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Abstract

Neurologic injury and dementia can lead to devastating outcomes for patients with 
extended course of disease. Secondary and tertiary injury can progress and lead to 
continued deficits and rapid neurodegeneration. In this review, we highlight alternative 
strategies that can target recovery for these patients and prevent further neurologic 
decline. We discuss the benefit of music therapy and acupuncture. We then look at 
transcranial magnetic stimulation and transcranial direct current stimulation. Finally, 
we look at the role of yoga and virtual reality. While several of these modalities are 
in their infancy, some have been used for generations. We argue for higher quality 
evidence to confirm effectiveness and clinical utility.

INTRODUCTION
Traumatic and non-traumatic neurologic injuries are 

associated with an extensive list of long-term neurologic deficits 
including dementia, executive functioning impairments, and 
motor deficits [1-5].Traumatic brain injury (TBI) and stroke 
are among the most common etiologies for neurologic injury 
[6,7].The nature and prevalence of cognitive decline after TBI 
has even necessitated the implementation of a distinct clinical 
disease entity: chronic traumatic encephalopathy [8]. This 
clinical term now encompasses the host of cognitive deficits 
that some patients experience chronically after TBI, especially 
repetitive TBIs, including memory deficits, behavioral changes, 
speech, and gait disturbances [9]. Studies have demonstrated 
the anatomical aftermath of TBI that can manifest as significant, 
progressive atrophy of deep brain structures, serving as a direct 
cause of the litany of chronic deficits seen in these patients [10]. 
Although these effects are most often manifested in patients 
who experience a moderate or severe TBI, patients that have 
experienced mild TBI, particularly those with repetitive mild 
TBIs, can experience these effects as well [11]. It is also important 
to note that functional outcomes post-TBI can continue to decline 
up to twenty years after the inciting neurologic injury and even 
serve as an independent risk factor for the development of other 
neurological diseases, including stroke and epilepsy.12 Stroke 
is a very common non-traumatic form of neurologic injury that 
itself can cause both short-term and long-term deficits, including 
dementia and post-stroke aphasia [13-15]. Additionally, 

neurodegenerative diseases such as Huntington’s, Parkinson’s, 
and Alzheimer ’s disease lead to progressive impairments. These 
patients develop difficulties with communication, expression, 
mood, motor function, and functionality. These multifaceted 
disease processes necessitate novel approaches to treat overall 
disease burden. 

Conventional therapies, primarily pharmaceutical in nature, 
that are aimed at ameliorating post-neurologic injury cognitive 
impairment have generally had lackluster results [16]. Due 
to the prevalence of chronic cognitive impairment after these 
injuries, the lack of effective treatment has become a widespread 
clinical concern [17]. This has recently opened the door for the 
exploration of alternative treatment options and therapeutic 
adjuncts to help improve cognitive outcomes after neurologic 
injuries. The efficacy of many different types of alternative 
therapies, including music therapy, acupuncture, and repetitive 
transcranial magnetic stimulation, are increasingly investigated 
in these disease processes [18]. 

MUSIC THERAPY
The efficacy of music therapy in aiding neurologic recovery 

has gained traction as a viable clinical adjunct in recent years. A 
Cochrane Database review in 2010 first examined seven studies, 
including 184 participants, which found that rhythmic auditory 
stimulation (RAS) might be efficacious in improving motor 
and coordination outcomes of stroke patients who sustained 
prolonged neurologic deficits. Specifically, the review cited 
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improvements in gait velocity and symmetry, cadence, and 
stride length [19]. An update to this review was published in 
2017, adding an additional 22 studies for a total of 29 studies 
(775 participants). This review reasserted the benefit on gait 
parameters and showed that music interventions can reduce 
post-stroke aphasia, enhance upper extremity function, and 
increase overall quality of life [20]. RAS has also shown promising 
impact on patients with idiopathic Parkinson’s disease including 
improvement in gait parameters like gait velocity, cadence, stride 
length, swing time, and reduction in falls [21]. In patients with 
Huntington’s, RAS suggests positive modulation of gait speed 
using rhythm cues via metronome [22]. In a study with 27 HD 
patients using RAS, results showed that training with rhyrhmic 
beat patterns led to higher unpaced gait [23]. 

