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Abstract

It is well established that chronic exposure to excess nutrients leads to insulin 
resistance (IR) in skeletal muscle. Since skeletal muscle is responsible for 70-80% of 
insulin-stimulated glucose uptake, skeletal muscle IR is a key pathological component of 
type 2 diabetes (T2D). Recent evidence suggests that inhibition of the nutrient-sensing 
enzyme AMP-activated protein kinase (AMPK) is an early event in the development 
of IR in response to high glucose, branched chain amino acids (BCAA), or fatty acids 
(FA). Whether the decrease in AMPK activity is causal to the events leading to insulin 
resistance (increased mTOR/p70S6K signaling) remains to be determined. Interestingly, 
pharmacological activation of AMPK can prevent activation of mTOR/p70S6K and 
insulin resistance, while inhibition of mTOR with rapamycin prevents insulin resistance, 
but not AMPK downregulation. AMPK can be inhibited by increased energy state 
(reduced AMP/ATP ratio), decreased phosphorylation of its activation site (aThr172) 
(by decreased upstream kinase activity or increased phosphatase activity), increased 
inhibitory phosphorylation at aSer485/491, changes in redox state or hormone levels, 
or other yet to be identified mechanisms. Excess nutrients also lead to an accumulation 
of the toxic lipid intermediates diacylglycerol (DAG) and ceramides, both of which can 
activate various protein kinase C (PKC) isoforms, and contribute to IR. The mechanism 
responsible for the initial downregulation of AMPK in response to excess nutrients, and 
whether glucose, BCAA, and FA act through similar or different pathways requires 
further study. Identification of this mechanism and the relative importance of other 
events would be beneficial for designing novel pharmacological interventions to prevent 
and/or reverse IR. This review will focus on the some of the mechanisms responsible 
for AMPK downregulation and the relative sequence and importance of these events.

INTRODUCTION
The prevalence of worldwide obesity, type 2 diabetes (T2D), 

and the metabolic syndrome are increasing at an alarming 
rate. Insulin resistance (IR) in peripheral tissues (muscle, liver, 
and adipose) is a key pathological event in the development of 
T2D. Since skeletal muscle is responsible for 70-80% of insulin-
stimulated glucose uptake [1], skeletal muscle IR is considered a 
critical pathological component of the metabolic syndrome and 
T2D [2]. Acute IR may be a normal or protective response of the 
cell to excess nutrients under physiological conditions, possibly a 
mechanism to reroute unneeded fuel to other parts of the body, 
or to prevent oxidative stress and glucotoxicity [3]. In this setting, 
normal insulin signaling resumes when nutrient levels return to 
normal. In contrast, chronic nutrient excess seems to cause less 
easily reversible changes that prevent normal glucose uptake, 
causing hypergylcemia and hyperinsulinemia in the plasma, but 

glucose deprivation in the tissue. Additionally, more damaging 
secondary changes such as pancreatic beta cell apoptosis, 
inflammation, oxidative stress, and vascular/endothelial 
dysfunction result [4]. The molecular sequence of events by 
which chronic exposure to excess nutrients (high glucose, lipids) 
impairs insulin signaling has been studied in detail, but remains 
incompletely understood. Inflammation, oxidative stress, ER 
stress, and the accumulation of toxic lipid derivatives, such as 
diacylglycerol (DAG) and ceramides, have all been implicated to 
contribute to the development of IR [1,5]. Which of these factors 
is the primary cause or whether it is a combination of them 
remains under debate? AMP-activated protein kinase (AMPK) is 
an energy sensing enzyme that plays a central role in nutrient 
sensing/insulin sensitivity. It is a heterotrimeric protein that is 
activated when energy levels are low (i.e., exercise or starvation) 
and signals to increase ATP generating processes and decrease 
ATP consuming processes. The consequences of its activation 



Central

Coughlan et al. (2013)
Email: aksaha@bu.edu 

J Endocrinol Diabetes Obes 1(1): 1008 (2013) 2/7

(mediated through a high AMP/ATP or ADP/ATP ratio and 
phosphorylation of αAMPK Thr172) have been studied in detail. 
Pharmacologic agents that activate AMPK are currently used 
in the clinic (i.e., Metformin, TZD’s) and are of interest in drug 
development [6], as they prevent and/or reverse some of the 
pathologies of T2D. In contrast, the mechanism and consequences 
of AMPK downregulation below basal levels, which our lab has 
shown to occur early on in the setting of high nutrient induced 
IR, are less understood [7]. Notably, multiple animal models with 
a metabolic syndrome phenotype have decreased AMPK activity 
in muscle and liver [6,8-11], and loss of AMPK is detrimental in a 
number of metabolic challenges [9,12-16], such as diet-induced 
IR and obesity [17], calorie restriction [18], and exercise [19]. In 
addition, decreased AMPK activity in skeletal muscle [20] and 
adipose tissue [21,22] of humans with T2D or obesity has been 
reported. Although no causal inferences can be established in 
humans, dysfunction of AMPK may predispose obese individuals 
to a variety of metabolic complications, including IR and T2D.

