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Abstract

The cancer drug trial candidate Tipifarnib and its derivatives were subjected to a thorough QSAR analysis in the current study for the undertreated disease 
anti-Chagas. The study was effective in identifying the crucial structural elements that regulate the anti-Chagas profile of tipifarnib derivatives as a potential 
treatment. The genetic algorithm-multilinear regression (GA-MLR) method was used to create many models employing multiple splits in order to determine 
the greatest number and set of significant molecular descriptors. The created QSAR models have R2 > 0.85, Q2 > 0.82, and R2ext > 0.90, making them 
tri-parametric and statistically robust. The models are both internally and externally predictively strong. The models show a correlation between nitrogen’s 
interaction with lipophilic atoms and the anti-Chagas activity of tipifarnib analogues.

ABBREVIATIONS

QSAR = Quantitative Structure-Activity Relationship; GA-
MLR= Genetic Algorithm-Multilinear Regression; CYP51 = 
Cytochrome P450 51; ADMET = Absorption; Distribution; 
Metabolism; Excretion; and Toxicity; EC50 = Median Effective 
Concentration; pEC50 = negative logarithm of the EC50; OECD = 
Organisation for Economic Co-operation and Development; GA = 
Genetic Algorithm; CV = Cross-validation; LOO = Leave-one-out; 
LMO = Leave-many-out; AD = Applicability Domain; FSM = Full 
Set Model; RMSE = Root Mean Square Error  ; MAE = Maximal 
Absolute Error; MSA = Molecular Surface Area 

INTRODUCTION

Chagas disease commonly spread by contact with 
an infected triatomine bug also known as “Kissing bug,” 
“Benchuca,” “Vinchuca,” “Chinche,” or “Barbeiro,” is one of the 
most underdiagnosed parasitic diseases that can lead to life-
threatening cardiac and stomach conditions [1]. It is often 
communicated through contact with an infected triatomine bug. 
Each year, the disease affects about ten million individuals, with 
the majority of cases concentrated in tropical areas like Africa 
and Latin America [2]. The protozoan parasite Trypanosoma 
cruzi (T. cruzi), a kinetoplastid hemoflagellate, is the cause of 
Chagas disease. Because there is no effective treatment available 

during the chronic stage of the illness, those who have been 
infected typically become a permanent host to the parasite. 
Nitrofuran, nifurtimox, benznidazole, and nitroimidazole are 
only a few of the very toxic medications that are commonly used 
in chemotherapy. The situation has worsened with the advent of 
resistance against nifurtimox [1,3-7]. Therefore, search for a new 
therapeutic agent or modification of existing one to curb Chagas 
disease is essential [8,9]. 

T. cruzi was recently discovered to be successfully inhibited 
by tipifarnib, a well-known anti-cancer drug created by Johnson 
& Johnson Pharmaceuticals [1]. The inhibition of endogenous 
sterol biosynthesis and binding to recombinant T. cruzi CYP51 
provided further evidence that the target enzyme, CYP51, was 
implicated in the mechanism of bio-action in T. cruzi. T. cruzi 
amastigotes, which are the stage of the parasite’s life cycle that 
develop in mammalian host cells, use ergosterol as a crucial 
component in the creation of their membranes because they are 
unable to utilise cholesterol from the host cells. It is a desirable 
lead molecule due to a number of benefits including excellent oral 
bioavailability, acceptable pharmacokinetic characteristics, and 
good human tolerance. But because tipifarnib has a chiral centre, 
it can exist in two stable isomeric forms [1]. Therefore, choosing 
a therapeutic candidate would require a separate examination 
of the pharmacokinetic and toxicity characteristics of both 
molecules. Additionally, it binds to the human protein farnesyl 
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default settings [21], Weka’s genetic algorithm (GA) was used 
to conduct a heuristic search for selecting subjective features 
using default settings, except number of generations =10000 and 
number of features = 3. The data set was split into training (80%) 
and prediction (20%) sets at random for external validation 
before feature (descriptor) selection [18]. To obtain the most 
information possible, numerous splittings were used to generate 
multiple models. 

