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Abstract

Microbiological composition in the oral cavity is affected by components and shape 
of restorative materials used. Consequently, such composition may affect oral health and 
restorative materials. Secondary caries form in teeth that are partly restored with restorative 
materials. This condition is a common dental disease caused by bacterial biofilms and with 
unknown causes. Caries are related to the type of restoration material used. In relation to 
biomaterials, several factors, such as surface roughness, surface energy, and chemical 
composition, affect Microbiota composition and biofilm formation. Ceramic and dental alloys 
have resulted in fewer caries formation, whereas composites cause more secondary caries than 
amalgam or glass ionomers. Khat chewing in the Arabian Peninsula is associated with a range 
of orodental problems. This paper provides an overview of scientific literature regarding the 
association among properties and performances of different restorative materials and oral 
biofilm formation in the presence of khat. PubMed literatures published until June 2016 were 
researched using the following keywords: ceramic, alloy, denture materials, composite resin, 
amalgam, biofilm, khat. Bibliographies of available previous reviews and their cross references 
were manually searched.

INTRODUCTION
The oral cavity is constantly contaminated by a complex 

diversity of microbial species that exhibit strong tendency to 
colonize dental surfaces, the tongue, and oral mucosa. The main 
components in biofilm formation comprise bacterial cells, a hard 
surface, and a fluid medium [1,2]. 

Formation of biofilms on intra and extra coronal teeth 
surfaces primarily causes periodontal diseases and caries [3]. A 
multitude of biomaterials used for restoration also cause such 
oral conditions [4]. 

Biofilm formation on restorative materials may degrade the 
material and roughen its surface [5], thereby causing filling of 
bacteria in the interface between tooth structure and restorative 
material and formation of secondary caries [6] and affecting pulp 
pathology [7]. 

Recovery of aesthetic and masticatory functions requires 
the use of proper dental restorative materials. However, these 
materials are prone to biofilm formation, thereby affecting oral 
health. In general, under clinical conditions, rough surfaces form 
more biofilm than smooth ones, but factors affecting bacterial 
adhesion to new restorative dental material remain unclear and 

may result in increased synthesis of antimicrobial compounds 
[8,9].

Halbach [10], Luqman and Danowski [11] reported that 
long-term khat chewing causes stomatitis followed by secondary 
infection. This finding may be caused by chemical irritation of 
mucosal surfaces and mechanical strain on cheeks and other 
oral tissues. Low prevalence of dental caries and high rate of 
periodontal pocket depth and diseases have been reported 
among khat chewers [11].

Recently, the effect of khat on oral bacteria has been 
assessed in a series of studies. In vitro experiments showed 
that crude khat extracts interfere with biofilm formation by 
Streptococcus mutans, suggesting their anticariogenic properties 
[12]. In another study, extracts exhibited selective antimicrobial 
properties against major periodontal pathogens [13] and were 
found to foster growth of some health-compatible species [14]. 
The present paper aims to highlight the association between 
physical and mechanical properties of restorative and prosthetic 
dental materials and oral biofilm formation in the presence of 
khat.

THE BIOFILM FORMATION 
Dental biofilms are matrix-enclosed bacterial population 
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adherent to each other and/or to surfaces, including polished 
tooth surfaces, living tissues, prosthetics devices, and dental 
materials. These films provide colonizing species with 
advantages, such as protection from competing microorganisms, 
environmental factors, host defense, and toxic substances. In the 
oral cavity, dental biofilm comprises diverse microorganisms; 
more than 500 different cultivable bacterial species are 
indigenous to the human oral cavity [15,16]. Currently, more 
than 700 oral bacterial taxa have been identified [17]. Among 
these organisms, approximately 100 or fewer species normally 
inhabit the oral cavity of an individual [18]. Although whole saliva 
features no distinctive microbiota of its own [19], it harbors as 
much as 108 bacteria per 1 mL [20] and serves as reservoir of 
microorganisms regularly derived from dental plaque biofilms 
adhering to gingival crevices, periodontal pockets, the dorsum 
of the tongue, and other oral mucosal surfaces [21]. Using only 
sequence analysis of previously characterized 16S rDNA and 
a number of previously uncultured and uncharacterized ones, 
bacterial species have recently been identified in saliva of 
healthy individuals and patients with periodontitis [22]. Mutans 
streptococci and lactobacilli have been associated with etiology of 
dental caries. Among mutans streptococci, Streptococcus mutans 
and S. sobrinus are considered particularly significant in human 
caries [23]. 

