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Abstract

Researches aimed to identify and extracting compounds isolated from plants have been used for many years with the aim of discovering bioactive 
compounds due to the increased resistance of microorganisms to the antimicrobial commercially used. The action of bioactive compounds present in the seeds, 
bark, leaves and fruits from plants of the genus Pterodon spp., has been studied in bacteria, yeasts and protozoa, related to antimicrobial, antiinflammatory, 
antiproliferative and against infection by nematodes. Yeasts of the genus Candida spp., bacteria of the genus Streptococcus spp. and Staphylococcus spp., which 
are associated with biofilm formation in medical devices, has developed a strategy to resist antimicrobial agents and cells of the immune system. This brief 
review brings a panoramic view concerned to the Medicinal properties of Peterodon pubescens against microorganisms and oral biofilm studies in the field of 
microbiology.

INTRODUCTION
Infectious diseases are a more cause of death in the world 

[1]. Fungal infections infect billions of people worldwide every 
year [2]. The spread of resistant microorganisms, leading to 
untreatable infections, has become a public health problem and 
the discovery of new antibiotics has been decreased [3].

Yeasts of the genus Candida are commensal microorganisms 
that colonize the microbial flora of the oral cavity, skin, 
gastrointestinal and urogenital tract of healthy individuals [4,5]. 
However, in immunocompromised patients or people submitted 
to an antimicrobial therapy for a long time, these yeasts may 
become pathogenic, causing diseases known as candidiasis [6,7]. 
The majority of the population is asymptomatically colonized by 
C. albicans and C. glabrata, or by only one of it [8].

Candida albicans plays an important role in the development 
of oral infections, but pathogenic species such as C. kefir, C. krusei 
and C. tropicalis have been identified in oral candidiasis, especially 
in immunocompromised patients [9-11]. C. albicans diseases 
are often associated with biofilm formation, which are well-
structured communities with the ability to resist antimicrobial 
agents and immune system cells [12,13]. Candida krusei have 
innate resistance to many azole-based drugs such as fluconazole, 
voriconazole, miconazole, itraconazole, ketoconazole and 
ravuconazole [14].

Considered the main etiological agent of dental caries, 
Streptococcus mutansis found in the biofilm adhered to the surface 

of the teeth [15-17]. Other species of Streptococcus belonging to 
the mutans group are S. sobrinus and S. downei [18].

Actually, the general picture of infectious diseases and the 
use of antimicrobial therapy is more complicated, with multi-
drug resistant bacteria posing a threat and a source of worldwide 
concern. Microorganisms have shown an enormous capacity to 
evolve towards resistance [19].

The problems of resistance to antibiotics and antifungals 
produced commercially, leads alternatively to the development 
of researches from plants showing antimicrobial and antifungal 
activity beside the reduction of side effects and the resistance of 
the microorganisms.

Popularly, medicinal plants have been used for therapeutic 
purposes; however, since the 1970s, the World Health 
Organization (WHO) has encouraged the scientific study of these 
plants, aiming to know the benefits of these medicinal agents and 
the risks when consumed of exaggerated form. Several factors 
have contributed to the development of health practices that 
include medicinal plants, mainly low cost and easy handling [20]. 
In Brazil, a large number of plants have been used in the form 
of crude extract, infusions or patches to treat common infections 
[21-23].

Several studies have been carried out with the Pterodon 
genotype, with different purposes such as antiproliferative activity 
tests [24], anti-inflammatory activity [25] and chemoprophylaxis 
[26,27]. The genus Pterodon comprises five species native from 
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Brazil: P. pubescens Benth, P. appariciori Pedersoli, P. abruptus 
Benth, P.polygalaeflorus Benth and P. emarginatus Vog. [28]. The 
species Pterodon pubescens is a tree native from Brazil, located 
mainly in the cerrado region, popularly known as sucupira, 
faveiro or sucupira-lisa. The antimicrobial properties of the 
substances present in extracts and essential oils produced by 
plants have been recognized through research for many years 
[29].

