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Abstract

Over the years, a number of dimensionality reduction techniques have been 
proposed and used in chemo informatics to perform nonlinear mappings. Nevertheless, 
data visualization techniques can be efficiently applied for dimensionality reduction 
mainly in a case if the data are not really high-dimensional and can be represented 
as a nonlinear low-dimensional manifold when it is possible to reduce dimensionality 
without significant information loss. In this study several intrinsic dimensionality 
estimation approaches have been investigated: the Geodesic Minimum Spanning Tree, 
the Eigen value-based and the Maximum Likelihood Estimators. Their performance has 
been compared for visualizing toxicity data in different descriptor spaces.

INTRODUCTION
Over the years, a number of dimensionality reduction 

techniques have been proposed and used in chemo informatics 
to perform nonlinear mappings. Nevertheless, data visualization 
techniques can be efficiently applied for dimensionality reduction 
mainly in a case if the data are not really high-dimensional and 
can be represented as a nonlinear low-dimensional manifold 
when it is possible to reduce dimensionality without significant 
information loss [1]. In this study several intrinsic dimensionality 
estimation [2] approaches have been investigated: the Geodesic 
Minimum Spanning Tree [3], the Eigen value-based [4,5] and the 
Maximum Likelihood Estimators [1]. Their performance has been 
compared for visualizing toxicity data in different descriptor 
spaces. The obtained values of data intrinsic dimensionality (ID) 
were compared with the quantitative results of data visualization 
for two applied dimensionality reduction approaches: Diffusion 
maps and Isomap.

MATERIALS AND METHODS
For intrinsic dimensionality estimation and dimensionality 

reduction the implementations provided by Matlab Toolbox for 
Dimensionality Reduction (v 0.7.1b) [6] were used.

Intrinsic dimensionality estimators

The intrinsic dimensionality of the data can be defined as 
the minimal number of variables needed to describe the data x. 
The intrinsic dimensionality estimators can be related to two 
main categories: the eigen value or projection methods and the 

geometric methods. Eigen value methods are based on principal 
component analysis (PCA) [7]. PCA projects the data along 
the directions of maximal variance. It computes eigen values 
and eigenvectors of the covariance matrix of data. Intrinsic 
Dimensionality (ID) is defined by the number of eigen values 
that exceed a predefined value of threshold. The geometric 
methods are mostly based on fractal dimensions or nearest 
neighbor distances. In this study, the Geodesic Minimum Spanning 
Tree [3] and Maximum Likelihood Estimator [1] were used as 
representatives of second group of methods. 

In Geodesic Minimum Spanning Tree (GMST) several steps are 
considered. First, a complete graph based on geodesic distances 
between all pairs of data points is built. A minimal spanning 
graph, or the GMST, is obtained by the reduction of the initial 
graph to a subgraph, in which every data point xi is connected 
to its k nearest neighbors. The intrinsic dimension is estimated 
from the GMST length functional L:

( ) min Eucl
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∈
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where T is the set of all sub-trees of graph G, e is an edge in tree 
T, and DEucl is the Euclidean distance corresponding to the edge e.

Maximum Likelihood Estimator is based on number of data 
points covered by a hypersphere with a increasing radius by 
modeling the number of data points inside the hypersphere as 
a homogeneous Poisson process. In practice the radius is usually 
replaced by the number of neighbors k. Since this parameter 
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impacts the estimation of ID, here, we use the average value of ID 
defined in the range of k (see details below). ID value is estimated 
maximizing log-likelihood of the Poisson process.

Dimensionality reduction approaches

In this study, two representatives of distance-preserving 
nonlinear dimensionality reduction methods Isomap (IM) [8,9]
and Diffusion Maps (DM) [10] are used. This group of techniques 
is intended to use distance preservation as the criterion for 
dimensionality reduction that is intuitively understandable and 
easy to compute.

Assessment of data visualization performance

The performance of data visualization has been monitored 
with quantitative measure introduced and proved its efficiency 
in [11] and which is an average value of two other parameters, DC 
and DSC, that reflect different features of the visualization maps 
and thus are complementary to each other [11].

Data preparation

Three data sets were considered in this study. A set of 242 
pIC50 values for hERG inhibition was taken from [12].  To 
generate the classification models the considered data set was 
split into two classes according to their activities on the hERG 
channel inhibition. The pIC50 = 5 (low micromolar potency) was 
considered as the threshold value for hERG inhibition. Thus, 104 
inactive and 138 active compounds for hERG channel inhibition 
have been involved in model development. 

A set of 100 phospholipidosis-inducing compounds and 82 
negative drug like compounds were taken from [13], where the 
active compounds have been observed to act on a range of species 
(humans, rats, mice, dogs, rabbits, hamsters and monkeys) and 
on a variety of tissue types (lungs, kidney and liver). 