Validation of the model: Effective QSAR model creation 
requires model validation. Therefore, for the purpose of model 
validation, OECD rules and suggested threshold values for a 
number of statistical parameters were used. The following 
characteristics were often taken into account: Using the prediction 
set, data randomization, or Y-scrambling, cross-validation (CV) 
via leave-one-out (LOO) and leave-many-out (LMO) procedures, 
and (d) determining whether the following requirements are met 
[16-19]: R2

tr ≥ 0.6, Q2
loo

 ≥ 0.5, Q2
LMO ≥ 0.6, R2 > Q2, R2

ex
 ≥ 0.6, RMSEtr 

< RMSEcv, ΔK ≥ 0.05, CCC ≥ 0.80, Q2-Fn ≥ 0.60, r2
m ≥ 0.6, (1-r2/ro

2) < 
0.1, 0.9 ≤ k ≤ 1.1 or (1-r2/r’o

2) < 0.1, 0.9 ≤ k’ ≤ 1.1,| ro
2− r’o

2| < 0.3 
with RMSE and MAE close to zero. Any model not satisfying these 
criteria were subsequently rejected.

Applicability Domain (AD): AD assessment of a QSAR model 
is essential criterion for QSAR model development. In the present 
work, Williams plot have been plotted to assess the AD of the 
developed model. QSARINS-Chem 2.2.1 was used for getting the 
Williams plot using the default setting [11-14].

RESULTS AND DISCUSSION

Our team recently demonstrated that using multiple 
modelling to capture less-privileged chemical characteristics is a 
wise decision. Therefore, to ensure the capture of dominant and 
less prominent structural features that influence the bio-activity 
of PBIs, the same stated technique has been applied in the current 
study. As a result, various QSAR models were created utilising 
both the entire data set (referred to in the present study as the 
full set model, or FSM) and the divided data set (80% training and 
20% prediction sets). The data set was randomly divided before 
model building when employing a divided data set to prevent 
developer bias in choosing the training and prediction sets. One 
model’s prediction set for a chemical might or might not include it. 
QSARINS-Chem 2.2.1 was operating with the default parameters 
for OFS and SFS. The heuristic search for variables was restricted 
for simplicity to a collection of only three descriptors. There was 
no appreciable improvement in the statistical quality of the model 
after three variables. The following are the statistical parameters 
for the tri-parametric GA-MLR models:

Model-1 (FSM)

pEC50 = 20.013 (± 3.350) + 3.285 (± 1.131) * O_don_8Ac – 
0.563 (± 0.249) * N_lipo_5B − 0.009 (± 0.003) * QXXm

Ntr = 33, Q2
loo = 0.823, R2

tr
 = 0.865, R2

adj = 0.851, Kxx = 0.310, ΔK 
= 0.203, RMSEtr = 0.315, RMSEcv = 0.358, s = 0.336, F = 61.714, 
CCCtr = 0.927, CCCcv = 0.906, MAEtr = 0.264, MAEcv = 0.301, Q2

LMO 

= 0.820

transferase, which poses a hazardous problem for the use of 
tipifarnib as a T. cruzi inhibitor. To increase its potential as a 
drug candidate against T. cruzi, these problems must be resolved. 
Tipifarnib needs to be further optimized in order to remain a 
potent T. cruzi inhibitor with the appropriate ADMET profile. 
In order to continue the optimization, it would be appealing 
to create QSAR (Quantitative structure-activity relationship) 
models using the data that is now available for the detection of 
lead/drug similarity properties. For the purpose of identifying 
the pharmacophoric patterns and structural characteristics that 
control the bio-activity profile of congeneric series of compounds, 
QSAR is a well-known chemometric approach [10-14]. It is a 
ligand-based approach to drug design that heavily relies on 
mathematical, statistical, and algorithmic techniques combined 
with computer science. For example, risk assessment, toxicity 
prediction, and drug/lead optimisation have all been successful 
uses of QSAR [15-18]. 

In the current study, a thorough QSAR analysis was conducted 
to identify the structural characteristics that control tipifarnib 
and its analogues’ anti-Chagas action. 