The precise mechanism for the suppressed activity of AMPK 
is unknown; however, prolonged exposure to excess nutrients 
(glucose, branched chain amino acids (BCAA), and fatty acids 
(FA)) has been shown to cause diminished AMPK activity [7] 
(Figure 1). Many factors may contribute to this decrease, such as 
reduced phosphorylation of αAMPK Thr172 (either by reduced 
activity of upstream kinases or increased phosphatase activity), 
an increase in phosphorylation of αAMPK Ser485/491, a site that 
is presumed to be inhibitory, changes in adenine nucleotide levels 
(decreased AMP/ATP ratio), a change in redox state, or other 
factors that may alter other aspects of this pathway [23]. This 
review will focus on the some of the mechanisms responsible for 
AMPK downregulation and the relative sequence and importance 
of these events. 

AMPK REGULATION
As previously mentioned, AMPK is a heterotrimeric protein 

consisting of a catalytic α subunit, and regulatory β and γ 
subunits [6,24]. There exist two isoforms of the α subunit, two β, 
and three γ isoforms. Some of the α/β/γ complexes are specific 
to certain tissues, and the different combinations of subunits may 
preferentially localize to certain subcellular compartments [25]. 
The γ subunit contains four CBS domains (each pair is referred 
to as a Bateman domain) to which adenine nucleotides bind [26]. 
Only three of the four CBS domains bind adenine nucleotides; 
AMP is always bound to one of the three binding sites, while 
the other two can bind to AMP, ADP, or ATP depending on their 
relative concentrations [26]. Under normal conditions, ATP is 
bound to these domains; however, when the AMP:ATP ratio is 
increased, AMP replaces ATP at the Bateman domains, causing 
an allosteric change that contributes to AMPK activation [26]. 
Recently, it has been proposed that ADP, as well as AMP, may 
be able to activate AMPK [27]. The allosteric change caused by 
binding of AMP (or ADP) makes AMPK a better substrate for its 
upstream kinases LKB1, CaMKKβ, and TAK1 to phosphorylate it 
at Thr172 of the α subunit [28-30]. The combination of allosteric 
activation and phosphorylation of this site leads to greater than a 
1000-fold increase in kinase activity [31]. 

The protein phosphatases PP2A and PP2C have been shown 
to dephosphorylate AMPK at Thr172 [32]. The allosteric change 

caused by binding of AMP to the Bateman domains inhibits 
dephosphorylation of Thr172 by making it a poor substrate 
for the phosphatases [33]. Whether increased phosphatase 
activity contributes to AMPK downregulation due to nutrient 
excess remains to be determined. Although Thr172 is regarded 
as the main phosphorylation/activation site, there are several 
other phosphorylation sites with less defined functions on the 
α and β subunits. Phosphorylation of Ser485/491 on α1/α2 
has been shown to be inhibitory in select tissues [34], such as 
heart [35], vascular smooth muscle cells (VSMC) [36,37] brown 
adipose tissue (BAT) [38], and hypothalamus [39], although its 
physiological importance in the insulin responsive tissues skeletal 
muscle and liver remains to be elucidated. It has been proposed 
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Figure 1 Hypothetical mechanisms by which nutrient excess downregulates 
AMPK and leads to insulin resistance (IR). High glucose and leucine increase DAG, 
whereas saturated FA elevates both DAG and ceramide, leading to increased PKC 
and phosphatase (PP2A) activity. PKC may phophorylate AMPK at Ser485/491, 
while PP2A dephosphorylates Thr172, inhibiting its activity. Reduced AMPK 
activity allows for activation of mTOR/p70S6K, which, in turn, contributes to 
IR. Other factors not shown here may also play a role in the downregulation of 
AMPK, including changes in cellular energy, redox state, or reductions in activity 
of upstream AMPK kinases. Dashed arrows represent unconfirmed pathways in 
insulin-sensitive tissues.
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that this phosphorylation impairs the physical association of 
LKB1 with AMPK, thus preventing phosphorylation of Thr172 
and inhibiting activation [40]. AKT has been reported to 
phosphorylate Ser485/491 in heart [35], VSMCs [36,37], and BAT 
[38]; however, recently it was shown that p70S6K is responsible 
for directly phosphorylating α2 Ser491 in hypothalamus [39].