Alcoholic extracts of the Pterodon fruit are used in folk 
medicine as anti-rheumatic, anti-inflammatory (sore throat) and 
as analgesic [30]. Phytochemical studies with the genus Pterodon 
demonstrated the presence of isoflavones [31], diterpenoids in 
seed oil [32] and compounds as alkaloids [33]. Only 10% of the 
bioactive compounds are isolated from the plants [34,35], and 
further studies are needed.

Therefore, researches demonstrating the antimicrobial 
activity of Pterodon pubescens is an important tool to enable 
the development of new drug sources that can be used to 
combat microorganisms, many of which are already resistant to 
commercial antimicrobials in use.

Yeasts of the Genus Candida

Yeasts of the genus Candida are opportunistic pathogens 
frequently found in humans and can be isolated between 50 and 
60% of the oral cavity of healthy adults, and colonize the surfaces 
of the vaginal and intestinal epithelium [36].

Candida albicans is the main cause of two types of 
infection: superficial infections of the skin and mucosa, and 
invasive infections, where the fungus can spread through the 
bloodstream and infect the internal organs [37]. The overall 
incidence and prevalence of oral candidiasis can be attributed to 
immunosuppressed individuals in the population [38].

The C. albicans species is the most commonly found in the 
oral cavity, being responsible for superficial and systemic fungal 
infections [39]. This is due to tolerance to commonly used azole 
antifungals, such as ketoconazole and fluconazole [40,41]. 
However, Candida non-albicans species such as C. glabrata, C. 
tropicalis, C. parapsilosis, C. guilliermondii, C. dubliniensis and C. 
krusei are also isolated from infectious sites [42]. The isolates 
from the bloodstream of Candida species are 18.3% C. glabrata 
[43]. Among the species of Candida, C. albicans and C. glabrata are 
the first and second most isolated species, respectively, and both 
account for 65-75% of systemic candidiasis cases, followed by C. 
parapsilosis and C. tropicalis [44].

Fungi use various strategies to trigger disease and resist host 
defense mechanisms, including adherence to specific tissues, 
resistance to host defense mechanisms, and proliferation to 
a certain extent [45]. To survive and colonize the host, fungi 
have mechanisms of sensitivity and response to changes in pH, 
oxidation, osmotic stress, and nutritional limitations [46]. The 
virulence of Candida albicansis attributed, among others, to the 
ability to grow from different vegetative forms, which may be 
yeast-like, hyphae and pseudohyphas. Studies on the ability of 
hyphae to escape phagocytic cells and to diffuse into tissues and 
blood suggest that morphology is a contributing factor for the 
survival of C. albicans at different sites and conditions [47].

Yeasts of the species Candida spp. shows mechanisms of 
virulence that are important during infection. Adhesion to host 
cells is mediated by adhesion factors such as Als, Hwp1 and Eap1 
family proteins expressed on the cell wall known as adhesins 
[48]. Adhesins such as Als3 and Hwp1 are expressed during the 
formation of hyphae which is important in Candida’s adhesion to 
host cells [49]. According to Hoyer et al. (2008) [50], the ALs3 
proteins in Candida albicans have many functions, as adhesion at 
epithelial cells, ferritin acquisition and fungal biofilm [51,52].

After C. albicans adheres to epithelial cells, the next step is 
penetration that can be accomplished through two mechanisms: 
by induction of endocytosis by host cells, through proteins that 
are expressed on the fungal cell surface that bind to the receptors 
present In the host cell, such as E-cadherin in epithelial cells and 
N-cadherin in endothelial cells, which trigger fungus embolization 
[53,54], or through active penetration through Hyphae [55]. In 
active penetration, it is believed that the hyphae penetrates the 
tissue through the combination of physical forces exerted by the 
filament extension and the secretion of hydrolytic enzymes [55].

Many microorganisms have hydrolytic enzymes that are 
related to virulence [56]. Proteinases catalyze the hydrolysis 
of peptide bonds in host proteins [57]. The secreted aspartyl 
proteinase, known as SAP, is an extracellular hydrolytic enzyme 
produced by Candida spp. [58], which is important in mucosal 
infections, and SAP production is associated with other virulence 
attributes such as hypha formation, adhesion and phenotypic 
change [56].