Data from EPA Fathead Minnow Acute Toxicity Database [14] 
after data preparation stage containing 612compounds. This 
database was generated by the U.S. EPA Mid-Continental Ecology 
Division (MED) for the purpose of developing an expert system 
to predict acute toxicity from chemical structures based on mode 
of action considerations. A threshold of 1mmol/L was used to 
subdivide compounds on toxic and non-toxic. After removal of 
several compounds with activities identified as ranges, the final 
dataset included 578 compounds (145 non-toxic and 433 toxic).

The data preparation has been carried out using 
recommendations published in [15]. Chemaxon Standardizer 
[16] and Instant JChem [17] software have been used for the data 
preparation. Using Standardizer, the explicit hydrogen atoms 
have been removed, the structures have been aromatized.

Descriptors

In this study, four descriptor types were involved in 
model development. ISIDA package [18] was represented by 
two different descriptor types: (i) ISIDA Property-Labeled 
Fragment Descriptors (IPLF)[19] (atom-centered fragments 
(augmented atoms) of radius 1 to 3 colored by pH-dependent 
pharmacophores and (ii) subclass of ISIDA Substructural 
Molecular Fragments (SMF)[18] consisting of the shortest 
topological paths with explicit representation of only terminal 

atoms and bonds, where the values of minimal nmin and maximal 
nmax number of atoms varied from 2 to 15. 2D descriptors of 
Molecular Operating Environment (MOE 2D)[20] containing 
different physical properties, subdivided surface areas, atom and 
bond counts, Kier & Hall connectivity and Kappa shape indices, 
adjacency and distance matrix descriptors, pharmacophore 
feature descriptors and partial charge descriptors were involved 
in model development. Finally, 2D descriptors calculated with 
Dragon v 6.0 software [21] were used. 

Computational procedures

GMST. It was found that the results obtained with GMST are 
highly dependent on random parameters and therefore for each 
combination of data set and descriptor type we used an average 
of 300 estimates. k = 50 nearest neighbors were used to construct 
a connectivity graph, M = 3. N = 30 random permutations were 
used to sum the cumulative distance.

EV. The only external parameter required in the Eigenvalues 
method is the value of a threshold for the eigenvalues. It was set 
to thr = 0.025.

MLE. The neighborhood range was set from k1 = 10 to k2 = 30. 

RESULTS AND DISCUSSION
In this study, Maximum Likelihood Estimation, Geodesic 

Minimal Spanning Tree and Eigen value method have been 
applied for intrinsic dimensionality estimation. The obtained 
values of data intrinsic dimensionality (ID) were compared with 
the quantitative results of data visualization for the applied 
dimensionality reduction methods. 

In Figure 1 (I) the value 
2

DC DSC+  is represented as a 

function of the intrinsic dimensionality for each data set (each 
point represents a combination of data set and descriptor type). 
Here, the inverse relationship between the number of intrinsic 
dimensions and the quality of visualization model is observed. 
One can see, that the significant decrease in class separation 

ability (
2

DC DSC+
∆ = 0.12) for hERG data set can be explained 

by the increase in intrinsic dimensionality from 7-8 to 21 (for 
IPLF descriptors). The similar decrease can be found for acute 

toxicity dataset (also 
2

DC DSC+
∆ = 0.10), though the intrinsic 

dimensionality varies in a smaller range (from 5 to 9). At the same 
time, the changes of intrinsic dimensionality for phospholipidosis 
from 5 to 22 have a negligible impact to the considered parameter 
(from 0.75 to 0.72). 

Figures 1 (II) and 1 (III) demonstrate the same regularities for 
GMST and EV methods of estimation of intrinsic dimensionality. 
One can see, that for GMST dimensionality of data enough 
confidently associated with the performance of obtained maps 
whereas for phospholipidosis increasing the number of intrinsic 
dimensions has no impact on visualization quality. 

Eigen values defines the number of intrinsic dimensionalities 
different from those, produced by MLE and GMST. The 
combination of this approach with DM was unable to find the 
same trend. 
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According to GMST the intrinsic dimensionality of 
considered data sets varied in a larger range (up to 96 for 
herg, IPLF descriptors) then according to MLE (up to 22 for 
phospholipidosis, IPLF descriptors). The same value for EV is 
even smaller: the largest value intrinsic dimensionality among 
all considered datasets was, according to this method, 9. This 
makes it impossible to exactly assess the real value of intrinsic 
dimensionality, but we still can make some tentative conclusions 
by comparing the relative values to each other. The disagreement 
of the obtained by different ID estimators results required a 
further comprehensive study. 

Among the three studied algorithms, Maximum Likelihood 
Estimation, Geodesic Minimal Spanning Tree and Eigen value 
method, the MLE demonstrated to be the most efficient one, since 
its results better correspond to the obtained visualization maps.

CONCLUSION
In this study several intrinsic dimensionality estimation 

approaches have been investigated: the Geodesic Minimum 
Spanning Tree, the Eigen value-based and the Maximum 
Likelihood Estimators. Their performance has been compared 
for visualizing toxicity data in different descriptor spaces. Among 
the studied algorithms the MLE demonstrated to be the most 
efficient one, since its results better correspond to the obtained 
visualization maps. The disagreement of the obtained by different 
ID estimators results required a further comprehensive study.
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