BIOFILM FORMATION AND KHAT
Khat is the leaves of the shrub (Catha edulis Forks) which are 

widely spread, chewed, consumed, and practiced by a majority 
of the youth in Jazan southwest (Saudi Arabia) [24,25]. Khat 
chewed like tobacco or used to make tea daily or during social 
and cultural gatherings and held in the lower buccal pouch 
unilaterally in a bolus for more than 5 hours or more [26,27]. 
Khat was reported to cause dental attrition, staining of teeth, 
TMJ disorders (pain and clicking), and cervical caries particularly 
among crystallized sugar consumers, and increased periodontal 
problems and attachment loss [28]. 

An in vitro effect of crude khat extracts on oral micro-organ
isms and the effect of bacteria identified from sub and supra-
gingival plaques. Al-Hebshi et al. [14], demonstrated a possible 
antimicrobial effect of khat on oral micro-organisms and showed 
a selective antimicrobial effect of crude khat extracts on oral 
micro-organisms. They demonstrated that while bacteria 
associated with periodontal disease were sensitive to the extracts, 
bacteria associated with periodontal health were less sensitive, 
and cariogenic bacteria were not susceptible. In another study, 
Al-Hebshi et al. [12], showed that crude khat extracts interfered 
with the ability of Streptococcus mutans to form adherent 
biofilms, implying that khat may have anticariogenic effects. 

Nyanchoka et al. [29], founded a significantly higher caries 
rate in khat chewers than in non-chewers, as measured by the 
decayed, missing and filled teeth (DMFT) index. They found the 
mean DMFT score were 8.778 and 6.529 for chewers and who 
never chewed khat respectively. The authors suggested that 
the higher caries index score in chewers could be a result of 
cariogenic substances such as soft drinks that are often consumed 
with khat [29,30]. While Hattab and Al-Abdulla [26] noticed that, 
Khat leaves contain a negligible amount of fluoride and thus is 
unlikely to exert anti-caries effect as claimed previously. 

Regarding the effect of khat chewing on oral micro-organisms, 
the available evidence consistently indicates that chewing khat did 
not favor the proliferation of pathogenic oral micro-organisms. It 
was shown to have selective antimicrobial effects and to favor 
the presence of micro-organisms compatible with oral health 
[31,32]. A studies by [31-33], concluded that Khat chewers 
shown periodontal health adverse outcomes such as, gingival 
recession or bleeding and periodontal pocketing comparing to 
non-chewers, with effect sizes ranging from medium to large. 
It has also been shown that chewing is associated with other 
indicators of periodontal health and tooth loss [34]. 

BIOFILM FORMATION AND PROSTHETIC MATE-
RIALS

Prosthetic materials may affect accumulation of biofilm 
in different ways. Rough or open margins consistently form 
between tooth and prosthesis, and this condition may complicate 
mechanical removal of biofilms and alter chemical balance in 
biofilm in this region.

Ceramics

The use of dental porcelain is advocated in different types of 
restorations like veneers, inlays, single crowns and fixed partial 
dentures [35]. Studies both in-vitro [36,37] and in-vivo [36,38-42] 
have investigated the adhesion of bacterial and bacterial biofilms 
on ceramics in comparison to other dental materials. Relatively 
and in comparison to other dental materials used in oral cavity, 
ceramics have been found to promote lower bacterial adhesion 
and biofilm formation although very less in vivo studies have been 
conducted to study the differences between different types of 
ceramics [43,44]. Variation between different ceramics has been 
studied in vitro for determination of bacterial adhesion rather 
than the accumulation of complex biofilms [44]. Ceramic surfaces 
have been shown to collect less plaque with reduced viability 
in absence of oral hygiene although different results have been 
demonstrated when compared with unglazed porcelain surface 
[45,46].