Mechanisms of quorum sensing are used for communication 
between microorganisms. In C. albicans the main molecules of 
the quorum sensing are farnesol, tyrosol and dodecanol, and 
when there is a high cell density, they promote the growth in 
the yeast form [59], and the yeast-rich virus for dissemination 
in host tissues [60,61] through histological analysis have 
observed that quorum sensing also regulates the depth of tissue 
invasion by controlling the alteration between yeast and hyphae 
morphologies.

Some micronutrients are required for C. albicans to infect 
the host, such as iron, which requires acquisition systems [62]. 
Iron is an essential element for both the host and C. albicans. Iron 
uptake during the infection process is considered a virulence 
factor, and colonization and proliferation occur only if it has 
enough iron [63]. Iron uptake can be in several ways: through a 
reducing system, siderophores or by a heme iron uptake system 
[62]. In the reducing system, the acquisition of iron is obtained 
through ferritin, transferrin or the environment, by the adhesin 
Als3, which has a receptor for ferritin [51]. Iron uptake through 
the siderophore is performed by C. albicans through these 
components produced by other microorganisms [64]. In the 
heme system of iron uptake, iron acquisition is obtained from 
hemoglobin and heme proteins [62,65].

Another important factor is the adaptation to the metabolic 
changes for the survival and growth of Candida spp. living 
organisms. During the candidiasis, the fungus that is in the 
bloodstream uses glucose as a source of nutrients, however 
within macrophages and neutrophils, phagocytic C. albicans 
passes from the glycolysis pathway to gluconeogenesis [66]. In 
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tissues with low glucose concentration, alternative metabolic 
pathways are required to obtain host proteins, amino acids, 
phospholipids and lipids [67].

Phagocytic cells of the immune system produce reactive 
species of oxygen and nitrogen. According to works by Wysong 
et al. [68], and [69], C. albicans uses catalase Cta1 and superoxide 
dismutase for the detoxification of reactive oxygen species (ROS) 
in systemic candidiasis models in rats.  Mühlschlegel & Fonzi [70] 
affirms that C. albicans has cell wall β-glycosidases, important 
factor of regulation on pH changes, such as Phr1 and Phr2, being 
expressed in alkaline-neutral pH and acid pH, respectively.

Slutsky et al. [71], observed the importance of epigenetic 
change in the morphology of C. albicans in pathogenicity. It may 
present white cells, which are round, and opaque cells, which are 
ellipsoids. White cells are more virulent in systemic infections 
than opaque cells [72], and less susceptible to phagocytosis by 
macrophages [73].

Candida Biofilm

Candida species are able to form biofilms in many implanted 
medical devices [13]. Since Candida spp.  [74], one can avoid the 
immune response to the patient [74], can colonize internal organs 
and implants such as prostheses and pacemakers. According to 
Hawser et al. [75], the biofilm of Candida albicans consists of a 
dense chain of yeasts, hyphae and pseudohifas, joined in a matrix 
which is synthesized.

Candida spp. make contact with inerts materials through 
the cell wall, which is constituted by polysaccharides, chitin, 
mannoproteins, and two types of covalently linked proteins, 
called GPI (Glycosylphosphatidylinositol) and proteins Pir 
(Proteins with internal replicates) [76,77].

Donlan and Consterton [78] relates of cells that form biofilms 
are phenotypically distinct from planktonic cells, being less 
susceptible to antimicrobial agents. The matrix formed in the 
biofilm is three-dimensional, giving rise to a highly hydrated 
and charged environment in which the microorganisms are 
immobilized [79]. The microcolonies are surrounded by the 
matrix, separated by water channels, where the circulation of 
nutrients to the biofilm [78].

During the formation of the C. albicans biofilm, the cells 
communicate by quorum sensing, which modulates cell 
development, growth and dispersion (Hogan, 2006) [80]. 
According to Hogan (2006) [80] and Hornby et al. (2001) [81], 
two signaling molecules are characterized in biofilm, tyrosol and 
farnesol. Tirosol promotes the formation of hyphae in the early 
stage of biofilm formation, while farnesol inhibits the formation 
of hyphae, preventing the overgrowth of biofilm.

