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Abstract

The Batumi Port in the Republic of Georgia serves international customers and 
is therefore vulnerable to import and invasion by mosquito vectors and arboviruses. 
Recent studies in the Batumi area have detected the presence of Aedes aegypti and Ae. 
albopictus. The Bioagent Transport and Environmental Modeling System (BioTEMS) was 
used to model invasion of infected mosquitoes through the port and provide information 
for integrated mosquito management planners. In previous studies, surveillance for 
invasive species has focused to the south of the port and city of Batumi; however, 
it is recommended that this surveillance be expanded to the north of the port and 
application of pesticides in the port area be initiated to mitigate or prevent infected 
invasive mosquitoes from entering through the port.

INTRODUCTION
This report discusses the potential for Aedes (Steogomyia) 

aegypti (L.) and Ae. albopictus (Skuse) to invade through the 
Batumi Port and spread into adjacent areas in the Republic of 
Georgia, increasing the risk of invasive arboviruses becoming 
established in the community. Integrated mosquito management 
zones, control methods and surveillance sites were identified in 
the region to prevent or mitigate invasion by infected mosquito 
species and/or haplotypes. Arboviruses, particularly dengue 
viruses (DENV), chikungunya virus (CHIKV) and Zika virus 
(ZIKAV) are being introduced globally where competent vectors, 
hosts and habitats occur. ZIKAV is the most recent arbovirus 
placed into Public Health Emergency status by the World Health 
Organization [1]. In November, 2016 the WHO Emergency 
Committee removed ZIKAV as a Public Health Emergency of 
International Concern but suggested it remain a significant and 
long-term public health problem [1]. 

Aedes aegypti and Ae. albopictus have been shown or are 
suspected of being vectors of DENV, CHIKV and/or ZIKAV [2]. 
Thirty two mosquito species have been recorded in the Republic 
of Georgia [3] including Ae. aegypti and Ae. albopictus. Previous 
distribution modeling of the Black Sea region predicted a 
high probability of occurrence of Ae. albopictus in Georgia and 
moderate probability for Ae. aegypti [4]. Aedes aegypti was first 

reported in Georgia in 1926 [5]. Aedes albopictus has recently 
invaded Georgia, and was first collected in Georgia in 2014 and 
subsequently in 2015 [2,3]. Both studies report Ae. aegypti and 
Ae. albopictus in the port city of Batumi. 

Assessing the risk of invasion into ports and implementation 
of integrated mosquito management (IMM) at the local level is 
critical in protecting communities from medically important 
vectors and the arboviruses they may harbor. Where Aedes 
species have already invaded, immigration of susceptible and 
infected haplotypes should be of concern. Once introduced into 
an area, the invasive mosquito species may disperse naturally or 
spread rapidly across regions through ground transport [6,7]. In 
addition to the import of infected mosquitoes, local transmission 
and amplification of arboviruses into a new geographic area can 
occur when local mosquitoes bite infected travelers and become 
infected, or when people become infected through sexual contact 
or contaminated blood [8,9]. 

Samy [10], identified areas in the Republic of Georgia, 
including the city of Batumi, as being at risk of Zika virus. The 
Port of Batumi is Georgia’s most important seaport and gateway, 
serving cargo ships, cruise liners and military vessels and it is 
listed as an approved International Health Regulation Approved 
Port by the World Health Organization [11]. The port and 
surrounding area of Batumi are at risk for the introduction of 
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mosquito vectors and arboviruses from ships originating from 
endemic countries or from ships having had a previous port of 
call in an endemic country. For example, as part of the United 
States Navy 6th Fleet, the US Naval Ship Mount Whitney travels 
from the port in Puerto Rico to ports in Europe, including Batumi 
[12]. Puerto Rico is endemic for DENV, CHIKV and ZIKAV [13], 
as are other nations in the Caribbean Sea, therefore a possibility 
exists for infected mosquito species to invade from docking 
ships or cargo. An example of this is the continued spread of Ae. 
albopictus through cargo transport [2].