A 2021 systematic review examined results from six studies 
and showed that music therapy increased motor outcome (stride 
length) and executive function in TBI patients [24]. Furthermore, 
Siponkoski et al., performed a crossover randomized controlled 
trial (RCT) in which 40 TBI patients were divided into two 
groups, one group to receive music therapy for the first 3-month 
interval of a 6-month period, and a second group to receive music 
therapy for the second 3-month period. Results from MRI data 
acquired from the subjects demonstrated enhanced volume of 
gray matter in the right inferior frontal gyri that occurred during 
the respective 3-month intervention period, as opposed to the 
control 3-month periods. In addition, these findings correlated 
with an increased ability to perform set-shifting tasks in patients 
in the intervention groups, a measure of executive functioning 
[25]. In addition to aiding in recovery of executive function in 
TBI patients, music therapy may also assist these patients in 
reducing levels of anxiety and depression and increasing capacity 
to regulate emotions [26].Thaut et al., tested the effect of vocal 
and instrumental warm-up exercises on measures of attention, 
executive function, emotional adjustment, and memory on 31 
patients (80% of which were TBI patients) in a pre-test post-test 
quasi-experimental study [27]. Results indicated that patients 
undergoing this form of music therapy showed increased capacity 
for emotional regulation, and decreased levels of depression, 
anxiety, and sensation seeking behavior. Furthermore, there was 
significant improvement in mental flexibility on a standardized 
neuropsychological test measuring executive function, the Trail 
Making Test Part B [27,28]. 

Other measures of increased executive functioning capacity 
in TBI patients have been shown in other studies utilizing music 
therapy techniques. Formisano et al., used active improvised 
music therapy as a collaborative effort between the patient and 
the music therapist to assess the capacity for neurologic recovery 
in 34 patients who experienced severe brain injury. Results 
indicated a reduction in psychomotor agitation and improved 
psychomotor initiative, indicating the capacity for music therapy-
assisted behavioral regulation enhancement [29]. A follow-up 
self-report questionnaire on Siponkoski’s 2020 crossover RCT 
indicated that the TBI patients who received music therapy 
intervention in the first 3 months of the study scored higher 
on the Behavioral Regulation Index self-report than patients in 
the control group during the first 3 months. Thus, in addition 
to increased executive functioning in the patients who received 
music therapy intervention, higher levels of behavior regulation 

ability were also reported [30]. Although most studies on the 
effect of music therapy on TBI patients were performed on 
patients who sustained a moderate or severe TBI, a 2018 study 
used patients who sustained a mild TBI. This study examined 
7 mild TBI patients with attention, memory, and/or social 
interaction deficits post-TBI. These patients were trained over 
the course of 8 weeks to play the piano, along with one control 
group of 11 healthy participants who also received piano training 
and one control group of 12 healthy participants who were not 
given piano training. Results from pre-test and post-test fMRI 
acquisition revealed increased markers of neuroplasticity in 
the orbitofrontal cortex in the mild TBI patients who received 
piano training compared to the control groups. Additionally, 
neuropsychological evaluation showed concurrent improvement 
of cognitive performance in the mild TBI patients, as well as 
enhanced sense of well-being and social interaction [31,32]. 