The extracellular matrix of the biofilm of C. albicans is 
composed of β 1,3 glucans that sequester azole and polyenes 
from the antifungal, preventing the access of the antifungal to 
the biofilm cells [82], besides protecting Candida spp., of the 
phagocytic cells and promote the maintenance of nutrients [83]. 
Studies have shown that the niche within the C. albicans biofilm 
is a hypoxic environment, and this adaptation is an important 
feature for biofilm formation [84]. Hyphal morphology is required 
for the formation of a biofilm, as well as cell-substrate, cell-cell 

and extracellular matrix production, which are important steps 
in biofilm formation [85,86].

According to Budtz and Jorgensen (1990) [87], biofilms cause 
problems in dentistry, on the surface of acrylic prostheses, the 
formation of a mixed biofilm of species with a large number 
of bacteria, particularly streptococci and yeasts, is a form to 
expressed resistance of microorganisms. Furthermore, studies 
have shown that the development of resistance to antifungal 
agents such as fluconazole in Candida strains isolated from AIDS 
patients [88] occurs during treatment [89,90], where high doses 
are given with prolonged use of this antifungals [91,92]. It is 
probably due to the fact that they all have the same mechanism of 
action [93,94], and the reduction of the sensitivity of C. albicans 
and other species to azole antifungals.

Streptococcus mutans

The oral cavity is an environment that exhibits many 
fluctuations, such as nutrient supply, temperature, pH and saliva 
flow, selecting microorganisms that can adapt to these changes 
through biofilm formation. Streptococcus mutans is considered 
the etiological agent Primary at the onset of human dental caries 
[95]. The different anatomical sites of the oral cavity present 
distinct microenvironments [96]. The prevalence of S. mutansis 
not only found in people with moderate or high caries, but also 
in populations with absence or low incidence of caries [17]. 
Streptococcus mutans produces acids that cause the structure to 
dissolve in the presence of fermentable carbohydrates such as 
sucrose, fructose and glucose (Kleinberg, 2002) [97].

Streptococcus mutans produces the glycosyl transferases that 
allow the sucrose to be broken down into glucose monomers, 
being this sugar important in the formation of caries [98]. 
Other diseases, in addition to caries, are related to S. mutans. 
Endocarditis is a disease associated with biofilm in cardiac valves, 
induced by streptococci and buccal staphylococci [99]. The 
persistence of biofilm induces inflammation and may contribute 
to chronic bacteremia and thrombol events. Nomura et al. (2004) 
[100] and Teng et al. (1998) [101], report the presence of S. 
mutans in patients with infective endocarditis and with serious 
pyogenic infections.

RESISTANCE TO COMMERCIAL ANTIMICROBIALS 
Increasing levels of microorganism resistance to the available 

antimicrobials has led to an increase in studies taking in account 
the molecular mechanisms of resistance acquisition and 
transmission among microorganisms, including the way bacteria 
recruit and mobilize antibiotic resistance genes [19]

Several antimicrobial resistance mechanisms exist, among 
which we can mention: the inactivation of antimicrobial drugs, 
through enzymes that modify the drug making it inactive or 
less active in therapeutic concentrations; and modifications in 
the target of the antibiotic, that result in the diminution of the 
affinity by the molecular structures generating a mechanism of 
resistance. Some targets of antibiotics are intracellular, meaning 
they need to reach the cytoplasm. Thus, a mechanism of bacteria 
resistance is the loss of the porins present in the cell wall that 
limits the entry of these molecules in the bacterial cell and 
also the pumps of extrusion exerted by proteins that promote 
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the efflux of the molecules of the antibiotic to the extracellular 
environment [19].

Bacteria and fungi have developed mechanisms of resistance 
to commercial antimicrobials. In recent years an increase in 
resistance to antimicrobial and antifungal agents has been 
observed. Emerging strains with intermediate or high resistance 
to penicillin are growing and being recognized worldwide [101]. 
However, this resistance is not only to beta-lactams, but also to 
many other antimicrobial agents, such as vancomycin [102-104].

