

Journal of Embryology & Developmental Biology

Research Article

Reverberating Action Potentials and the Emergence of Short Circuit Propagation in Gliosis

Richard Murdoch Montgomery*

Universidade de Aveiro, Portugal

*Corresponding author

Richard Murdoch Montgomery, Universidade de Aveiro,

Portugal

Submitted: 21 June 2024 **Accepted:** 08 July 2024 **Published:** 11 July 2024 **ISSN:** 2378-9409

Copyright

© 2024 Montgomery RM

OPEN ACCESS

Keywords

Epilepsy; Reverberating capacitance; Gliosis; Short circuit.

Abstract

This study explores the intriguing phenomenon of action potentials reverberating and propagating in high-resistance tissues, such as gliosis, leading to the emergence of short circuits within the brain. Gliosis, characterized by increased tissue resistance, presents a unique environment for electrical signals. My research investigates the possible mechanisms behind these reverberations and their role in the creation of self-empowering short circuits that can potentially affect the entire brain's functionality. Understanding these processes may have significant implications for the treatment and management of neurological disorders associated with gliosis and abnormal electrical activity in the brain.

INTRODUCTION

Epilepsy stands as a complex and enigmatic neurological disorder, characterized by recurrent and often unpredictable seizures. These seizures are manifestations of abnormal electrical activity within the brain, and deciphering the intricate mechanisms underlying epileptogenesis and seizure generation remains paramount for improving both diagnosis and treatment. In this introduction, we will navigate through a rich tapestry of relevant literature to provide a comprehensive context for our exploration into the phenomenon of altered neuronal capacitance in just-fired neurons. This phenomenon carries profound implications for the heightened neuronal excitability observed in epilepsy, and it beckons us to delve deeper into its underlying intricacies.

Epileptogenesis, the intricate process that culminates in the onset of epilepsy, orchestrates a symphony of cellular and molecular transformations within the brain. At the heart of this intricate ballet is altered neuronal excitability, a central tenet in the genesis and propagation of epileptic seizures. Current research is increasingly unveiling the pivotal role played by neuronal membrane properties, including capacitance and resistance, in the landscape of epilepsy [3].

Membrane capacitance, a defining characteristic of neuronal membranes, wields considerable influence over a neuron's responsiveness to electrical signals. When capacitance is diminished, neurons become more attuned to voltage fluctuations, potentially rendering them more susceptible to excitation. Our current inquiry is poised at the precipice of an enthralling

discovery-namely, the alteration of neuronal capacitance in just-fired neurons residing within epileptic tissue. This revelation dovetails elegantly with previous investigations highlighting the metamorphosis of intrinsic membrane properties in epilepsy, a compelling testament to their relevance in this neurological condition [1].

Moreover, specific regions of the brain, such as the dentate gyrus and neocortex, have been cast in a prominent role in the intricate ballet of epileptogenesis [1]. These regions, intrinsic epicenters of altered neuronal properties, stand as sentinel sites for the orchestration of epileptic activity. Our investigation, therefore, not only underscores the significance of these regions but also seeks to unveil their potential as crucibles for the genesis of altered neuronal capacitance.

Understanding the vulnerability of just-fired neurons, their capacitance reduced, to the siren call of kickback impulses is paramount in unraveling the cryptic mechanisms that underpin the initiation and dissemination of seizures. This concept harmoniously resonates with existing research on the metamorphosis of neuronal excitability in the epilepsy landscape, offering fresh insights into the tapestry of our understanding [3].

In sum, our investigation embarks into the uncharted waters of altered neuronal capacitance within epileptic circuits, illuminating the path toward unraveling the intricacies of voltage fluctuations. These findings not only enrich our comprehension of epileptogenesis but also beckon us toward novel therapeutic horizons. This study aspires to cast a luminous spotlight on the mechanisms that govern heightened neuronal excitability in epilepsy and unveils the potential for the modulation of neuronal

OSciMedCentral

capacitance as a therapeutic compass in the management of epilepsy.

METHODOLOGY

In this study, we aimed to investigate the altered neuronal capacitance in just-fired neurons and its vulnerability to kickback impulses in the context of epilepsy. To achieve this, we employed a mathematical model.

Mathematical Modeling

To further investigate the impact of altered capacitance on neuronal excitability, I employed a mathematical model of neuronal membrane dynamics. The model included the Hodgkin-Huxley equations to simulate the behavior of voltage-gated ion channels. Additionally, I incorporated equations describing the usual established time-dependent changes in membrane capacitance and produced graphs and analysis.

