. Muhl, G. QoS Aggregation in Web
Service Compositions, e-Technology, e-Commerce and e-Service.
2005; 181:185.

7. Li Yinan, YarKhan Asim, Dongarra Jack, Seymour Keith, and Hurault
Aurèlie, Enabling workflows in GridSolve: request sequencing and
service trading, the Journal of Supercomputing, 2013; 3:1133-1152.

8. Singh G, Kesselman C, Deelman E, Optimizing Grid-Based Workflow
Execution, Journal of Grid Computing 2006; 3:201-219.

9. Rajakumar S, Arunachalam V P, Selladurai V. Workflow Balancing
Strategies in Parallel Machine Scheduling, International Journal for
Advanced Manufacturing Technology. 2004; 366-374.

10. Mehrotra P, Djomehri J, Heistand S, Hood R, Jin H, Lazanoff A.
Performance Evaluation of Amazon Elastic Compute Cloud for
NASA High-performance Computing Applications, Concurrency and
Computation Practice and Experience. 2013.

11. Chen W, Ferreira da Silva R, Deelman E, Sakellariou R. Balanced Task
Clustering in Scientific Workflows, 9th International Conference on
eScience, Beijin. China. 2013.

12. Chen W, Delman E. Partitioning and Scheduling Workflows across
Multiple Sites with Storage Constraints, Workshop on Scheduling for
Parallel Computing, 9th Intl. Conf. on Parallel Processing and Applied
Mathematics. 2011.

13. Chen W, Delman E, Integration of Workflow Partitioning and Resource
Provisioning, 2012 12th IEEE/ACM International Symposium on
Cluster. Cloud and Grid Computing. 764-768.

14. Lopez-Benitez N, Andersen P, Dynamic Structures for the Management
of Complex Applications in Grid Environments, Proceedings of the
2009 International Conference on Grid Computing and Applications.
2009; 80-85.

http://dl.acm.org/citation.cfm?id=1238856
http://dl.acm.org/citation.cfm?id=1238856
http://dl.acm.org/citation.cfm?id=1238856
http://www.pdffiller.com/5506100-par-tutorialpdf-Parallel-and-Concurrent-Programming-in-Haskell-Other-forms-community-haskell
http://www.pdffiller.com/5506100-par-tutorialpdf-Parallel-and-Concurrent-Programming-in-Haskell-Other-forms-community-haskell
http://dl.acm.org/citation.cfm?id=1330020
http://dl.acm.org/citation.cfm?id=1330020
http://dl.acm.org/citation.cfm?id=1330020
http://dl.acm.org/citation.cfm?id=1330020
http://link.springer.com/chapter/10.1007%2F978-0-85729-049-6_4
http://link.springer.com/chapter/10.1007%2F978-0-85729-049-6_4
http://link.springer.com/chapter/10.1007%2F978-0-85729-049-6_4
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1402291&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1402291
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1402291&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1402291
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1402291&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1402291
http://link.springer.com/article/10.1007%2Fs11227-010-0549-1
http://link.springer.com/article/10.1007%2Fs11227-010-0549-1
http://link.springer.com/article/10.1007%2Fs11227-010-0549-1
file:///D:/xampp/htdocs/SciMed/data/totaldata/Articles/Endocrinology/LTTMH_V1/I/citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6100
file:///D:/xampp/htdocs/SciMed/data/totaldata/Articles/Endocrinology/LTTMH_V1/I/citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6100
file:///D:/xampp/htdocs/SciMed/data/totaldata/Articles/Endocrinology/LTTMH_V1/I/citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6100
file:///D:/xampp/htdocs/SciMed/data/totaldata/Articles/Endocrinology/LTTMH_V1/I/citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6100
file:///D:/xampp/htdocs/SciMed/data/totaldata/Articles/Endocrinology/LTTMH_V1/I/citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.6100
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3029/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3029/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3029/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3029/abstract
http://www.academia.edu/4975964/Balanced_Task_Clustering_in_Scientific_Workflows_Weiwei_Chen_Rafael_Ferreira_da_Silva_Ewa_Deelman_Rizos_Sakellariou_the_9th_IEEE_International_Conference_on_e-Science_eScience_2013_Beijing_China_Oct_23-25_2013
http://www.academia.edu/4975964/Balanced_Task_Clustering_in_Scientific_Workflows_Weiwei_Chen_Rafael_Ferreira_da_Silva_Ewa_Deelman_Rizos_Sakellariou_the_9th_IEEE_International_Conference_on_e-Science_eScience_2013_Beijing_China_Oct_23-25_2013
http://www.academia.edu/4975964/Balanced_Task_Clustering_in_Scientific_Workflows_Weiwei_Chen_Rafael_Ferreira_da_Silva_Ewa_Deelman_Rizos_Sakellariou_the_9th_IEEE_International_Conference_on_e-Science_eScience_2013_Beijing_China_Oct_23-25_2013
http://link.springer.com/chapter/10.1007%2F978-3-642-31500-8_2
http://link.springer.com/chapter/10.1007%2F978-3-642-31500-8_2
http://link.springer.com/chapter/10.1007%2F978-3-642-31500-8_2
http://link.springer.com/chapter/10.1007%2F978-3-642-31500-8_2
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6217508&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6217508
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6217508&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6217508
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6217508&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6217508
http://www.informatik.uni-trier.de/~ley/db/conf/gca/gca2009.html
http://www.informatik.uni-trier.de/~ley/db/conf/gca/gca2009.html
http://www.informatik.uni-trier.de/~ley/db/conf/gca/gca2009.html
http://www.informatik.uni-trier.de/~ley/db/conf/gca/gca2009.html

	Functional Representations of Scientific Workflows
	Editorial
	Background Work
	Functional Representation of Workflows
	Systematic Partitioning of Workflows
	Extraction Rules
	Parallel Composition Rules

	Conclusions
	References
	Figure 1
	Figure 2