Strains of many bacterials resistant to methicillin (MRSA) 
express several virulence factors, among them, surface proteins 
that aid in tissue adhesion and evasion of the host immune 
system [105], toxins and superantigens that cause damage 
epithelial [106]. MRSA strains are often isolated in hospitals, 
and the spread can be considered clinically significant. Krebes 
et al. (2011) [107] verified that 2% of patients were colonized 
by MRSA during hospitalization. The increase in transmission 
among hospitalized patients occurs due to the prescription of 
antibiotics such as fluoroquinolones and β-lactams that select 
resistant MRSA [108].

Studies have shown that in recent years infections in the 
bloodstream caused by Candida glabrata resistant to multiple 
triazoles and echinocandins have increased [14]. Triazoles inhibit 
the enzyme 14-α-demethylase responsible for the conversion 
of lanosterol to ergosterol, limiting the pathway of ergosterol 
biosynthesis, resulting in abnormalities in membrane fluidity 
and function, preventing the growth of fungal cells. Among the 
resistance mechanisms of Candida spp., species associated with 
triazoles, are the mutations in the ERG11 gene that is the target 
of the drugs, by altering the binding domain of some triazoles, 
causing a decrease in their potency [109,14].

In this context, as increased resistance by fungi and bacteria 
is a major public health problem, it is necessary to develop new 
effective drugs in the fight against these resistant microorganisms, 
making infection therapy quicker and simpler caused by these 
agents, and the medicinal plants is one alternative for this to 
happen. 

MEDICINAL PLANTS
In developing countries, infectious diseases are the leading 

cause of death [110]. The treatment of infectious diseases faces 
a major problem, due to the resistance development of the 
microorganisms to the widely used antibiotics and antivirals 
[111]. Medicinal plants have played an important role in the 
discovery and development of drugs and are widely known as the 
source of active antimicrobial metabolites [112].

The plants represent valuable sources of products for the 
maintenance of human health, and their use has become more 
widespread especially in recent years, after numerous studies with 
medicinal products from medicinal plants, becoming the focus 
of scientific research aimed to determine their pharmacological 
effects. However, the official use of these therapeutic sources 
in the health services requires the scientific knowledge for the 
transformation of these plants into a therapeutic source of safe, 
rational and beneficial use [113,22].

According to the World Health Organization [114], a large 

part of the population uses traditional medicines, mainly derived 
from medicinal plants. In developing countries, 65-80% of the 
population depends exclusively on medicinal plants for basic 
health [115]. In 1990, interest in drugs derived from higher 
plants, especially phytotherapics, increased significantly. Shu 
(1998) [116] found that about 25% of all medicines were derived 
from medicinal plants either directly or indirectly.

Thus, essential oils and their components are becoming 
popular as antimicrobial agents for use in a wide variety of 
purposes, including food preservation in complementary 
medicine and natural therapies [117].

ISOLATED COMPOUNDS OF THE PLANT OF THE 
GENUS PTERODON

The literature reports a variety of studies on the medicinal 
properties of plants, including seed, fruit, leaf and stem 
research of the Pterodon plant, being considered one of the 
most representative genera of the Fabaceae family. This species 
is found in the cerrado biome [118,119]. In general, the native 
trees of this species are aromatic, about 5 to 10 meters high, 
distributed throughout central Brazil (Dutra et al., 2008) [120]. 
Its active principles are concentrated in the bark (alkaloids), in 
the stem (isoflavones and triterpenes) and seeds (diterpenos 
and isoflavones) [121], which can be used as the basis for 
the production of essential oil. The hexane extract shows the 
presence of compounds such as fatty acids, sesquiterpenes 
(α-caryophyllene, β-caryophyllene, mycene, α-pinene, farnesene) 
and diterpenes (6α, 7β-diacetoxyivouacapan-17β- (Lopes et al., 
2005)[122]. In the bark, were found, tripterpenos (lupeol and 
betulina), flavonoids and saponins [123,124].