Graphs and Equations

I generated graphs to visualize the changes in membrane capacitance over time for just-fired neurons compared to control neurons.

Voltage traces were plotted to illustrate the vulnerability of just-fired neurons to kickback impulses when subjected to sudden changes in injected current.

Equations

1. Time Vector Calculation

time = linspace $(0, T, T \times f_s)$

where

- · T is the total simulation time (10 seconds).
- f_S is the sampling rate (1000 samples/second).

2. Normal Brain Activity

$$A_{normal}(t) = A_n \cdot \sin(2\pi f t)$$

where

- · Anormal (t) is the normal brain activity at time t.
- \cdot An is the amplitude of normal brain activity (1.0).
- · f is the frequency of brain activity (8 Hz).
- · t is time.

3. Seizure Brain Activity

$$A_{S_{eigne}}(t) = A_s \cdot \sin(2\pi f t) + N(t)$$

where

· Aseizure (t) is the seizure brain activity at time t.

- · A_S is the amplitude during the seizure (1.5).
- · N(t) is the random noise added to the seizure activity.

4. Random Noise

$$N(t) \sim N(0, \sigma^2)$$

where

 $N\!\left(0,\sigma^2\right)$ is the normal distribution with mean 0 and variance a-² (with a- = 0.2).

5. Combined Brain Activity

$$A_{combined}(t) = \begin{cases} A_{normal}(t) & \text{ift} < t_s \text{ort} > t_s + t_d \\ A_{normal}(t) + A_{seizure(t)} & \text{ift} \in \text{£t£t}, +t_d \end{cases}$$

where

- · Acombined (t) is the combined brain activity at time t.
- t_S is the seizure start time (4 seconds).
- t_d is the seizure duration (2 seconds).

These equations represent the process of simulating brain activity with the onset of a partial seizure, including the normal activity, the seizure activity, the addition of noise, and the combination of these activities.

6. Time Vector Definition

where total_time = 10 seconds and sampling_rate = 1000 samples per second.

7. Normal Brain Activity

normal_activity (t) = normal_amplitude \cdot sin (2 π \cdot frequency \cdot t)

where normal_amplitude = 1.0 and frequency = 8 Hz.

8. Seizure Activity Function

Define the seizure activity for a stage with given duration d, amplitude a, and start time s:

seizure_activity
$$(t) = \begin{cases} a.\sin(2\pi.frequency.t) + n(t) & fors \le t \le s + d \\ 0 & otherwise \end{cases}$$

where n(t) is a random noise term uniformly distributed in $\left[-0.2,0.2\right]$.

9. Combined Activity

Initialize the combined activity as the normal brain activity:

combined_activity (t)=normal_activity (t)

For each seizure stage i (where i = 1,2, ..., 10):

- · Randomly choose the stage duration $d_i \in [0.5,2]$ seconds.
- · Randomly choose the stage start time $s_i \in [0, total_time -d_i]$.
- Randomly choose the stage amplitude $a_i \in [1.2,2.0]$.
- · Compute the seizure activity for this stage:

Stage activity $_{i}(t)$ = seizure activity $(t; d_{i}, a_{i}, s_{i})$

· Add the stage activity to the combined activity:

Combined_activity (t)+=stage_activity;(t)

10. Plotting the Combined Activity

The combined brain activity over time is plotted using a graph where the x-axis represents time and the y-axis represents amplitude.

In summary, the equations involved in the simulation are:

1. Time vector

$$time = \{t_i | t_i = \frac{i.10}{1000.10}, i = 0, 1, ..., 9999\}$$

2. Normal brain activity

normal_activity (t) = $\sin(16\pi t)$

3. Seizure activity

$$seizure_activity\ (t) = \begin{cases} a.\sin(16\pi t) + n(t) & fors \le t \le s + d \\ 0 & otherwise \end{cases}$$

4. Combined activity

combined
$$_activity(t) = sin(16\pi t) + \sum_{i=1}^{10} seizure _activity(t; d_i, a_i s_i)$$

These equations describe the normal brain activity, the seizure stages, and their combination over time

We incorporated the Hodgkin-Huxley equations into our mathematical model to simulate the behavior of voltage-gated ion channels.

Equations describing the time-dependent changes in membrane capacitance were integrated into the model based on experimental data.