The effect of music therapy intervention on several 
parameters of neurologic recovery from stroke has been 
assessed by several studies. In 2008, Sarkamo et al., performed 
a single-blind RCT in which 60 middle cerebral artery (MCA) 
stroke patients were randomly assigned to a music group, a 
language group, or a control group for 2 months. In the music 
group, patients listened to music of their own choice daily for the 
duration of the 2 months, while the language group listened to 
audiobooks daily, and the control group did not listen to either. 
Results showed that patients assigned to the music group showed 
significant improvement over the language group and control 
group in verbal memory, focused attention, and decreased 
depression and confusion [29]. In a follow-up study by Sarkamo 
et al., in 2014, these results were extended to analysis of the gray 
matter volume using MRI data from stroke patients in each of 
the music, language, and control groups. Results demonstrated 
a larger enhancement of gray matter volume of the left and right 
superior frontal gyrus (SFG) and left ventral/subgenual anterior 
cingulate cortex (SACC) of patients in the music group compared 
to patients of the language and control groups in MRIs acquired 
6 months after the commencement of the study. Further, the 
increases in SFG volume in music group patients were linked with 
the improvement of the verbal memory, focused attention, and 
language skills parameters, while increases in the SACC volume 
were linked with decreased depression and confusion levels [33]. 
Additionally, a study pooling data from two single-blind RCTs 
allocated 83 stroke patients to vocal music, instrumental music, 
or audiobook groups for 3 months post-stroke and measured 
the parameters of verbal memory, language, attention and 
mood using respective neuropsychological tests. Similar to the 
above studies, MRI data from stroke patients in each group was 
acquired 6 months post-stroke and compared. Results indicated 
that the stroke patients in the vocal music group scored higher 
in verbal memory tests over both the instrumental music and 
audiobook groups and scored higher in language recovery tests 
than patients in the audiobook group. MRI data showed increased 
gray matter volume in the left temporal areas of patients in the 
vocal music group compared to patients in the instrumental 
music or audiobook groups [34]. 

A 2019 systematic review including six RCTs with a total 
of 516 patients assessed the effect of five-element music, a 
type of music intervention employing five different melodies 
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relating to the five elements as dictated in traditional Chinese 
medicine practices, on the improvement of post-stroke aphasia 
[35,36]. Results indicated significantly higher language scores 
by post-stroke aphasia patients exposed to five-element music 
than either Western music therapy or no-music controls [36]. 
Interestingly, an RCT published by Haire et al., explored the 
effect of instrumental music therapy in conjunction with motor 
imagery on cognition, specifically the mental flexibility aspect of 
executive functioning. Thirty chronic post-stoke patients were 
randomly allocated to receive instrumental music therapy on 
its own or in conjunction with motor imagery and scores were 
assessed using the Trail Making Test Part B. Results indicated 
significant improvement in mental flexibility in the group of 
stroke patients that were given instrument music in conjunction 
with motor imagery [37]. 

Martinez-Molina et al., asserted that the neurorehabilitative 
effects of music therapy following neurologic injury may be a 
function of neural connectivity changes in the brain, particularly 
increased connection of networks between frontal and parietal 
regions [38]. Changes in neuroplasticity are hypothesized to 
be the underlying mechanism of neurorehabilitation in post-
stroke patients, particularly as it relates to improving language 
outcomes when implemented in the early post-stroke stage of 
rehabilitation [39]. 

Studies evaluating quality of life as a primary outcome in 
HD patients remains scarce. One qualitative explorative study 
using focus groups identified areas in patient quality of life 
with parameters such as ability to communicate and express 
emotions, and family participation in care, are increased. With 
the significant decline in self-awareness, ability to speak, and 
prevalent behavioral problems, psychological aspects of the 
disease progression and the support of patient’s loved ones are 
challenged. Music therapy studies have shown the potential 
for music to offer an avenue for communication and enhanced 
well-being. Therapy sessions can incorporate friends, patients, 
and family of patients, creating a supportive and inclusive 
environment [40]. 

Studies evaluating music therapy’s effect on emotional 
function in PD patients have yielded promising insight. In a study 
of 16 PD patients participating in a systematic program of music 
therapy against 16 PD patients only participating in physical 
therapy, those undergoing MT showed significant improvements 
in emotional function. The study evaluated emotional state using 
the Happiness Measure, which included intensity and frequency 
of happiness. PD patients undergoing MT showed a significant 
difference in favor of music therapy compared to physical 
therapy regarding emotional functioning. The patients in MT also 
showed improvements in ADLs and quality of life. interpersonal 
interaction, support and increased sensory stimulation are 
theorized to explain the improved quality of life in these patients 
[41]. 

There has been increasing evidence on music’s positive impact 
on AD patients’ cognitive capacity. Simmons-Stern demonstrated 
that sung verbal information was better recognized than spoken 
verbal information in those with AD, suggesting that music 
increases arousal in those with HD [42]. Additionally, auditory-
motor coupling has a profound effect on PD. An investigation 

of motor-sequence learning revealed that with non-verbal 
communication with music, AD patients performed significantly 
better when learning gestures in the presence of either a 
metronome or music [43]. 