Santos et al., 2009 [24], found sesquiterpene compounds in 
oil extracted from Pterodon emarginatus seeds, being α-pinene, 
myrene, methyl eugenol, ethyl eugenol, eugenol geraniol, and 
caryophyllene. According to Suarez and Engleman (1980) [125], 
the mature seeds of some species have a distinct characteristic, 
which is the presence of phenolic compounds in the tegument, 
which contribute to the hardness, permeability to water and 
resistance to attack by pathogens.

The chemical diversity of plant metabolites is due to 
the pressures of nature, including abiotic stress, fauna and 
microorganisms that live in the environment, being relevant 
factors in the production of these metabolites [126]. The chemical 
constituents present in the plants may vary in relation to some 
factors that influence the content of the secondary metabolites, 
such as the time of collection, known as seasonal variations and 
may alter the quantity and nature of the active constituents, 
such as terpenics compounds [127,128], saponins [129], and the 
presence of the essential oils [130,127], sesquiterpene lactones 
[131] and tannins [132]. Another factor associated with the 
production of metabolites is the age and the development stage 
of the plant, since newer tissues have a higher biosynthetic rate 
of metabolites [133], such as essential oils [134] and alkaloids 
[135]. According to Evans (1996) [136] at elevated temperatures, 
the formation of volatile oils increases. Certain periods appear to 
be important in the concentration of metabolites, depending on 
the degree of stress and the period in which it occurs, and in the 
short term there is an increased production and, in the long term, 
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there is a decrease in the production of secondary metabolites 
[137]. The same population of morphologically and sexually 
undifferentiated plants may present essential oil yields with 
different chemical composition [138,139].

The genus Pterodon is popularly known for its 
antirheumatic, analgesic, antimicrobial, anticerviral and 
anti-inflammatory activities. Some authors have studied the 
chemoprophylactic action for schistosomiasis of compounds 
isolated from the Pterodon plant. Mors et al. (1967) [28] isolated 
14.15-epoxigeranilgeraniol from the essential oil of the fruit 
of P. pubescens, observing that it showed chemoprophylactic 
activity in Schistosoma mansoni and Santos Filho et al. (1972) 
[140] isolated 14-15-dihydrogeranylgeraniol founding that it 
was responsible for inhibiting the penetration of cercariae into 
the skin. Subsequently, Santos Filho et al. (1972) [140] developed 
a soap containing essential oil of Pterodon pubescens and found 
that if applied 24 hours earlier, it shows a protective action 
against schistosomiasis infection.

Other isolated compounds such as diterpenoids obtained 
from P. emarginatus fruit oil [26], later two new diterpenoids with 
vouacapane skeleton of P. emarginatus [27] and two terpenes of 
Pterodon pubescens [32] also had activity against cercariae.

According to Menna-Barreto et al. (2008) [141], the compound 
extracted from the P. pubescens seed, geranilgeraniol inhibited the 
intracellular proliferation of amastigote forms of Trypanosoma 
cruzi at concentrations that do not affect mammalian cells.

Silva-Santos et al. (2016) [142] in studies with nanoemulsions 
produced from the fruits of Pterodon pubescens proved effective 
in combating Leishmania amazonensis in its amastigote and 
promastigote form. Nanoemulsions have also been tested against 
larvae of Aedes aegypti if it is effective in controlling larvae of this 
vector, which is responsible for transmitting diseases such as 
Dengue, Zika and Chickungunya [143]. Another study by Omena 
et al. (2006) [144] also demonstrated larvicidal characteristics 
of the ethanolic extract of P. polygalaeflorus in larvae of the 
mosquito Aedes aegypti.

Studies on the hexanic crude extract from the fruit of the 
species Pterodon emarginatus Vog, described antinociceptive 
action [145] and anti-inflammatory action of diterpene 
vouacapane 6α, 7β-dihydroxyivouacapane 17 oate (Carvalho et 
al.,1999; Coelho et al., 2001) [25,146]. Sabino et al. (1999) [147] 
studied the action of the hydroalcoholic extract of Pterodon 
pubescens seeds and observed a significant reduction of collagen-
induced arthritis after prolonged oral preventive treatment.

Nunan et al. (1982) [148] observed a decrease in rat paw 
edema induced by carrageenan, histamine and serotonin caused 
by the furoditerpenes of P. poygalaeflorus Benth.