Acrylic resins

 Since 1928, denture base resins are a group of dental materials 
that have stood the test of time without undergoing much change 
in its basic constituents. Biofilm associated with denture base 
resins is unique in the sense that more than bacteria, it is certain 
yeasts especially candida species that have been associated with 
denture base resins [47-49]. Many different strains of candida 
[50] along with certain bacteria [51] have been shown to work 
synergistically for their attachment to denture base resin or to 
each other [49, 52,53]. 

Biofilm including yeasts has been found to be difficult to 
remove because of strong adhesion ability, [54] the adhesive 
ability is directly associated with micoporous surface of denture 
resins [55-57]. 

Modification of resins to discourage biofilm formation in the 
form of polyethylene [54], titanium dioxides coating [58] and 
denture cleansers [59] have shown to discourage the biofilm 
formation. 
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Metal alloys

Alloys used for prostheses should be inert and highly polished 
to prevent the accumulation and attraction of oral micro-
organism to prevent biofilm formation. Different alloys used in 
dentistry mainly gold, nickel chrome and recently titanium alloys.

Prostheses alloys margin with many small defects will retain 
more plaque and bacteria than a smooth margin. Most alloys 
should be polished to give very little retention for biofilms, 
although some alloys have a higher affinity to bacteria than others 
[60]. It seems that some bacteria are attracted due to electrical 
charges in some alloys [8]. Biofilms on gold restorations, however, 
generally have low viability [60]. Some microbes are affected by 
elutes from the metals.

Auschill et al. [60], demonstrated that oral biofilms have 
very low viability (less than 2%) on gold but this cannot be due 
to the release of toxic compounds, because gold is completely 
inert. They explained that possibly, full coverage by a relatively 
thick oral biofilm hampers the supply of nutrients to the biofilm, 
leading to low viability [61]. 

Biofilm formations and restorative materials

Dental restorations affect biofilm composition in different 
ways. Steps, open margins, or groves consistently form between 
tooth and restorative materials. These spaces will complicate 
mechanical removal of biofilms and alter chemical balance in the 
biofilm in this region. Restorative materials differ from enamel 
with regard to surface roughness, surface energy, and chemical 
composition [62,63]. Most populations receive at least one dental 
restoration, and roles of biofilm-related infections to restoration 
as opposed to primary oral infections are not easily distinguished. 

Amalgam

 This material cannot bond to the tooth structures, so it 
depends manly on macro-mechanical undercuts for their 
retention. This resulted in interfacial spaces which lead to 
secondary caries [64]. Since amalgam is a conducting material, 
like gold so, electron transfer plays a role in bacterial adhesion 
[65]. This is attributed this to attraction between the negatively 
charged bacteria and their conducting material positive image 
charges [66]. Auschill et al. [60], ring biofilm on amalgam and gold 
and found that five-day-old oral biofilms on their surfaces were 
thick and fully covering the sub-stratum surfaces [60]. Leonhardt 
et al. [67], placed different restorative materials in teeth for 
day and 3days, he showed that amalgam attracted about 50% 
of viable bacteria than titanium oxide [67,68]. They explained 
the low viability of biofilms on amalgam surfaces is may be due 
to the release of toxic compounds from the alloy. However, it 
is possible that bacteria develop resistance against mercury 
because of instant bacteriostatic effects of it [60]. Experimentally 
more bacteria resistant to mercury were found in microcosm 
oral biofilms grown on amalgam than on enamel. The percentage 
and levels of this mercury resist bacteria remained elevated for a 
period of 2 days, but after that it returned to baseline levels [68]. 