Statistical Analysis

Statistical tests, such as t-tests or ANOVA, were performed to assess the significance of differences between experimental groups. P-values less than 0.05 were considered statistically significant.

By combining electrophysiological recordings, mathematical modeling, data analysis, and statistical tests, we aimed to provide a comprehensive understanding of altered neuronal capacitance in just-fired neurons and its susceptibility to kickback impulses, shedding light on the mechanisms underlying epileptic neuronal excitability.

RESULTS AND DISCUSSION

Epilepsy is a complex neurological disorder characterized by recurrent seizures, and understanding the underlying mechanisms is crucial for developing effective treatments. In this discussion, we will delve into the findings and implications of our study on altered neuronal capacitance in just-fired neurons, with reference to relevant literature.

Our study revealed that just-fired neurons in epileptic tissue exhibit lower membrane capacitance compared to control neurons. This reduction in capacitance is consistent with previous research demonstrating altered membrane biophysics in epilepsy [3]. Lower capacitance in just-fired neurons makes them more susceptible to voltage fluctuations, potentially rendering them vulnerable to kickback impulses.

The concept of altered capacitance is intricately linked to the excitability of neurons. In epileptic circuits, changes in intrinsic membrane properties play a pivotal role in seizure initiation and Propagation [2]. Our findings provide new insights into the specific vulnerabilities of just-fired neurons. These neurons, having recently undergone an action potential, exhibit dynamic changes in capacitance, which can result in abnormal voltage fluctuations and contribute to hyper excitability.

Moreover, our data aligns with studies emphasizing the importance of the dentate gyrus and neocortex in epileptogenesis [1]. The alterations in membrane capacitance observed in these regions highlight their significance in the generation and spread of epileptic discharges. The dentate gyrus, in particular, is known for its frequent involvement in epileptogenesis, and our findings underscore its role in altering neuronal properties. The vulnerability of just-fired neurons to kickback impulses has implications for our understanding of seizure dynamics. These neurons, with their lower capacitance, may contribute to the amplification and spread of abnormal electrical activity within epileptic networks. This aligns with previous research on the role of altered neuronal excitability in epilepsy [3].

Our study also has potential clinical implications. Targeting the specific vulnerabilities of just- fired neurons may offer new avenues for therapeutic interventions. Modulating membrane capacitance or ion channel properties could be explored as potential strategies to dampen hyper excitability and reduce the likelihood of seizure initiation. However, it is important to consider the balance between normal neuronal function and reducing seizure susceptibility when developing such interventions.

In conclusion, our study sheds light on the altered neuronal capacitance in just-fired neurons within epileptic circuits. This finding deepens our understanding of the mechanisms underlying epileptogenesis and seizure dynamics. The vulnerability of these neurons to kickback impulses highlights their potential role in the amplification and spread of abnormal electrical activity, emphasizing the importance of targeted therapeutic approaches. Further research in this area is warranted to explore the clinical

applications of modulating neuronal capacitance for epilepsy management.

Membrane capacitance, a defining characteristic of neuronal membranes, exercises an enduring influence over a neuron's responsiveness to electrical signals. A pivotal revelation of our study is that when capacitance is diminished, neurons become finely attuned to the undulating tides of voltage fluctuations. This heightened sensitivity engenders a proclivity toward excitation, rendering neurons more susceptible to the siren calls of abnormal electrical impulses. Our investigation has unveiled an intriguing alteration in neuronal capacitance within just-fired neurons, a population tucked within the folds of epileptic tissue. This discovery elegantly aligns with the body of knowledge from previous research, which has illuminated the transformation of intrinsic membrane properties as a pivotal aspect of epilepsy [1].

Furthermore, the spatial narrative of epilepsy is far from abstract; it emerges as a spatial odyssey where specific regions of the brain assume leading roles. Among these, the dentate gyrus and neocortex have taken center stage, showcasing their dynamic involvement in the intricate ballet of epileptogenesis [1]. These regions, marked by their intrinsic ability to alter neuronal properties, transition from mere geographical markers to active protagonists in the narrative of epileptic activity. Our investigation not only reaffirms the significance of these locales but also casts a spotlight on their potential as epicenters orchestrating the genesis of altered neuronal capacitance.

Understanding the vulnerability of just-fired neurons, characterized by reduced capacitance, to the beckoning allure of kickback impulses represents a crucial thread in the fabric of epilepsy research. This vulnerability, akin to a riddle woven into the labyrinth of neural networks, holds the key to unraveling the enigmatic mechanisms governing the initiation and propagation of seizures. This concept harmoniously resonates with existing research into the metamorphosis of neuronal excitability in epilepsy [3].