A handful of studies have introduced the positive effects of 
MT on AD patients and psychomotor speed following a 6-month 
period of intervention. In one RCT daily activities incorporating 
music including singing and listening to familiar songs, dementia 
patients showed improved cognition, attention, executive 
function, and mood. As mentioned in prior discussion, caregivers’ 
involvement and well-being is paramount to that of the patient. 
Singing showed to positively impact the emotional well-being of 
caretakers, while listening to music improved quality of life in 
dementia patients [44]. 

ACUPUNCTURE
The efficacy of acupuncture on functional recovery from TBI 

and stroke is less clear, but emerging studies are promising [45]. 
A 2011 systematic review including four RCTS with 294 total 
participants claimed that acupuncture may be effective in aiding 
neurologic recovery from TBI. However, conclusions are limited 
due to poor quality of studies cited and low participant number 
[46]. A systematic review on the efficacy of acupuncture following 
spinal injury suggested that acupuncture may have a positive 
impact on recovery of motor function but were similarly unable 
to report a definitive statement on the efficacy of acupuncture in 
this context due to poor quality studies and publication bias [47]. 
A more recent and comprehensive systematic review including 
22 studies with 1644 total participants found that acupuncture 
of the back/front or head/back regions significantly enhanced 
motor function outcome and activities of daily living (ADL) in 
patients who sustained spinal cord injuries [48]. 

In 2017, Li et al., found that acupuncture significantly extended 
the amount of time that the post-TBI neuroprotective brain-
derived neurotrophic factor (BDNF) and tropomyosin receptor 
kinase B (TrkB) remained elevated in TBI patients. Results 
indicated that these molecules remained elevated at significant 
levels for 2 days without acupuncture, which increased to 7 or 
more days with acupuncture treatment. Authors hypothesized that 
the acupuncture-induced prolongation of neuroprotective effects 
may cause an increase in neural plasticity post-TBI, enhancing 
recovery of motor, sensation, and cognitive parameters [49]. A 
2019 RCT examined the effect of acupuncture on 70 TBI patients, 
with one group receiving pharmaceutical intervention alone and 
one group receiving pharmaceutical intervention in addition to 
acupuncture treatment. Results indicated that the acupuncture 
plus pharmaceutical intervention group had a significantly more 
profound recovery of ADL as indicated by increases in simplified 
Fugl-Meyer assessment and modified Barthel Index scales than 
the TBI patients in the pharmaceutical intervention only group. 
The authors also measured significantly higher BDNF and nerve 
growth factor (NGF) levels in the TBI patients in the acupuncture 
and pharmaceutical intervention group, hypothesizing that their 
anti-inflammatory effects were responsible for the significantly 
enhanced clinical improvement in this group [50]. 

In all, acupuncture therapy has been hypothesized to exert 
positive effects on recovery from neurologic insults through a 
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variety of mechanisms, including reduction of neuroinflammation, 
oxidative stress, and intracranial edema, as well as helping to 
facilitate regeneration of neurons and enhance corticospinal 
tract activity [51,52]. 

Acupuncture’s role in AD is less certain due to the scarcity 
of evidence. The available literature focuses on animal models. 
Animal studies claim promising results in the application of 
acupuncture in AD mice, elevating BDNF levels and decreasing 
hippocampal amyloid B plaques. In a recent meta-analysis 
regarding acupuncture in the treatment of AD, Huang et 
al., suggests that acupuncture was significantly superior to 
medication in improving ADL scores, ADAS-cog scores, and 
MMSE scores. In a RCT with limited sample size performed by 
Jia et al. comparing donepezil with acupuncture treatment, 
significant differences were not reported in activities of daily 
living or behavioral symptoms [53,54]. More research is needed 
to evaluate the role of acupuncture in treatment for AD.