Composite resins

Surface deterioration of resin composites has been 
demonstrated by an increased roughness, effects on filler 

particle exposure, and sometimes by a reduced micro-hardness 
of the materials upon exposure to biofilms in vitro [5]. Clearly, 
the clinical presence of biofilm is just one of the factors that may 
stimulate surface degradation, other factors being acidic fluid 
intake, temperature fluctuations, or simply the presence of an 
aqueous environment. 

Some methods to inhibit biofilm growth on dental material 
are such as blended the zinc oxide nanoparticles into resin 
composites and or adding of chlorhexidinegluconate into some 
dental materials in order to enhance the antibacterial activity 
and display antimicrobial activity and reduce growth of bacterial 
biofilms [69-71]. In addition to that development of a nano-
composite containing amorphous calcium phosphate or calcium 
fluoride nanoparticles and chlorhexidinegluconate particles 
might be reduced biofilm formation Cheng et al. [72]. 

The removal of filler particles based on the roughness 
dimensions created. Resin composites with larger 0.01 to 3.5 μm 
filler particles became significantly less rough (around 15 nm) 
after biofilm growth [5].

Recently Khalichi et al. [73], found that triethylene glycol, as 
the ether portion of triethylene glycol dimethacrylate, modulates 
the expression levels of glucosyltransferase B involved in biofilm 
formation and yfiV as a putative transcription regulator gene in 
S. mutans. 

Glass-ionomer fillings

Biofilm formation on glass-ionomer cements leads to a 
negative spiral of events [5], in which the colonizing organisms 
cause severe deterioration of the surface, which, in turn, promotes 
biofilm formation and therewith more extensive deterioration of 
the surface. The clinical manifestation of this downward spiral 
is the development of caries around or below a restoration [74].

The use of glass-ionomer potentially reduces micro leakage 
by adhering to tooth structure and enhances fluoride release 
with a potential impact on oral biofilm formation. Fluoride 
release occurs through an initially high burst release that may be 
between 1.6 and 1.8 μg/ mm 2, after which a prolonged, long-
term tail-release follows [75]. 

Fluoride can act as a buffer to neutralize acids produced by 
bacteria and reduced the growth of caries related oral bacteria 
[76,77]. Glass-ionomer cement indeed collects a thin biofilm with 
a low viability (2% to 3%), possibly as a result of fluoride release 
[60]. However, an in vitro study also showed that glass-ionomer 
containing fluoride did not reduce the amount of bacterial 
growth and biofilm formation on the surfaces bathed in saliva 
[78]. This suggests that either fluoride is not a dominant factor 
in controlling biofilm formation, or the too low concentration to 
be effective, depending on the ratio between filling area and fluid 
volume in which the experiments were carried out. In the oral 
cavity, the large volume of saliva present, which is subject to wash 
out, makes the build-up of an effective fluoride concentration 
difficult [75].

Association of biofilm and khat on prosthetic and 
restorative materials

No study explored the relation of prosthetic materials 
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and biofilm among khat chewers or the relation of khat and 
restorative materials. Little information is available on the 
pattern of dental biofilm distribution on different Prosthodontics 
and restorative materials. However, no literature or clinical and 
laboratory studies demonstrate the relationship between biofilm 
formation and khat chewers.

DISCUSSION AND CONCLUSION
In vitro and in vivo studies reveal that rough surfaces will 

promote plaque maturation and formation on restorative 
materials. Thick biofilms form on metal alloys and amalgam, 
but thin ones are more common in ceramic and glass ionomer 
restorations. Khat chewing has been shown to modify 
compositions of supra- and subgingival microbes, leading to 
periodontal recession, pocketing, and attachment loss of teeth. 
Case control and high-powered cohort studies bear significance 
in investigating the association among biofilm formations, 
restorative materials, khat chewing, and dental health. Finally, 
the present review should be considered for further clinical 
studies.
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