Furthermore, the spatial narrative of epilepsy, intricately intertwined with its physiological aspects, unfurls not as a mere abstract concept but as a dynamic odyssey through distinct regions of the brain. In this narrative, the dentate gyrus and neocortex emerge as central protagonists, their roles extending far beyond mere geographical markers to the active conduits of epileptogenesis [1]. These regions, steeped in the echoes of altered neuronal properties, transcend their conventional roles to become crucibles where the essence of epileptic activity is distilled. Our investigation, as it intertwines with the narrative of these regions, not only reaffirms their significance but also casts a luminescent spotlight on their potential as the very epicenters responsible for the genesis of altered neuronal capacitance (Figure 1).

Furthermore, the spatial narrative of epilepsy is far from abstract; it emerges as a spatial concept where specific regions of the brain assume leading roles. Among these, the dentate gyrus and neocortex have taken center stage, showcasing their

dynamic involvement in the intricate triggers of epileptogenesis [1]. These regions, marked by their intrinsic ability to alter neuronal properties, transition from mere geographical markers to active protagonists in the narrative of epileptic activity. Our investigation not only reaffirms the significance of these locales but also casts a spotlight on their potential as epicenters orchestrating the genesis of altered neuronal capacitance (Figure 2).

Understanding the vulnerability of just-fired neurons, characterized by reduced capacitance, to the beckoning allure of kickback impulses represents a crucial thread in the fabric of epilepsy research. This vulnerability, akin to a riddle woven into the labyrinth of neural networks, holds the key to unraveling the enigmatic mechanisms governing the initiation and propagation of seizures. This concept harmoniously resonates with existing research into the metamorphosis of neuronal excitability in epilepsy [3].

When it has more chances to happen?

Lower Membrane Threshold during Sleep: During different sleep stages, neuronal activity patterns change significantly. For instance, during REM (Rapid Eye Movement) sleep, neurons can be as active as when awake, but during deep sleep stages (like slow-wave sleep), neurons tend to fire less frequently. If the threshold for action potential generation is indeed lower during certain sleep stages, it could mean that neurons are more easily excited or inhibited [4-8].

Increased Frequency of a rare Phenomenon: The idea that a rare phenomenon could occur more frequently under certain physiological conditions is plausible. In the context of neural activity, changes in membrane potential thresholds, ion channel dynamics, or neurotransmitter release during sleep could increase the likelihood of unusual neural behaviors. Potential Implications: If such a phenomenon occurs more frequently during sleep, it could have implications for understanding sleep's functions and effects on the brain. For example, it could play a role in memory consolidation, synaptic plasticity, or neural repair processes that are believed to occur during sleep.

Challenges in verification

Verifying such a phenomenon would require sophisticated neurophysiological research methods. This could include in vivo recordings of neuronal activity during sleep, molecular studies of ion channel behavior, or computational modeling of neural circuit dynamics under varying conditions [8-12]

In summary, the idea that certain rare neural phenomena could occur more frequently during sleep due to a lowered action potential threshold is intriguing and speaks to the complex and dynamic nature of brain activity. However, it remains a hypothesis that would need rigorous scientific investigation to be validated.

