
Central
Bringing Excellence in Open Access



 JSM Environmental Science & Ecology

Cite this article: Malkoske T, Tang Y, Xu W, Yu S (2016) Brominated Flame Retardants (BFRs) in China: Wastewater Sources and Treatment Methods. JSM 
Environ Sci Ecol 4(2): 1027.

*Corresponding author
Yulin Tang, State Key Laboratory of Pollution Control 
and Resource Reuse, College of Environmental 
Science & Engineering, Tongji University, Shanghai, 
200092, PR China, Tel: 86 21 65982708; Fax: 86 21 
65982708; Email:  

Submitted: 10 May, 2016

Accepted: 08 June, 2016

Published:  09 June, 2016

ISSN:  2333-7141

Copyright
© 2016 Tang et al.

  OPEN ACCESS  

Keywords
•	Brominated	flame	retardants	(BFRs)
•	Hexabromocyclododecanes	(HBCDs)
•	Polybrominated	diphenyl	ethers	(PBDEs)
•	Tetrabromobisphenol	A	(TBBPA)
•	Emission source
•	Treatment method

Review Article

Brominated Flame Retardants 
(BFRs) in China: Wastewater 
Sources and Treatment Methods
Tyler Malkoske, Yulin Tang*, Wenying Xu, and Shuili Yu
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 
China

Abstract

China is one of the largest producers and users of brominated flame retardants 
(BFRs) in the world. This has led to ubiquitous environmental occurrence of the main 
BFRs commercially available in China, namely polybrominated diphenyl ethers (PBDEs), 
hexabromocyclododecanes (HBCDs), and tetrabromobisphenol A (TBBPA). Wastewater 
from BFR manufacturing, manufacturing of BFR-based products, and e-waste recycling 
processes is an important contributor to BFR pollution. While conventional wastewater 
treatment methods may reduce BFRs in wastewater streams, treatment limitations and 
sludge disposal remain important concerns. Specialized treatment methods for BFR 
removal from wastewater should be used where influent BFR concentrations are high, 
particularly in waste streams originating from the main BFR emission sources in China.

ABBREVIATIONS
BFRs: Brominated Flame Retardants; HBCDs: 

Hexabromocyclododecanes; PBDEs: Polybrominated Diphenyl 
Ethers; TBBPA: Tetrabromobisphenol A

INTRODUCTION
Brominated flame retardants (BFRs) are chemicals used in 

plastics, textiles, electronics, and construction materials to reduce 
flammability [1]. Polybrominated diphenyl ethers (PBDEs), 
hexabromocyclododecanes (HBCDs), and tetrabromobisphenol 
A (TBBPA) are the most important high production volume and 
current use BFRs in China [2]. TBBPA is predominantly used as 
a reactive flame retardant and is chemically bound in polymers, 
while PBDEs and HBCD are additives that are not chemically 
bound and may readily separate from products into the 
environment [1]. The main commercial formulations of PBDEs 
are penta-, octa-, and deca-BDE [3], while commercial mixtures 
of HBCDs contain α-HBCD, β-HBCD, and γ-HBCD [4]. China is the 
largest producer and user of HBCDs in the world [5] and has a 
large number of facilities manufacturing PBDEs and TBBPA [6,7]. 
In 2006 the most widely produced BFRs in China were deca-
BDE (36,000 tonnes), TBBPA (18,000 tonnes), octa-BDE (8,000 
tonnes), and HBCDs (7,500 tonnes) [2]. The 2004 estimated 
consumption of BFRs in Asia (except Japan) was 140,000 tonnes.

High production and usage of BFRs in China has resulted 
in ubiquitous occurrence in the Chinese environment [2,7,8]. 
Due to their hydrophobic nature, BFRs tend to be bound to 
solid phase particles in soil, sediment, and sewage sludge [4,9]. 
Exceptionally high levels of PBDEs (191-9,156 ng/g dry weight 

(dw)) and TBBPA (1.64-7,758 ng/g dw) were measured in soils 
at an e-waste recycling area in Qingyuan, Guangdong [10] and 
a BFR manufacturing site in Shouguang, Shandong [11]. High 
levels of PBDEs (1.3-1,800 ng/g dw) were also found in sediment 
from Laizhou Bay, Shandong near a BFR manufacturing area [6]. 
Numerous other studies show occurrence of PBDEs, HBCDs, and 
TBBPA in water [12,13], air [5,14,15]  dust [16,17], and remote 
areas [18] of China. The extensive environmental occurrence of 
BFRs is concerning because of increased exposure and potential 
health risks to humans and biota. PBDEs, HBCDs, and TBBPA 
are suspected endocrine disruptors [19], with in vivo studies 
showing changes in hormone activity of humans [6,20] and rats 
[21] after exposure. Negative effects on growth and reproduction 
have been observed in plants [22], aquatic species [23], and birds 
[24].