REPETITIVE TRANSCRANIAL MAGNETIC 
STIMULATION

Several recent studies have evaluated the efficacy of repetitive 
transcranial magnetic stimulation on outcomes following 
neurologic injury [55]. Lee et al., conducted an RCT including 
13 TBI patients that evaluated the effect of rTMS therapy on 
cognitive and mood outcomes. Participants were randomized 
into rTMS therapy and sham rTMS therapy groups and results 
were evaluated using standardized neuropsychological tests for 
depression (Montgomery-Asberg Depression Rating Scale) and 
for cognition (Trail making Test and Stroop Color Word Test) 
two weeks after commencement of the trial. Results showed 
significant improvement in scores of all three standardized tests 
for the rTMS group compared to the sham group, indicating 
enhanced effect of rTMS on both depression and cognition [55]. 
Zhou et al., found improvements in several measures of cognitive 
impairment, including GCS score and modified Barthel index 
score, in TBI patients who received rTMS in addition to cognitive 
training compared with TBI patients who received only cognitive 
training [56]. A 2021 systematic review examining 7 studies 
found that rTMS only had a significant anti-depressant effect 
on TBI patients in the short-term period as the anti-depressant 
effects had completely worn off by 1-month post-TBI. rTMS was 
also found to have a significant effect on improving visuospatial 
memory in these patients [57]. 

Several studies have however demonstrated results 
suggesting that rTMS therapy may not be effective for cognitive 
neurorehabilitation efforts in these patients. In a 2020 RCT, 
Rodrigues et al., showed no improvement in anxiety outcomes 
for 36 moderate or severe TBI patients who received rTMS 
compared to those who received sham rTMS. However, they did 
note statistically significant improvements in both depression 
and executive function, even up to 90 days post-study [58]. 
An RCT published by Rao et al. examined the effect of rTMS 
on 30 TBI patients suffering from depression and concurrent 
neuropsychiatric symptoms, including suicidality and anxiety. 
Results indicated minimal improvement in depression and 
neuropsychiatric symptoms even after rTMS intervention [59]. 
Mitchell et al., performed a systematic review including five 

studies that evaluated the effect of rTMS therapy on neurologic 
injury-induced dysarthria. Results indicated limited evidence to 
suggest that rTMS has a positive effect on recovery from dysarthria 
in this context [60]. Furthermore, a randomized, double-blind, 
placebo-controlled trial in 2019 found no significant differences 
in cognitive function outcomes in 30 chronic post-diffuse axonal 
injury (DAI) patients who received rTMS therapy [61]. 

There is limited data in rTMS therapy in AD patients. Studies 
applying rTMS to the dorsolateral prefrontal cortex (DLPFC) 
and evaluating naming and language performance showed 
improvements in action naming in mild AD patients according 
to MMSE. In those with moderate to severe AD, both action and 
object naming were found to be improved following bilateral 
DLPFC rTMS. These studies report no known side effects [62]. 

In all, rTMS may be effective for recovery from neurologic 
injury for a limited number of symptoms, including alleviation 
of depression and some measures of cognitive impairment [63]. 
However, results thus far have been mixed and, if present, any 
true positive effects may be limited to the short-term.

TRANSCRANIAL DIRECT CURRENT STIMULATION
A few studies have hypothesized a positive effect of 

transcranial direct current stimulation (tDCS) on improving 
motor outcomes [64-66]. A 2020 meta-analysis examining 
67 studies (1729 participants) examined several neurologic 
outcomes in post-stroke patients who received transcranial 
direct current stimulation (tDCS). Authors found very low-
to-moderate evidence of tDCS increasing ADL ability of post-
stroke patients and very low evidence for efficacy on improving 
hemispatial neglect. Furthermore, authors asserted that there is 
likely no significant effect on motor outcomes or other cognitive 
impairments in stroke patients who receive tDCS compared 
to those who do not [67]. A 2019 systematic review suggested 
that tDCS may be more effective in increasing positive cognitive 
and motor outcomes if used as an adjunct to other alternative 
therapies [68].Thus, the current evidence of tDCS, particularly as 
a monotherapy, as being an effective treatment modality in this 
context is currently lacking.