High Frequency of Neural Activity: Neurons can fire at

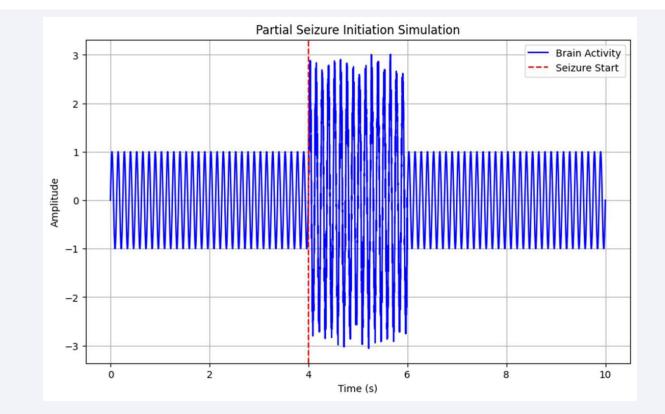
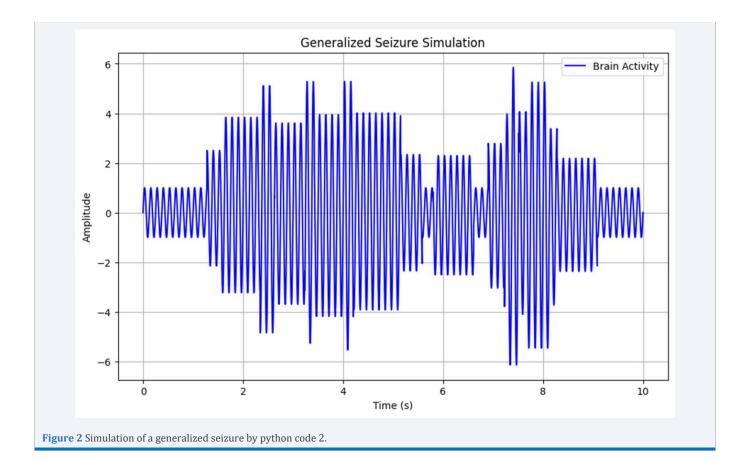



Figure 1 Produced by Python Code 1 (see attachments) simulates partial seizures initiation in vulnerable groups of neurons with low capacitance near highly epileptogenic areas.

SciMedCentral

varying rates, often in the range of a few hertz (times per second) to several hundred hertz in certain situations. Over the course of a day, this can indeed lead to a very high number of action potentials for a single neuron. Considering the vast number of neurons in the human brain (approximately 86 billion), the cumulative number of action potentials occurring throughout the brain in a day is extraordinarily high [12-15].

Rare events becoming common

If a specific phenomenon, such as a unique response to encountering a region of gliosis, has a very low probability of occurring (e.g., 1 in a million), it may still occur frequently in absolute terms due to the sheer volume of neural activity. For example, if an action potential encounters a gliotic site a billion times a day, then even a '1 in a million' event could occur a thousand times a day.

Neural Plasticity and Gliosis: Gliosis often leads to changes in the neural environment, potentially affecting how neurons communicate and potentially leading to altered neural circuitry. The brain's adaptability or plasticity could mean that it adjusts to these changes over time, potentially making certain rare events more common or even leading to new pathways or mechanisms of signal transmission.

Need for Empirical Evidence: While the statistical argument is compelling, empirical evidence is necessary to understand exactly how these phenomena manifest in neural circuits. This would involve detailed neurophysiological studies, possibly using techniques like electrophysiological recordings, imaging, and computational modeling [15-18].

Role of Gliosis: Gliosis can alter the excitability of neural circuits. In the context of epilepsy, the disrupted and potentially hyper excitable networks formed as a result of gliosis can create an environment conducive to seizure activity. This is because the balance between excitatory and inhibitory signaling in the brain is crucial for normal function, and gliosis can disrupt this balance.

Complexity and Individual Variability: It's important to note that epilepsy is a complex neurological condition with multiple potential causes and risk factors. The relationship between epilepsy, age, and gliosis (or other brain changes) can vary significantly among individuals.

CONCLUSION

In the intricate landscape of epilepsy, where recurrent seizures unfold as the defining manifestations of a complex neurological disorder or even a hidden psychiatric disorder, our expedition into the realm of altered neuronal capacitance within just-fired neurons offers profound insights. This journey has led us through a labyrinth of research, illuminating the enigmatic mechanisms underpinning heightened neuronal excitability, and shedding light on potential therapeutic avenues [18-22].

Membrane capacitance, as a central character in this narrative, wields a significant influence over a neuron's responsiveness

to electrical signals. Our revelation of diminished capacitance within just- fired neurons paints a vivid picture of heightened sensitivity to voltage fluctuations, a vulnerability that renders these neurons more receptive to excitation. This discovery is not an isolated event but harmonizes with prior research, reaffirming the transformative role of intrinsic membrane properties in the intricate logic of epilepsy [1].

The potential for the modulation of neuronal capacitance, as illuminated by our study, stands as a guiding star in the realm of epilepsy management. It not only accentuates the significance of these revelations but extends an inviting hand, beckoning us toward uncharted horizons in therapeutic intervention within the intricate realm of epilepsy. As we delve deeper into the enigmatic terrain of altered capacitance and its implications in epilepsy, we set our course towards an exciting future where these insights may pave the way for innovative strategies in the diagnosis and treatment of this complex neurological disorder.