There is currently no restrictive use on HBCDs or TBBPA in 
China [7,25]. Usage of penta-BDE and octa-BDE were officially 
banned in China in 2006 [26] and PBDEs added to the list of 
banned chemicals included in the Stockholm Convention on 
Persistent Organic Pollutants in [8]. Since this time, reduced 
temporal trends have been observed in some parts of China 
[2]. HBCD was listed in 2013 [5], and TBBPA registered under 
the Registration, Evaluation, Authorization and Restriction of 
Chemical substances (REACH) in Europe in 2010 [27] and the 
Toxic Substances Control Act (TSCA) Work Plan list in the USA 
in 2014 [28].

Sources of BFRs in Wastewater

The main emission sources of BFRs in China are BFR 
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manufacturing sites, sites manufacturing BFR-based products, 
and electronic waste (e-waste) recycling and disposal [8,7]. 
Shouguang municipality, Shandong is located in a region with 
abundant bromine and has been the largest BFR manufacturing 
center in China since the early 2000’s [11]. Jiangsu, Zhejiang, 
and Guangdong provinces are important in manufacturing of 
BFR-based products [6,8,29] where PBDEs are mainly used in 
furniture, textiles, and electronics [8,30], HBCDs in expanded and 
extruded polystyrene foams [4], and TBBPA in printed circuit 
boards [7] and plastics [9]. China still receives international 
shipments of e-waste and is likely the largest e-waste dumping 
site in the world [31]. Domestic production of e-waste is also 
increasing and was expected to reach 8 million tonnes in 2015 
[29]. Guiyu and Qingyuan, Guangdong and Taizhou, Zhejiang are 
well-known e-waste recycling areas [29].

Information on wastewater production volumes and 
occurrence of BFRs in wastewater from emission sources in 
China and around the world is very limited. BFR manufacturing 
processes that produce the greatest volumes of wastewater 
include in situ washing of BFR solids separated by centrifuge 
and rinse water equipment washing [32]. In BFR-based product 
manufacturing, textile production requires comparatively 
large volumes of water. Wastewater mainly originates from 
used process bath water and rinsing residues from emptying 
containers and pipes from batch production [33] found that 
3,500 tonnes/day of rinse water was produced at a printed circuit 
board manufacturing facility in Shanghai. TBBPA concentrations 
in the wastewater ranged from approximately 28.3 to 174.3 
ng/L. In a life cycle assessment of e-waste treatment in China 
with and without waste disposal after processing, wastewater 
was an important pollutant release pathway for both scenarios 
[34]. At formal e-waste recycling facilities, electrodialysis and 
precious metal refining processes produce wastewater. While an 
increasing amount of China’s e-waste is being processed at formal 
or licensed recyclers, most licensed recyclers cannot achieve 
high recycling rates and low emissions [31]. More information 
is needed on wastewater production and BFR occurrence in 
wastewater from the main emission sources.

Treatment of BFR containing wastewater

Numerous recent studies have recommended urgent steps 
be taken to address BFR pollution in China [2,5,7,8] . Effective 
treatment of BFR containing wastewater could be significant 
in reducing the release of BFRs to the environment. Where 
treatment is ineffective, elevated levels of BFRs have been found 
in surface water downstream of WWTP outfalls [35,36].

Studies on BFR removal by conventional wastewater 
treatment methods show varying degrees of effectiveness. At four 
wastewater treatment plants (WWTPs) in Hong Kong, influent 
concentrations of PBDE (1-254 ng/L) were not significantly 
reduced in treated effluent (20-53%) [37]. Higher reduction was 
reported at a WWTP near the Detroit River, USA, where influent 
PBDE (265 ng/L) was reduced 91% in an activated sludge 
treatment process [38]. In a study of twelve WWTPs treating 
municipal and industrial wastewater in the Yodo River Basin, 
Japan, HBCD (16-400 ng/L) was reduced by 80-99% [39]. Potvin 
et al., [40] found high removal efficiency of TBBPA (41 ng/L to 
0.7 ng/L) by conventional activated sludge at a WWTP in Canada. 