A physiological response to feeding is reduced AMPK 
activity and a corresponding transition from catabolic to 
anabolic processes. For example, in fasted rats with elevated 
AMPK, refeeding caused an acute reduction in AMPK activity 
and Thr172 phosphorylation in liver [41] and muscle [42], 
concomitant with an increase in plasma insulin levels [42]. In 
addition to the contributions of nutrients, postprandial insulin 
secretion may have relevance in vivo, as insulin has been shown 
to decrease AMPK activation in the heart [43,44] and hepatoma 
cells [45]. The proposed mechanism is that insulin-stimulated 
AKT downregulates AMPK [46,47], perhaps by directly 
phosphorylating it on Ser485/491 [35]. This physiological 
reduction in AMPK activity may have detrimental effects on 
insulin sensitivity in sustained hyperinsulinemia. The following 
sections will highlight the roles of specific nutrients on the 
regulation of AMPK.  

AMPK inhibition by High Glucose

Exposure to excess glucose has been shown to decrease AMPK 
activity in several cell types and tissues, such as muscle [7,11,48], 
liver [11], HepG2 hepatocytes [49], kidney [50], pancreatic 
β cells [51], and human umbilical vein endothelial cells [52]. 
Our lab has shown that a one hour incubation of rat extensor 
digitorum longus (EDL) muscle with glucose dose dependently 
diminishes p-AMPK Thr172, α2 activity, and phosphorylation 
of its downstream substrate acetyl-coA carboxylase (ACC) [7]. 
Phosphorylation of ACC inhibits its ability to convert Acetyl CoA 
to malonyl CoA, allowing fatty acid oxidation to occur. Similarly, 
5 hours of glucose infusion to maintain plasma glucose levels at 
17-18mM reduced α2 AMPK activity in rat red gastrocnemius 
[11]. Importantly, the reductions in AMPK activity in response to 
high glucose were not accompanied by a change in energy state 
(AMP/ATP ratio); however, an increase in the lactate/pyruvate 
ratio, indicating a change in redox state (decreased NAD+/NADH 
ratio) was observed; however, this change was observed later 
(unpublished data). Recently, the redox sensitive protein SIRT1 
was shown to play a role in modulating activity of LKB1, which 
in turn, regulates AMPK. [53,54]. Therefore, a decreased NAD+/
NADH ratio could lead to diminished SIRT1 and LKB1 activity, 
which may partially explain the decrease in AMPK activity. 
Increases in DAG content and p-AMPK Ser485/491 were also 
observed in EDL incubated in high glucose; however, these also 
occurred later than the decrease in Thr172 phosphorylation 
(unpublished data). Although this suggests that DAG and 
Ser485/491 are not responsible for the initial drop in AMPK 
activity, they may contribute to the sustained reduction seen 
with pathological conditions. 

Another change that was caused by incubation of rat EDL 
with excess glucose was an increase in mammalian Target of 
Rapamycin (mTOR) signaling and protein synthesis. mTOR is a 
protein kinase involved in many signaling pathways, including 
cell growth and protein synthesis. The mTOR Complex 1 

(mTORC1) consists of the proteins mTOR, Raptor, MLST8, 
PRAS40, and DEPTOR [55,56]. mTORC1 is activated in response 
to normal insulin signaling and activates its downstream effectors 
p70S6K and 4E-BP1, which, among other things, stimulate 
protein synthesis. Overactivation of mTOR/p70S6K has been 
shown to cause insulin resistance [57-63]. Although activation of 
these proteins is a physiological response to insulin, prolonged 
activation impairs insulin signaling through a feedback loop in 
which S6K causes degradation of insulin-receptor substrates 
(IRS) and mTOR decreases glucose uptake [64,65]. Interestingly, 
the AMPK activators AICAR and α-lipoic acid prevented the 
increase in mTOR/p70S6K phosphorylation, protein synthesis, 
and the development of insulin resistance in EDL incubated 
with high glucose. Gleason et al. also saw an inverse correlation 
of decreased AMPK activation and increased mTOR signaling in 
response to high glucose in pancreatic β-cells [51], while rats 
fed a high fat diet (HFD) had decreased aortic AMPK activity, 
with a concurrent upregulation of mTOR [66]. Whether AMPK 
downregulation is causal to the increase in mTOR/p70S6K 
activation and protein synthesis requires further study.