EXPERIMENTAL METHODS
 The Bioagent Transport and Modeling System (BioTEMS) 

was used to model the potential for Ae. aegypti and Ae. albopictus 
and arbovirus species to enter the region through the Batumi 
Port, and subsequently disperse to the surrounding area. 
BioTEMS has previously been used for modeling biological 
weapons defense and infectious diseases in several countries 
and utilized for consequence management planning for military 
installations and vulnerability/risk assessment during special 
events [14]. BioTEMS utilizes up to several hundred abiotic and 
biotic factors to produce risk and vulnerability assessments for 
biological agents and infectious diseases. Examples of biotic and 
abiotic factors include pathogen strain, vector/host relationship, 
vectorial capacity, host/vector physiology, colonization ability, 
population dynamics of hosts and vectors, soil, shade, and 
weather conditions, such as wind, temperature, precipitation, 
and shade. Analytical methods within BioTEMS include artificial 
intelligence, fuzzy logic, niche analysis, and general additive 
regression. Ecological niche and dynamic change modeling are 
used within BioTEMS to identify areas at risk for invasion by 
vectors, arboviruses and provide information for integrated 
mosquito management [15]. Output from BioTEMS identifying 
recommended IMM zones, control methods and surveillance sites 
are discussed in order to provide practical information to local 
medical and public health professionals. The research conducted 
by Kutateladze [3], was supported by the Biotechnology 
Technology and Engagement Program, and provides geographic 
coordinates and habitat information used as part of the present 
study.

The BioTEMS TIGER model was developed to assist in iden-
tifying areas at high risk for invasive mosquito species and 
pathogens and to optimize surveillance and control efforts and 
information. The acronym TIGER represents the steps in the 
invasion of a mosquito species or haplotype: Transport- identi-
fies the point of origin, method and rate of transport to a local-
ity. Introduction- identifies point or area of initial invasion/entry 
of species or haplotypes and preliminary spread into a locality 
(I-zone). Gap- determines the area where vector/pathogen infil-
trates and initially spreads once it has gained a foothold (G-zone). 
Escalade- incorporates abiotic and biotic factors as possible re-
sistance to invasion. Residence and recruitment - incorporates 
factors and area where vector/pathogen adds to genetic diver-
sity or becomes endemic and recruits con-specifics/haplotypes. 
In predictive modeling, it is imperative to use external data to 
validate the model where possible [16,17]. The BioTEMS model 
was validated using data from several countries, including Brazil, 
Honduras, and the USA [18]. In addition to published predictive 

maps for Aedes species and ZIKAV, Samy et al. [10,19], data from 
Kutateladze [3], was used to validate the BioTEMS model for the 
Batumi Port area. BioTEMS and the geographic information soft-
ware ArcGIS (ESRI, Redlands, California) were used to produce 
output into Google® Earth. 

RESULTS AND DISCUSSION
The principle factor responsible for the invasion of disease 

vectors is air and ship transport [20,21], with rapid transport 
through cars, trucks and possibly trains. Geographic probability 
models have been developed for Ae. aegypti and Ae. albopictus 
[6,22]. Models have also been developed in order to identify the 
nature and spread of arboviruses, e.g. ZIKAV [10]. Most models 
are of low resolution but are valuable for ascertaining the 
current and potential geographic range of vector species, and the 
pathogens they transmit, for example the 5 km resolution maps 
for Ae. aegypti and Ae. albopictus produced by Kraemer [19]. 

The preliminary study of the Aedes population of Batumi 
by Kutateladze [3], provides excellent collection and habitat 
records for the area south of the port. Although only a few 
collections of these two species have been conducted in Georgia, 
displacement of Ae. aegypti by Ae. albopictus in Batumi is likely as 
this interaction is common in other temperate regions [23]. Using 
data from Kutateladze [3], the number of sites with Ae. albopictus 
versus Ae. aegypti was 18:1. There were significant difference 
among the habitat sites. Sites with tires had a significantly 
higher mean number of Ae. albopictus captured than sites with 
only containers or sites with gardens without containers, and 
sites with containers had a higher mean number than garden 
sites without containers (ANOVA MS=3109.1, df=38, p < 0.05). 
BioTEMS predicted the likely points of introduction for Ae. 
aegypti and Ae. albopictus and arboviruses through the Batumi 
port with movement northward and southward (Figure 1). The 
predicted southward expansion overlaps with the interpolated 
capture records of Ae. albopictus capture from Kutateladze [3].

 One of the principal routes of dispersal of invasive mosquito 
species across regions is by vehicular transport, particularly 
with the movement of used tires [2]. The BioTEMS TIGER model 
prediction for the invasion southward also corresponds to the 
high density of Ae. albopictus found by Kutateladze [3], found in 
sites with tires. BioTEMS predicts the suitability of the Batumi 
area for Ae. albopictus, and ZIKAV, supporting the predictive 
models of Kraemer and Samy [10,19]. In previous studies, 
BioTEMS was accurate in predicting the presence of ZIKAV cases 
in Brazil and Miami, USA where BioTEMS identified marine ports 
as the most likely route of invasion of infected Aedes species 
or humans and area of origin for the subsequent infection and 
spread through the local Aedes population [18]. 

