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Tuberous sclerosis complex (TSC) is an autosomal dominant 
disorder with an incidence of one in 6000–10,000 live births 
[1]. Patients with TSC are predisposed to developing tumors 
(hamartomas) in the brain, eyes, heart, kidneys, lung, and 
skin.  Although typically benign, these tumors cause significant 
morbidity, including seizures, cognitive impairment, and 
disfigurement.  TSC is caused by mutations of a tumor suppressor 
gene, either TSC1 or TSC2. The proteins encoded by these genes, 
TSC1 (hamartin) and TSC2 (tuberin), function as a complex to 
regulate the mammalian target of rapamycin (mTOR) signaling 
pathway [2]. Loss of function of the hamartin-tuberin complex 
in TSC tumors enhances mTOR signaling leading to increased 
cell numbers and cell size. However, the molecular and cellular 
mechanisms of TSC tumor formation have not been fully 
elucidated. 

Skin hamartomas, including multiple facial angiofibromas, 
ungual fibromas, forehead plaques and shagreen patches, are 
observed in about 90% of patients with TSC [3].  Histologically, 
these tumors show increased vessels and fibrosis, and variable 
but sometimes pronounced epidermal hyperplasia. Our studies 
focus on paracrine growth factors underlying formation of TSC 
skin hamartomas to identify new targets for treatment of TSC 
disease.

Angiogenesis in TSC skin hamartomas

Many TSC hamartomas have increased blood vessels, 
including tumors of the brain, kidney and skin [4]. These vessels 
are reactive and not neoplastic in most TSC tumors, including 
skin hamartomas [5]. Angiomyolipomas (AMLs) have reactive 
and neoplastic endothelial cells [6]. Tumors in animal models 
of TSC are also highly vascular [7, 8]. Increased vascularity may 
be due to release of many soluble factors by neoplastic cells, 
notably vascular endothelial growth factor A (VEGF-A, commonly 
called VEGF). Loss of TSC1/TSC2 function is accompanied by 
increased production of VEGF [9, 10] and this is related to mTOR 
activation and increased levels of hypoxia-inducible factor (HIF), 
a transcription factor that regulates the expression of VEGFA 
and other genes [7, 11]. We found that VEGFA levels were only 
modestly increased in TSC skin tumors [12].  Therefore, we 

sought to identify other paracrine factors or cell populations that 
might account for the dramatically increased vascularity of these 
tumors. 

MCP-1 and macrophages in TSC skin hamartomas  

Histologically, angiofibromas and periungual fibromas show 
increased numbers of fibroblast-like cells in the interstitial 
dermis together with mononuclear phagocytes, based on 
immunoreactivity for factor XIIIa [13-15].  Macrophages might 
be important for angiogenesis in TSC skin tumors and other TSC 
tumors as well. Increased numbers of cells positive for factor XIIIa 
have been observed in subependymal giant cell astrocytomas 
and angiomyolipomas [13]. Cortical tubers have been reported to 
contain increased numbers of cells expressing CD68, a marker of 
the monocytes/macrophages [16].  The factor(s) responsible for 
the presence of these cells in TSC skin tumors was unknown.  To 
identify soluble factors with potential roles in TSC tumorigenesis, 
we screened TSC skin tumor-derived cells for altered gene and 
protein expression using a human cytokine/receptor gene array, 
real-time PCR and a multiplexed ELISA. Fibroblast-like cells 
from angiofibromas and periungual fibromas produced high 
levels of monocyte chemoattractant protein-1 (MCP-1) mRNA 
and protein, compared with those of TSC fibroblasts from the 
normal appearing skin of same patient [12]. We also found that 
the conditioned medium from angiofibroma cells stimulated 
chemotaxis of a human monocytic cell line more than did that 
from TSC fibroblasts, an effect blocked by neutralizing MCP-1 
antibody. Our studies indicated that the over expressed MCP-1, by 
stimulating angiogenesis, fibrogenesis and recruiting monocytic 
cells, may play an important role in TSC tumorigenesis and offer 
a new therapeutic target.

Epiregulin mediates mesenchymal-epithelial interac-
tions in TSC hamartomas

Patients with TSC develop hamartomas containing biallelic 
inactivating mutations in either TSC1 or TSC2. We compared 
TSC skin hamartomas to normal-appearing skin of the same 
patient, and observed more proliferation and mTOR activation 
in hamartoma epidermis, but “two-hit” cells were not detected 
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in the epidermis. Fibroblast-like cells in the dermis, however, 
exhibited allelic deletion of TSC2, in both touch preparations of 
fresh tumor samples and cells grown from TSC skin hamartomas, 
suggesting that increased epidermal proliferation and mTOR 
activation were not caused by second-hit mutations in the 
keratinocytes but by mesenchymal-epithelial interactions. Gene 
expression arrays, used to identify potential paracrine factors 
released by mesenchymal cells, revealed more epiregulin mRNA 
in fibroblast-like angiofibroma and periungual fibroma cells than 
in fibroblasts from normal-appearing skin of the same patient 
[17]. Epiregulin is a member of the EGF family that includes EGF, 
transforming growth factor-alpha, heparin-binding EGF-like 
growth factor, amphiregulin, and betacellulin. Epiregulin is an 
autocrine or paracrine factor that is produced by many human 
cancers [18, 19]. Epiregulin stimulated keratinocyte proliferation 
and phosphorylation of ribosomal protein S6 in vitro. Our results 
suggest that hamartomatous TSC skin tumors are induced by 
paracrine factors released by “two-hit” cells in the dermis, 
and that proliferation with mTOR activation of the overlying 
epidermis is an effect of epiregulin.