Experimental methodology

Data set: The data set includes 33 Tipifarnib analogues 
with various substituents at various locations [1]. The electron-
donating/-withdrawing groups in the substituents cause a 
positive alteration in the molecules’ steric and electrostatic 
profiles (Table 1, Figure 1). The T. cruzi amastigote was used to 
test the Tipifarnib analogues. Prior to QSAR analysis, the EC50 
(nM) values were transformed to pEC50 (M) values [16,17]. 
Table 1 lists the structures, EC50 (nM), and pEC50 (M).

QSAR methodology

The standard methodology and guidelines recommended 
and put into practise by many researchers and the OECD 
(Organisation for Economic Co-operation and Development) 
have been followed in the current work for successful QSAR 
analysis [10-12, 18-20]. The structures were created using the 
free ChemSketch 10 software, and then the energy consumption 
was reduced using TINKER and MMFF94 (Cut-off: 0.01). Then, 
a large number of descriptors were calculated using PowerMV, 
CDK and PADEL, PyDescriptor (a custom PyMOL plugin), and 
e-Dragon. More than 29,000 different 1D- to 3D -descriptors are 
included in the descriptor pool. After removing the constant, 
almost constant, highly correlated (|R| > 0.80), and redundant 
variables using objective feature selection in QSARINS 2.2.4 using 

Figure 1 Tipifarnib analogues with a variety of substituents at different positions
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Table 1: Experimental EC50, and substituents on Tipifarnib analogues used in the present study

S.N. T. cruzi EC50 (nM) X ring 2 ring 1 Imidazole
1 4 NH2 3-chloro 4-chloro 1-methyl-1H-imidazole
2 0.6 OMe 3-chloro-2-methyl 4-chloro 1-methyl-1H-imidazole
3 3.1 OMe 3-chloro 4-chloro 1-methyl-1H-imidazole
4 0.7 OMe 2-methyl 4-chloro 1-methyl-1H-imidazole
5 0.8 OMe 2-trifluoromethyl 4-chloro 1-methyl-1H-imidazole
6 1.1 OMe 3-fluoro 4-chloro 1-methyl-1H-imidazole
7 1.2 OMe 3-methyl 4-chloro 1-methyl-1H-imidazole
8 12 OMe 3-trifluoromethyl 4-chloro 1-methyl-1H-imidazole
9 0.8 OMe 2-fluoro 4-chloro 1-methyl-1H-imidazole

10 0.8 OMe phenyl 4-chloro 1-methyl-1H-imidazole
11 0.82 OMe 4-chloro 4-chloro 1-methyl-1H-imidazole
12 0.5 OMe 4-fluoro 4-chloro 1-methyl-1H-imidazole
13 2 OMe 4-methyl 4-chloro 1-methyl-1H-imidazole
14 1.8 OMe 2,6-dimethyl 4-chloro 1-methyl-1H-imidazole
15 3.21 OMe 2,6-dichloro 4-chloro 1-methyl-1H-imidazole
16 0.31 OMe 2,6-difluoro 4-chloro 1-methyl-1H-imidazole
17 1.4 OMe 3,5-dimethyl 4-chloro 1-methyl-1H-imidazole
18 2.2 OMe 3-chloro naphthyl 1-methyl-1H-imidazole
19 17 OH 3-chloro 4-chloro 1-methyl-1H-imidazole
20 112 OH 3-chloro-2-methyl 4-chloro 1-methyl-1H-imidazole
21 27 OEt 3-chloro-2-methyl 4-chloro 1-methyl-1H-imidazole
22 69 OPr 3-chloro-2-methyl 4-chloro 1-methyl-1H-imidazole
23 5 NHMe 3-chloro-2-methyl 4-chloro 1-methyl-1H-imidazole
24 118 NH2 3-chloro 4-chloro 1-ethyl-1H-imidazole
25 100 NHMe 3-chloro 4-chloro 1-ethyl-1H-imidazole
26 3 OMe 3-chloro 4-chloro 1-ethyl-1H-imidazole
27 228 OH 3-chloro 4-chloro 1-ethyl-1H-imidazole
28 3 OMe 3-chloro 4-methyl 1-methyl-1H-imidazole
29 5 OMe 3-chloro 4-trifluoromethyl 1-methyl-1H-imidazole
30 10 OMe 3-chloro 4-ethyl 1-methyl-1H-imidazole
31 33 OMe 3-chloro 4-cumene 1-methyl-1H-imidazole
32 320 OMe 3-phenyl 4-chloro 1-methyl-1H-imidazole
33 83 OMe 3-benzene 4-chloro 1-methyl-1H-imidazole