AMPK inhibition by Amino Acids

It has been established that branched chain amino acids 
(BCAA), particularly leucine, increase mTOR signaling, protein 
synthesis, and insulin resistance. More recently, it has been 
shown that BCAAs also decrease AMPK activity at the same time 
as increasing mTOR/p70S6K signaling and protein synthesis. 
For example, incubation of rat EDL with 100 or 200µM leucine 
for one hour significantly increased phosphorylation of mTOR 
at Ser2448, p70S6K at Thr389, and protein synthesis [7]. At 
the same time, AMPK phosphorylation at Thr172 and AMPK α2 
activity were significantly reduced. These effects are specific to 
BCAAs, as isoleucine, another BCAA, had similar but lesser effects, 
while glutamine had no effect. In addition to increasing mTOR/
p70S6K signaling and protein synthesis, leucine incubation also 
caused insulin resistance in rat EDL, as evaluated by a decrease 
in insulin-stimulated phosphorylation of AKT at Ser473 [7]. 
Just as with high glucose, we observed an increase in AMPK 
Ser485/491 phosphorylation, but this change was subsequent 
to reduced AMPK Thr172 phosphorylation (unpublished data). 
Similar studies using the C2C12 mouse muscle cell line showed 
that incubation with 2mM leucine decreased AMPK Thr172 
phosphorylation and increased mTOR phosphorylation and 
protein synthesis as early as 30 minutes [55], whereas treatment 
with an amino acid mixture had the same effects in pancreatic 
-cells [51]. In humans, infusion of amino acids activated mTOR/
p70S6K and caused IR [67,68], while rapamycin treatment 
prevented both the activation of mTOR and the IR in healthy men 
[69].

As with high glucose, treatment with the AMPK activators 
AICAR and α-lipoic acid prevented the increase in mTOR/p70S6K 
phosphorylation, protein synthesis, and the development of IR 
in EDL incubated with physiological concentrations of leucine 
[7]. Similarly, AICAR treatment prevented the increase in mTOR 
phosphorylation and protein synthesis in C2C12 cells, and AICAR 
or phenformin treatment prevented phosphorylation of p70S6K 
in β-cells [51]. In contrast to these data, in EDL, we did not see a 
decrease in Raptor on Ser792 or TSC2 on Ser1387, two substrates 
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of AMPK that lead to inhibition of mTORC1 [7]. However, since 
basal levels of phosphorylation are low to begin with, a further 
decrease may have been too small to detect [7]. It is interesting to 
note that in the C2C12 cells, a decrease in the AMP/ATP ratio was 
detected with leucine exposure, while no difference was detected 
in the EDL incubations. Differences in dosing and/or incubation 
time may explain this discrepancy; however, further studies are 
needed to determine whether a change in adenine nucleotides 
or another factor is responsible for the initial downregulation of 
AMPK activity.

AMPK inhibition by Fatty Acids

It is known that excess dietary fat leads to an accumulation of 
DAG and ceramides, both of which are toxic lipid derivatives, in 
muscle [1,5]. Palmitate, the most abundant dietary saturated fat 
[5], leads to de novo ceramide synthesis. It has been proposed that 
lipotoxicity resulting from DAG and ceramide accumulation is a 
primary cause of IR. Prolonged exposure to palmitate decreases 
AMPK activity in a variety of tissues and cells. For example, 
exposure of cultured bovine aortic endothelial cells (BAECs) to 
palmitate (0.4 mM) but not to palmitoleic or oleic acid (0.4 mM) 
for 40 h significantly reduced Thr172 phosphorylation of AMPK 
without altering the phosphorylation (activation) of its upstream 
kinase LKB1 on Ser428 [70]. Additionally, palmitate significantly 
increased the activity of PP2A, while inhibition of PP2A with 
okadaic acid or PP2A siRNA prevented the decrease in AMPK 
Thr172 phosphorylation. Moreover, aortas from mice fed a HFD 
rich in palmitate had decreased AMPK Thr172 phosphorylation 
and increased PP2A activity, whereas those fed a HFD rich in 
oleate did not [70]. These data suggest that saturated, but not 
unsaturated FA decrease AMPK activity. Interestingly, prevention 
of de novo ceramide synthesis with the inhibitor fumonisin B1 
prevented the effects of palmitate on AMPK and PP2A, suggesting 
that ceramides, at least in part, contribute to downregulation 
of AMPK [70]. In rodents, HFD has been shown to decrease 
phosphorylation of AMPK Thr172 in both liver and muscle 
[71,72]. Interestingly, acute exposure to palmitate has been 
shown to increase both AMPK Thr172 and ACC phosphorylation 
in L6 muscle cells [73,74]. We have also observed this acute 
increase in AMPK activation in C2C12 myotubes (up to 6h), 
whereas prolonged exposure (24h) to palmitate decreases AMPK 
Thr 172 phosphorylation, concomitant with reduced insulin 
sensitivity (unpublished data). 