Development of xenograft mouse model for studies of 
TSC skin hamartomas

Xenograft models for several types of human cancer have 
been useful for both basic science studies and preclinical testing 
of novel candidate drugs [20]. To elucidate mechanisms of tumor 
formation and study drug action in vivo, there was a great need 
for a xenograft model of TSC skin hamartomas. Xenografted 
skin equivalents have been used by many investigators to study 
different aspect of wound healing and angiogenesis [21, 22]. 
Our goal was to develop an experimental model of TSC skin 
hamartomas by grafting constructs containing patient tumor-
derived cells to mouse skin [23]. Fibroblast-like cells were grown 
from angiofibromas, periungual fibromas, or forehead plaques 
and normal-appearing skin from TSC patients.  Cells from TSC 
patients were selected for use in the animal model based on the 
tumor-derived cells showing undetectable TSC2 protein.  Normal 
fibroblasts or tumor cells from TSC patients were incorporated 
into collagen gels, the surface was overlaid with normal human 
neonatal keratinocytes, and these constructs were transplanted 
to the backs of nude mice.  To confirm presence of human cells, 
sections were stained for human leukocyte antigen (HLA) using 
a pan-human HLA class I antibody.  Grafts containing tumor cells 
showed increased activation of the mTOR complex 1 (mTORC1) 
signaling pathway compared to normal cells, as shown by 
staining for phosphorylated ribosomal protein S6. Histologically, 
grafts containing tumor cells replicated many features of TSC 
skin hamartomas, including increased vessels positive for CD31, 
increased mononuclear phagocytes positive for F4/80 in the 
dermis, and increased Ki-67 positive cells in the epidermis. We 
have established a human tumor xenograft model that allows 
reproducible experimental manipulation of clinically relevant 
cells in an orthotopic location. This model may be useful for 
studies on TSC tumorigenesis, tumor microenvironment and 
therapeutics. 	

Effects of rapamycin on TSC skin hamartomas 

TSC tumors can cause lifelong disability and significantly 
impact on a patient’s quality of life. Current treatments for TSC 

tumors involve surgery, exposing patients to operative risks 
such as pain, functional deficits, recurrences, and scarring.  The 
observation that tumor cells in TSC show loss of function of the 
TSC1-TSC2 complex and increased signaling through mTORC1 
[6, 24] prompted clinical studies using mTOR inhibitors such as 
rapamycin (sirolimus) to treat TSC tumors.  Sirolimus decreased 
the size of renal angiomyolipomas, subependymal giant cell 
astrocytomas, lymphangioleiomyomas, chylous effusions and 
skin hamartomas [25]. It reduced the rate of decline of pulmonary 
function [26] . 

To study the potential utility and mechanism of action 
of rapamycin in the treatment of TSC skin hamartomas, we 
administered rapamycin to nude mice grafted with human TSC 
skin tumor cells. Rapamycin decreased numbers of TSC2-null 
cells and mononuclear phagocytes, and decreased angiogenesis 
and epidermal proliferation [23]. These results suggest that 
the decreased redness and size of TSC skin lesions observed in 
patients receiving systemic [27] or topical [28] rapamycin may 
result from both anti-tumor cell effects and anti-angiogenic 
effects. The antiangiogenic effects of rapamycin may be due 
to a direct inhibitory effect on vascular endothelium and/or 
indirect effects such as diminished release of angiogenic factors 
by TSC2-null cells or decreased recruitment of pro-angiogenic 
mononuclear cells.

SUMMARY AND CONCLUSIONS 
TSC is an extremely complicated disorder, affecting different 

organ systems at different times in a patient’s life. In the past 
few decades, research studies of TSC disease mainly focused on 
genetic alteration of TSC genes and abnormalities in the PI3K/
AKT/mTOR pathway. Those studies led to an effective drug 
treatment with rapamycin or its derivatives, which significantly 
benefits TSC patients. Unfortunately, rapamycin did not eradicate 
tumor cells so even better treatments are needed. We have 
demonstrated that TSC skin hamartoma cells promote tumor 
formation through interaction with surrounding cells directly or 
indirectly by releasing paracrine factors. These paracrine factors 
represent promising new targets for therapy, either alone or in 
combination with mTOR inhibitors. Future studies are expected 
to demonstrate the potential benefits of these new treatment 
strategies for curing TSC disease.
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