The statistical symbols have their typical meanings, which 
are also provided in the accompanying data. Table 2 displays the 
pEC50 values as well as the descriptor values that were employed. 
Based on the statistical characteristics, it appears that the 
produced models have good internal fitting and meet the cutoff 
values for a number of statistical parameters that are crucial for 
determining internal resilience and external predictability. The 
models’ strong external prediction capacity is indicated by the 
high value of several external validation parameters, including 
CCCex, Q2-Fn, R2ext, etc., and the low values of RMSE, s, and MAE, 
etc. An adequate number of descriptors are present in the model, 
according to the close value of R2adj. And R2. Similar to how 
similar R2 and Q2 values indicate that the models do not exhibit 
over-fitting. The low value of RMSE and MAE (fitting, cross-
validation and external validation) specifies that the developed 
models have statistical acceptability.

DISCUSSION

In the developed models, the common descriptor is QXXm, 
which is a geometrical descriptor and corresponds to COMMA2 
value/weighted by atomic masses activity, has negative 
correlation with the activity. Therefore, its value must be kept 

Model-2 (Divided data set)

pEC50 = 20.993 (± 3.988) – 0.095 (± 0.044) * da_H_9B – 0.540 
(± 0.289) * N_lipo_5B − 0.010 (± 0.003) * QXXm

Ntr = 27, Nex = 6, Q2
loo = 0.831, R2

tr
 = 0.870, R2

adj = 0.853, Kxx 
= 0.303, ΔK = 0.202, RMSEtr = 0.306, RMSEcv = 0.348, RMSEex = 
0.394, s = 0.331, F = 51.151, Q2-F1 = 0.809, Q2-F2 = 0. 0.801, Q2-F3 = 
0.783, CCCtr = 0.930, CCCcv = 0.909, CCCex = 0.897, r2m av = 0.794, 
r2m de = 0.093, MAEtr = 0.249, MAEcv = 0.288, MAEex = 0.338, R2

ext 
= 0.918, Q2

LMO = 0.811

Model-3 (Divided data set)

pEC50 = 35.716 (± 9.621) – 0.319 (± 0.182) * accminus_MSA – 
0.690 (± 0.261) * N_lipo_5B − 0.010 (± 0.003) * QXXm

Ntr = 27, Nex = 6, Q2
loo = 0.837, R2

tr
 = 0.870, R2

adj = 0.853, Kxx 
= 0.470, ΔK = 0.077, RMSEtr = 0.291, RMSEcv = 0.325, RMSEex = 
0.451, s = 0.315, F = 51.403, Q2-F1 = 0.826, Q2-F2 = 0. 0.756, Q2-F3 = 
0.688, CCCtr = 0.931, CCCcv = 0.913, CCCex = 0.885, r2m av = 0.698, 
r2m de = 0.069, MAEtr = 0.243, MAEcv = 0.280, MAEex = 0.373, R2

ext 
= 0.786, Q2

LMO = 0.794
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as low as possible to enhance the activity. The second common 
descriptor N_lipo_5B (number of lipophilic atoms within five 
bonds from Nitrogen atoms) has negative coefficient in all the 
developed models. Hence, the value of this descriptors must be 
restricted for enhanced activity. da_H_9B corresponds to number 
of Hydrogen atoms within nine bonds from such a group which 
can act as H-bond donor as well as acceptor such as -OH, -NH2, etc. 
the negative coefficient for this descriptor in model 2 indicates 
that lowering the value of this descriptor would result in better 
activity profile. 