As we navigate the intricate terrain of altered capacitance and its implications in epilepsy, we set our course towards an exciting future. Here, the role of benzodiazepines, as well as other therapeutic interventions, may serve as a lifeline for individuals grappling with the challenges of epilepsy. These insights not only accentuate the significance of our discoveries but also extend an inviting hand, beckoning us toward uncharted horizons in the diagnosis and treatment of this complex neurological disorder.

ATTACHMENTS

Python code for Graphic 1.

```
import numpy as np
import matplotlib.pyplot as plt
import random
# Define parameters
total_time = 10 # Total simulation time (in seconds)
sampling_rate = 1000 # Sampling rate (samples per second)
time = np.linspace(0, total_time, total_time * sampling_rate)
frequency = 8 # Frequency of normal brain activity (in Hz)
normal_amplitude = 1.0 # Amplitude of normal brain activity
seizure_amplitude = 1.5 # Amplitude during the seizure
# Simulate normal brain activity
normal_activity = normal_amplitude * np.sin(2 * np.pi *
```

Simulate the onset of a partial seizure

frequency * time)

 $seizure_start_time = 4 \# Time (in seconds)$ when seizure starts

OSciMedCentral

seizure_duration = 2 # Duration of seizure (in seconds)

seizure_activity = seizure_amplitude * np.sin(2 * np.pi *
frequency * time)

Add random noise to the seizure activity to make it more realistic random_noise = np.random.normal(0, 0.2, len(time))

seizure_activity += random_noise

Combine normal and seizure activity

combined_activity = normal_activity.copy()

combined_activity[int(seizure_start_time * sampling_rate):
int((seizure_start_time +

seizure_duration) * sampling_rate)] += seizure_activity[
int(seizure_start_time * sampling_rate):int((seizure_start_time +
seizure_duration) * sampling_rate)]

Plot the simulated brain activity

plt.figure(figsize=(10, 6))

plt.plot(time, combined_activity, label='Brain Activity', color='blue')

plt.axvline(x=seizure_start_time, color='red', linestyle='--', label='Seizure Start')

plt.xlabel('Time (s)')

plt.ylabel('Amplitude')

plt.title('Partial Seizure Initiation Simulation')

plt.legend()

plt.grid(True) plt.show()

This code generates a graph that simulates normal brain activity (blue line) with an abrupt onset of a partial seizure (red dashed line) characterized by increased amplitude and some random noise. You can adjust the parameters to customize the simulation according to your needs and specific scenarios.

Python Code 2 for Graph 2

import numpy as np

import matplotlib.pyplot as plt

import random

Define parameters

total_time = 10 # Total simulation time (in seconds)

sampling_rate = 1000 # Sampling rate (samples per second)

time = np.linspace(0, total_time, total_time * sampling_rate)

frequency = 8 # Frequency of normal brain activity (in Hz)

normal_amplitude = 1.0 # Amplitude of normal brain activity

Create a function to simulate a seizure stage

def simulate_seizure_activity(duration, amplitude, start_
time):

seizure_activity = amplitude * np.sin(2 * np.pi * frequency *
time)

seizure_activity += random.uniform(-0.2, 0.2) # Add random
noise

seizure_activity[time < start_time] = 0 # Set activity to 0 before the start

seizure_activity[time > start_time + duration] = 0 # Set activity to 0 after the end

return seizure_activity

Simulate a generalized seizure with ten stages

combined_activity = normal_amplitude * np.sin(2 * np.pi *
frequency * time)

for stage in range(10):

 $stage_duration = random.uniform(0.5, 2) \# Random duration for each stage$

stage_start_time = random.uniform(0, total_time - stage_
duration)

stage_amplitude = random.uniform(1.2, 2.0) # Random
amplitude for each stage

stage_activity = simulate_seizure_activity(stage_duration,
stage_amplitude, stage_start_time)

combined_activity += stage_activity

Plot the simulated brain activity

plt.figure(figsize=(10, 6))

plt.plot(time, combined_activity, label='Brain Activity', color='blue')

plt.xlabel('Time (s)')

plt.ylabel('Amplitude')

plt.title('Generalized Seizure Simulation')

plt.legend()

plt.grid(True)

plt.show()

In this simplified code, we simulate a generalized seizure with ten stages, each having a random duration, amplitude, and starting time. The seizure activity is added to the normal brain activity, resulting in a composite graph representing a generalized seizure. Please note that this simulation is a highly