The antiproliferative activity of non-lactone 5-voucapanoids 
was studied by Spindola et al. (2009) [149], in which the oil of the 
P. pubescens seed was isolated, and three of them showed good 
results for prostate cancer cell lines. According to Menna-Barreto 
et al. (2008) [141], the compound extracted from the P. pubescens 
seed, geranilgeraniol inhibited the intracellular proliferation of 
Trypanosoma cruzi amastigotes, at concentrations that do not 
affect mammalian cells.

Euzébio et al. (2009) [24] also verified the antiproliferative 
activity of compound 2-furoditerpene in ovarian cancer cells. 
On the other hand, Cardoso et al. (2008) [150] showed that P. 
pubescens oil has an effect on the exacerbated humoral and 
cellular immune response of patients with autoimmune diseases 
and chronic inflammatory diseases, suppressing B and T 
lymphocytes.

Study of Assunção et al. (2014) [151] involving toxicity of 
P. emarginatus revealed that sucupira oil was not cytotoxic, 
genotoxic or antigenotoxic. Sabino et al. (1999) [147] showed 
that the 50% CI of P. pubescens seed oil in peripheral blood 
mononuclear cells was 2 and 1 microg PPSO / ml after 24 and 
48 h of exposure to oil. Mutagenic tests did not show mutagenic 
activity, and no death of rats or signs of acute toxicity was 
observed. No macroscopic changes were found in the organs, 
nor was there any change in histopathological examination. 
Concluding, therefore, that P. pubecens oil is not cytotoxic, is not 
mutagenic, and does not cause acute toxicity when used.

Coelho et al. (2001) [146] verified that there was no subacute 
toxic effect of the hydroalcoholic extract in histopathological, 
hematological and clinical studies performed through the 
mouse arthritis model. Dutra et al. (2008) [120] showed that 
the phenolic constituents present in P. emarginatus seeds have 
antioxidant activity.

Martino et al. (2014) [152] showed that isolated fractions 
of Pterodon pubescens showed high cytotoxicity for low and no 
lymphocytic leukemia cells for solid tumor cells without toxicity 
to peripheral mononuclear cells of healthy humans. Evidence 
for its antitumor and selective activity for cells with altered 
cell chylia. This fraction led to mitochondrial pathway-induced 
apoptosis, similar to traditional antineoplastic chemotherapeutic 
drugs [152].

Moraes et al. (2012) [153] in vivo tests of inhibition to anti-
inflammatory effects pointed out the compounds lupeol and 
betulina as responsible for the anti-inflammatory activity of the 
ethanolic extract of P. emarginatus. Vieira et al. (2008) [154] 
affirmed that an isolated fraction of P. pubescens, which appears 
to be the compound Voucapano, caused apoptotic nuclear 
alterations in SK MEL 37 (human melanoma) cancer cells.

Studies of Bustamante et al. (2010) [155], in which the crude 
ethanolic extract of the Pterodon emarginatus bark was used, 
reported that the presence of flavonoids, saponin heterosides, 
resins and traces of steroids and triterpenoids in bark powder 
showed antimicrobial activity against sporulated gram-positive 
bacteria and Non-spores, gram-negative and yeast against 
Candida albicans.

Santos et al. (2010) [119] tested the antimicrobial activity of 
P. emarginatus leaves and found moderate antimicrobial activity 
in Gram-positive bacteria Staphylococcus aureus, Staphylococcus 
epidermidis, Micrococcus roseus, Micrococcus luteus, Bacillus 
atropheus, Bacillus cereus, Bacillus stearothermophylus with 
minimal inhibitory concentration ranging from 0.72 to 50 mg/
mL.

These studies evidence the potential of antimicrobial, 
antiparisitary and non-cytotoxic activity of Pterodon spp.
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CONCLUSION
Knowing that different virulence factors, such as biofilm 

formation, can be expressed by microorganisms that cause 
disease, leading to persistence of infection and resistance to 
conventional antimicrobial therapies, it is necessary to develop 
studies in the search of new antimicrobial molecules for the 
treatment of these infectious diseases.
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