A molecular descriptor with negative coefficient in model 3 
is accminus_MSA (molecular surface area of negatively charged 
H-bond acceptor atoms). Therefore, the molecular surface area of 

negatively charged H-bond acceptor atoms must be constrained 
to increase the anti-Chagas activity. The molecular descriptors 
accminus_MSA, N_lipo_5B and da_H_9B have been depicted in 
Figure 2 using the most and least active molecules (molecule 
number 16 and 32), as the representatives only.

The only molecular descriptor with a positive coefficient in 
model 1 is O_don_8Ac, which stands for sum of partial charges on 
H-bond donor atoms which are present within 8Å from oxygen 
atoms. In case of compound number 2, 3 and 26 the oxygen 
atom of -OMe group (with lesser negative charge) is within a 
distance of 8Å from oxygen atom of quinolinone moiety. Whereas 
for compound number 20, 19 and 27, though, the oxygen atom 
of -OH group is within a distance of 8Å from oxygen atom of 
quinolinone moiety but possesses a higher negative charge. This 
could be one of the possible reasons for better activity of 2 (EC50 = 
0.6 nM) than 20 (EC50 = 112 nM), 3 (EC50 = 3.1 nM) than 19 (EC50 
= 17 nM), and 26 (EC50 = 3 nM) than 27 (EC50 = 228 nM). This 
points out another observation that -OMe is a better substituent 
at -X than -OH for increasing the activity. 

In Table 3, the status of the molecule, predicted and the 
residual values by developed models 1-3 have been tabulated. 

The fitting curve, residual plot, Y-scrambling and Williams 
plots are available in the supporting information.

CONCLUSIONS

In conclusion, the robust QSAR models with good predictive 
ability indicate that activity has good relation with -OCH3 group, 
lipophilic atoms within five bonds from Nitrogen atoms, presence 

S. N. pEC50 QXXm da_H_9B N_lipo_5B O_don_8Ac accminus_MSA

1. 8.398 311.237 13 16 0 43.06295

2. 9.222 326.92 13 15 0 41.51342

3. 8.509 320.129 11 15 0 41.54747

4. 9.155 257.504 14 15 0 41.98221

5. 9.097 297.908 11 15 0 41.87246

6. 8.959 278.501 11 15 0 42.02498

7. 8.921 271.578 14 15 0 41.87778

8. 7.921 360.145 11 15 0 41.92143

9. 9.097 257.09 11 15 0 41.81082

10. 9.097 248.193 12 15 0 41.99664

11. 9.086 286.032 11 15 0 41.99585

12. 9.301 286.032 11 15 0 41.99585

13. 8.699 280.88 14 15 0 41.81427

14. 8.745 267.324 16 15 0 42.11884

15. 8.493 299.339 10 15 0 42.05618

16. 9.509 268.724 10 15 0 42.17695

17. 8.854 292.784 16 15 0 42.09243

18. 8.658 313.751 11 15 0 41.84568

19. 7.77 314.262 21 15 -0.3736 44.85659

20. 6.951 321.68 23 15 -0.3736 44.99809

21. 7.569 344.106 13 16 0 41.52892

22. 7.161 373.782 13 16 0 41.96532

23. 8.301 312.637 14 16 0 40.64602

24. 6.928 349.198 13 17 0 42.45161

25. 7 362.533 12 17 0 40.60624

26. 8.523 347.097 11 16 0 41.05926

27. 6.642 356.071 23 16 -0.3736 44.61465

28. 8.523 319.429 11 16 0 41.21349

29. 8.301 342.56 11 16 0 41.09026

30. 8 319.508 11 16 0 41.30114

31. 7.481 328.818 11 16 0 41.29695

32. 6.495 481.969 13 16 0 40.76464

33. 7.081 439.806 13 16 0 41.2677

Table 2: Values of molecular descriptors and pEC50 for the data set

Figure 2 Representation of accminus_MSA, N_lipo_5B and da_H_9B using 
molecule number 16 (most active) and 32 (least active) as the representatives 
only (red filled circles for N_lipo_5B and red coloured hydrogen atoms for 
da_H_9B).
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of less negatively charged donor atom from oxygen atom of 
quinolinone ring and molecular surface area of negatively 
charged H-bond acceptor atoms. 
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