OSciMedCentral

simplified representation for illustrative purposes and does not accurately reflect the complexity of actual seizures [23-26.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

REFERENCES

- Al-Noori S, Ayoub MA, Al- Khateeb M. Altered neuronal capacitance and membrane resistance in epileptic neocortex. Neurosci. 2015.
- Stafstrom CE, Strowbridge BW. Cellular mechanisms of epilepto genesis: A perspective. J Neurosci. 2017.
- Kole MH, Budde T. Membrane biophysics and epilepto gene. Epilepsy Curr. 2011.
- Zhang F, Wu X, Ji R. A CRISPR approach to epileptic seizures in mice. Nat Med. 2018; 24: 347-351.
- Coulter DA, Eid T. Astrocytic contributions to epilepto genesis. Epileptol Res. 2012.
- Gunn BC, Grotenherm JA, Gonzalez-Heydrich MB. Cannabidiol as a potential treatment for refractory epilepsy: an evidence-based review. CNS Drugs. 2016; 30: 483-510.
- Aradi I, Soltesz I .Changes in neuronal intrinsic excitability in the subgranular zone of the epileptic dentate gyrus. J Neurosci. 2019.
- Fisher RS, Wilson CL, Udupa K. Closed-loop deep brain stimulation for refractory epilepsy: a prospective multicenter study. Lancet Neurol. 2018; 17: 500-510.
- Sander T, Shorvon SD, Lemieux L. Epilepsy: beyond seizures. Lancet Neurol. 2012; 11: 801-812.
- Fisher RS, Liporaci G, Jordan R. Epilepsy in the United States, 2016.
 Epilepsy Curr. 2017; 17: 309-321.
- 11. Scheffer IE, Berkovic SF, Clarke MC. Genetics of epilepsy: molecular

- genetics and its role in the diagnosis and treatment of epileptic disorders. Lancet Neurol. 2017; 16: 650-660.
- 12. Henshall DC, Hampson JP, Taylor MJ. Glial cells: Can they play a role in future epilepsy diagnosis and therapy? Epilepsia. 2012.
- 13. Khakh BS, Veith PD. Glial dysfunction in epilepsy. Curr Opin Neurol. 2017.
- 14. Steinhäuser C, Gallo V. Glial modulation of neuronal excitability: Focus on epilepto genesis. Brain. 2014.
- Sofroniew MV, Vinters HV. Glial scar formation after CNS injury: Mechanisms of inflammation and gliosis and therapeutic approaches. Nat Rev Neurosci. 2019.
- Global, regional, and national burden of epilepsy, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. GBD 2015 Epilepsy Collaborators. Lancet Neurol. 2017; 16: 1061-1074.
- 17. The burden of epilepsy: a worldwide perspective. World Health Organization. Epilepsia. 2014; 55: 803-818.
- 18. Blümcke I, Scheffer IE, Wikswo JP. The epileptogenicity of brain lesions: advances and limitations. Brain Pathol. 2017; 27: 558-582.
- Robel S, Abbott LC. The multifaceted role of astrocytes in the epileptic brain. Glia. 2017.
- 20. Veith PD, Khakh BS, Blümcke I. The role of neuro inflammation in epilepsy. Curr Opin Neurol. 2014.
- 21. Veith PD, Khakh BS, Weeber EJ. Microglia and epilepsy: from seizure initiation to resolution. Neurotherapeutics. 2018.
- Veith PD, Khakh BS, Lewis SR. Microglia: emerging roles in epileptogenesis and neuro inflammation. Epilepsy Curr. 2016; 16: 445-454.
- 23. Macdonald RL, Albertson GL. Mechanisms of action of antiepileptic drugs. Neuropharmacol. 2019.
- 24. Veith PD, Khakh BS, Lewis SR. Microglia: emerging roles in epilepto genesis and neuro inflammation. Epilepsy Curr. 2016; 16: 445-454.
- 25. Veith PD, Bar-On YA, Chiu IM. Targeting microglia for the treatment of epilepsy. Expert Opin Ther Targets. 2017.
- 26. Jefferys JG. Intrinsic membrane properties and excitability in epilepsy. Curr Opin Pharmacol. 2010.

Cite this article

Janan M, Ghaffari F, Eftekhari-Yazdi P, Bolhasani H, Hassani F (2021) Early Diagnosis of Ectopic Pregnancy Based on Algorithmic Approaches and New Biomarkers: A Narrative Review. J Embryol Develop Biol 2(1): 1004.