Following suit in terms of rTMS evaluation, tDCS studies 
are scarce as well. According to a systematic review performed 
by Freitas et al. two studies evaluated the role of tDCS in AD. 
The first evaluated improvement in recognition memory in 
AD patients, finding specific progress in accuracy of word 
recognition following anodal tDCS applied to the temporoparietal 
region. The second study found that improved visual recognition 
memory resulted following anodal tDCS to the left DLPFC and 
left temporal cortex. There was no impact on working memory, 
although this was expected [62]. 

YOGA
There is currently little evidence on the efficacy of yoga 

on improving cognitive outcomes from traumatic and non-
traumatic disease processes compromising neurologic function 
[69,70]. A 2017 systematic review including two RCTs showed 
very low evidence for the impact of yoga on improving memory 
and anxiety outcomes based on a low total number of 72 pooled 
stroke participants. Authors noted no difference in depression 
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levels or physical, communication, or stroke recovery outcomes 
in stroke patients who participated in yoga compared to those 
who did not [71]. A more recent systematic review published 
in 2020 included six studies comprised of participants with 
acquired brain injuries. For patients with acquired brain 
injury, yoga was found to assist in psychological and physical 
adjustment, improve respiratory function, and improve quality 
of life. For stroke patients specifically, improvements in memory 
and motor functioning and quality of life measures were observed 
in those participating in yoga [72]. A small study including 
seven patients with chronic brain injury examined the effect of 
eight total weeks of yoga training. Results indicated statistically 
significant improvements in mobility and balance from pre-study 
baseline to post-study [73]. Krese et al., also demonstrated that 
TBI patients who participated in yoga sessions may also have 
improved sleep and sleep hygiene [74]. In all, yoga may aid in 
increasing these patient’s self-perceived quality of life and motor 
function outcomes, although results so far are not convincing.

The role of yoga in treatment of AD has conflicting evidence 
with respect to improvement in common variables such as 
depression, cognitive function, memory, and physical ability. 
One study did not note any significant changes in measured 
parameters, while another study found significant improvement 
in balance. The latter study did not see significant changes in the 
Six-Minute Walk Test or the Gait Speed Test, variables related 
to physical ability. These studies lack both a control group and 
a reliable sample size, and future evaluations are recommended 
to seek increased participants and implement use of control 
participants [75,76]. 

VIRTUAL REALITY
Virtual reality is an up-and-coming technology whose clinical 

applications are being explored in many disease processes, 
including Parkinson’s disease [77-79]. Little is known of the 
effect of virtual reality intervention on patients recovering 
from neurological injury. A 2018 literature review including 11 
studies on the effect of virtual reality training on recovery of 
TBI patients found that virtual reality training may have some 
positive effect on gait or cognitive effects. However, it is not 
possible to draw conclusions due to the scarcity of high-quality 
studies [80]. A systematic review in 2019 reviewing nine studies 
on the use of virtual reality training on cognitive rehabilitation of 
TBI demonstrated improvement in executive function, attention, 
and memory in these patients after virtual reality training 
[81]. In 2021, an RCT published by Choi et al. examined 80 
pediatric patients with brain injury suffering from a wide range 
of neurological deficits who were given either conventional 
occupational therapy alone or a combination of virtual reality 
intervention and occupational therapy. Results from this study 
indicated that children in the virtual reality group demonstrated 
significant improvement in their ability to independently 
perform ADLs and in motor functions including upper extremity 
dexterity and active forearm supination [82].Thus, virtual reality 
has shown some preliminary promise in both pediatric and adult 
populations in improving motor and cognitive outcomes from 
several neurologic disease states.

A case study performed by White and Moussavi evaluated 
whether a virtual reality navigation task over 7 weeks could 

promote conservation or improvement of spatial cognition 
in an AD patient with mild cognitive impairment. The patient 
showed improved spatial navigation over the course of the study. 
Subjective improvements per the subject’s significant other were 
mentioned including mood, orientation while driving, and daily 
functioning. More studies evaluating the use of virtual reality are 
encouraged [83]. 

CONCLUSION
In summary, there is emerging evidence on the use of 

physiotherapeutic intervention in neurologic injury. We call 
for further high-quality studies investigating these treatment 
modalities to improve outcomes for patients with these 
conditions. 
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