TBBPA in wastewater from printed circuit board manufacturing 
in Shanghai was significantly reduced in treated effluent (3.21 
ng/L) at an on-site WWTP, though the treatment method not 
specified [33]. Inconsistency in removal rates may require 
implementation of specialized treatment methods for BFRs. 
Derden and Huybrechts [30] reported that significant reductions 
in emissions of Deca-BDE from textile wastewater could be 
realized by processing at an external specialized processing 
plant. More information is needed on BFR removal efficiency at 
WWTPs in China, specifically those receiving wastewater from 
main emission sources.

Due to their hydrophobicity, BFRs tend to sorbs to suspended 
particulate matter and accumulate in sludge [4,25]. Final disposal 
of sludge is an important consideration, with land application, 
landfilling, and incineration common methods. Where sludge 
treatment is not practiced, land application may result in soil 
contamination [41]. Leaching tests done on solid powder waste 
from the printed circuit board manufacturing facility in Shanghai 
showed low leachability for TBBPA, with an estimated leach-out 
portion of 0.0007 to 0.006% [33]. This indicates in some cases 
land filling may be appropriate for final disposal. Stiborova et al., 
[42] found 11 PBDE congeners in WWTP sludge were reduced by 
62 to 78% after 11 months of cultivation under aerobic conditions. 
Degradation constants of BDE 209, the most common congener, 
were 2.77 x 10-3 d-1 and 3.79 x 10-3 d-1 with half-life from 6 to 8.2 
months. Anaerobic digestion degradation half-life of DecaBDE 
(7 x 102 d) was comparatively longer, while TBBPA (0.59 d) and 
HBCD (0.66 d) were significantly shorter [43]. Despite concerns 
about dioxin emissions from incineration, Mark et al., [44] found 
near total destruction of HBCD after incineration of polystyrene 
foam, with minimal impact on air emissions.

There are numerous lab studies on treatment methods for BFR 
removal from water, including anaerobic degradation, ozonation, 
adsorption, and oxidation [45-49]. The main treatment processes 
studied for PBDE degradation are photolysis, zerovalent iron, and 
TiO2 photocatalysis [50]. In a review of these processes, Santos 
et al., [50] found TiO2 photocatalysis most suitable due to higher 
debromination and mineralization, which avoids the formation of 
lower brominated PBDE congeners. Debromination was found to 
be the main degradation mechanism, though other reductive and 
oxidative processes may also occur. Huang et al., [45] achieved 
96% removal of BDE-209 by oxidative reduction using TiO2 
photocatalysis. Photocatalysis under visible light irradiation 
has gained research interest as a low energy alternative to 
photocatalysis using UV. Zhou et al., [46] found that HBCD could 
effectively undergo photodegradation in the presence of Fe(III)-
carboxylate complexes under simulated sunlight. Using biological 
treatment, Peng et al., [47] optimized anaerobic co-metabolic 
degradation to achieve a TBBPA degradation rate of 96.2% with 
a half-life of 4.1 days. The mechanism involved simultaneous 
degradation of TBBPA in the presence of different nitrogen 
sources. Higher degradation rates were achieved using non-
biological treatment methods, including 99.3% degradation after 
25 minutes ozonation [51] and 98% removal after 40 minutes 
by sorption with fly-ash supported nanostructured γ-MnO2 [49]. 
Besides specialized treatment, process-integrated measures can 
also be used for reducing the amount of BFRs in wastewater. 
One example is reuse of rinse water from process baths in textile 
manufacturing [29].
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CONCLUSION
Brominated flame retardants are ubiquitous in the Chinese 

environment, raising concerns about human and ecological 
health risks. Conventional wastewater treatment shows some 
ability in reducing BFRs in wastewater, but may not be suitable 
for wastewater originating from the main BFR emission sources 
in China. Implementing specialized treatment for BFR removal in 
wastewater from emission sources could significantly reduce the 
release of BFRs to the environment. Where BFRs are transferred 
from wastewater to sludge, aerobic/anaerobic digestion and 
incineration may be suitable sludge treatment methods. More 
information is needed on wastewater production and BFR 
occurrence in wastewater from the main emission sources in 
China.
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