Unlike low resolution models, BioTEMS includes I and G 
zones in Batumi (Figure 2). High risk zones are defined as an 
area likely to be invaded or to have already been invaded by 
infected mosquitoes or to have localized transmission. The Gap 
zone includes areas where ZIKAV will spread through infected 
mosquitoes. In the Batumi port area, the I-zone is approximately 
8 km2. Based upon BioTEMS, Ae. albopictus likely invaded Batumi 
between 2009 and 2011. Intensive surveillance and control of 
mosquitoes as well as epidemiologic surveillance of the human 
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Figure 1 Predicted northern and southward movement (black arrows) of Aedes species and arboviruses invading through the Batumi port 
(BioTEMS).  Colored block represents estimated density of Aedes albopictus (yellow to red = low to high) in the area using kriging from data collected 
by Kutateladze et al. (2106).  (Base Map: US Dept. of State Geographer © 2016 Google Image Landsat/Copernicus, Data SIO, NOAA, US Navy, NGA, 
GEBCO).

Figure 2 Invasion/Introduction zone (red) and Gap zone (yellow) BioTEMS TIGER model. Blue circles represent recommended surveillance sites.  
(Base Map: US Dept. of State Geographer © 2016 Google Image Landsat/Copernicus, Data SIO, NOAA, US Navy, NGA, GEBCO).
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population should be conducted within the I-zone. The Gap zone 
consists of ~60 km2 (including the I-zone) where surveillance 
sites and control should conducted based on prioritization of 
resources. From the data of Kutateladze [3], it appears that Ae. 
albopictus is in the G phase of the BioTEMS TIGER model. The 
Gap zone includes areas where arboviruses could spread through 
infected mosquitoes. Commensalism of a mosquito species plays 
an important role of a species having the capacity to invade 
[24]. One must gather all the relevant evidence and include 
possibilities when attempting to interdict an invasive species. 
As can be seen from Figure 2, the Gap zone is a large area that 
is susceptible to infiltration and breeding by Aedes vectors. It 
is important for medical and public health officials in Batumi 
to consider implementing monthly mosquito surveillance and 
control as the season dictates.

Seaports play a critical role in the invasion of Aedes vector 
species, including recruitment of new haplotypes [25]. The 
possible invasion of mosquitoes and arboviruses through ports, 
both aviation and maritime, is not a new concept [26]. Focusing 
control and surveillance efforts primarily on travelers and not 
including ports of entry does a disservice to the population to 
whom public health officials are charged to protect. For example, if 
Miami and Rio de Janeiro had an active ZIKAV surveillance system 
in place for mosquitoes in the port areas, the chance of finding 
an infected mosquito would have been increased and IMM could 
have been initiated sooner. Vaux and Medlock [27], implemented 
the following surveillance procedures in port areas in the United 
Kingdom; 1) establish a baseline of mosquito breeding habitats, 
2) conduct active surveillance for invasive mosquitoes at the 
ports, 3) identify appropriate surveillance method suited to port 
environments, and 4) develop the capability and capacity of Port 
Health Officers to conduct invasive mosquito surveillance. In 
addition to surveillance, preventing establishment of invasive 
species and haplotypes into the port area is critical. BG-Sentinel 
traps (Biogents, Regensburg, Germany) are very effective in 
capturing Aedes species and can be used for both surveillance 
and reducing Aedes populations. Application of pesticides on 
ships, cargo, and port areas can reduce the risk of invasion by 
mosquitoes; however, the continuous spraying of pesticides 
is expensive and may damage the environment. Low cost 
and environmentally friendly methods using new pesticide 
technologies like the ProVector (MEVLABS, Statesboro, US) [28], 
can be used to lower the risk of the establishment of invasive 
species while reducing the local mosquito population. Pesticides 
with mosquito bait, can be delivered using devices hung in 
structures to reduce the mosquito population without the need 
for spraying for up to several months [29]. 

CONCLUSION
Local transmission of DNV, CHIKV and ZIKAV have not been 

documented in Batumi; however, with the establishment of either 
or both Ae. aegypti and Ae. albopictus, the risk is increased. The 
BioTEMS model provides high resolution information to medical 
and public health officials in Batumi they can use to assess the 
risk of invasive mosquito species, associated arboviruses and in 
the development of an integrated mosquito management plan. 
It is recommended, if not already in place, continuous active 
surveillance and control of mosquitoes. For example, expanded 

surveillance to the north of the port and application of pesticides 
in the port area can be initiated to mitigate or prevent infected 
invasive mosquitoes from entering through the port [30]. In 
addition, epidemiologic surveillance in mosquitoes and humans 
can be conducted, particularly around air and marine ports and 
in vehicle maintenance sites along high use roadways. 
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