The mechanism by which FA causes IR is not fully understood. 
The protein kinase C (PKC) family of serine/threonine kinases 
can be activated by both DAG and ceramides, and various PKC 
isoforms have been implicated to play a role in the development 
of FA induced IR [1,75]. Several PKC isoforms are activated in 
the muscle of various species in response to FA metabolites; 
for example, PKCε, θ, and δ in rats [76-78], PKCθ, δ, and βII in 
humans [76-78], and PKCγ and ζ in C2C12 myotubes [79]. One 
proposed mechanism by which PKC activation leads to IR is by 
phosphorylating insulin receptor and insulin receptor substrate 1 
(IRS-1) on serine/threonine residues, thus preventing its normal 
tyrosine phosphorylation and downstream signaling [5,78,80-
85]. It has also been reported that novel PKC isoforms can 
activate mTOR by phosphorylation [56], which could potentially 
contribute to IR as it does in response to excess glucose or BCAA. 

Additionally, Cazzolli et al. showed that ceramides can activate 
PP2A and increase PKCζ in C2C12 cells treated with palmitate 
[79]. The upregulation of PP2A was proposed to hinder insulin 
signaling by dephosphorylating AKT [79], however, it could 
potentially also contribute to dephosphorylation of AMPK. 
PKC activation may also lead to IR and reduced AMPK activity 
through phosphorylation of AMPK Ser485/491. Kodiha and 
Stochaj proposed that PKC and AKT phosphorylate Ser485/491 
which diminishes AMPK activity [25]. Further studies are needed 
to determine whether the upregulation of PP2A or various PKC 
isoforms plays a role in AMPK downregulation in lipid induced 
IR. 

CONCLUSION
Decreased AMPK activity and AMPK Thr172 phosphorylation 

seem to be early and seminal events in the path to IR due to 
nutrient excess. Glucose and leucine may diminish AMPK activity 
through a similar but unidentified pathway, whereas FA may do 
so through a different mechanism involving DAG, ceramide, and 
PKCs. In addition to nutrients, AMPK activity can also be inhibited 
by numerous hormones and inflammatory cytokines, as reviewed 
by Viollet et al. [86]. As AMPK downregulation is a common event 
resulting from all of three of these nutrient stimuli, its activation 
is naturally a target for therapeutic intervention. Indeed, 
current therapies for treating T2D and the metabolic syndrome 
include diet, exercise, and insulin sensitizing pharmacological 
agents such as metformin, all of which activate AMPK [6]. While 
these treatments are helpful, they are often not sufficient by 
themselves to manage patients’ blood glucose levels, leaving 
room for the development of more effective medications. As none 
of the currently available therapies are direct AMPK activators, 
pharmaceutical agents that act directly on this enzyme may be 
a promising addition to the currently available medications. 
Combination therapy may prove to be more beneficial, as it may 
augment AMPK activity to a greater extent and could potentially 
prevent the reduction in AMPK activity due to overnutrition in 
obese humans. 

As previously mentioned, acute IR may be a beneficial 
adaptation to a glucose, amino acid, or lipid load, but chronic IR 
leads to detrimental changes in the tissue. Identification of events 
marking a transition from physiological (easily reversible) 
to pathological (less reversible) IR, which is accompanied by 
further damaging processes such as inflammation and oxidative 
stress, would help determine sites for intervention. The initiating 
event responsible for decreasing AMPK activity and AMPK 
Thr172 phosphorylation remains to be elucidated. Some have 
reported that it is due to a decrease in AMP/ATP ratio, while 
others attributed it to an increase in PP2A activity. However, we 
have seen decreased AMPK activation prior to changes in either 
of these measures. Additionally, the significance of changes 
in AMPK Ser485/491 phosphorylation as well as redox state 
and SIRT1 activity require further study. These events help to 
maintain the inhibition of AMPK or they may signal to other 
molecules to affect AMPK or other aspects of insulin signaling. 
A better understanding of AMPK regulation and the factors 
contributing to its down regulation could help identify novel ways 
to design chemical AMPK activators, as well as other molecules in 
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the pathway that could be targeted to act in concert with AMPK 
activators to enhance amelioration of IR.
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