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Abstract

In this study, we have investigated the combined effects of ultraviolet radiation (UVR) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) on chlorophyll 
a (Chl a), total carotene, protein contents and antioxidative enzymes i.e. superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX)in the 
cyanobacterium Scytonema geitleri strain HKAR-12. 2,4-D alone stimulated the growth and differentiation of Scytonema geitleri strain HKAR-12in nitrogen 
free medium at a low concentration 100 μg/mL.While its higher concentration inhibited growth and 500 μg/mL concentration of 2,4-D proved to be lethal. 
Chl a and protein content were found to be adversely affected by combined exposure of UVR, PAR (Photosynthetically Active Radiation) and 2,4-D after 
varying duration of treatments. However, a progressive increase in total carotene content was observed upto 48 h of exposure followed by a subsequent 
decrease. However, synthesis of antioxidative enzymes to counteract the damaging effect of such stressful conditions is one of the several mechanisms adapted 
by cyanobacteria as their defense strategies. Antioxidative enzymes exhibited differential responses against combined stress of UVR, PAR and 2,4-D. SOD, 
CAT and APX showed 2-3 fold increase upto 48 h duration of exposure in PAR; PAR + 2,4-D; PAB (PAR + UV-A+ UV-B) and PAR + UV-A + UV-B+ 2,4-D 
followed by a gradual decrease in the concentration of these studied enzymes These results suggest that the combination of UVR and exogenous herbicides 
such as 2,4-D have detrimental effects on cyanobacterial metabolism.

ABBREVIATIONS
UVR: Ultraviolet Radiation; 2,4-D: 2,4-Dichlorophenoxyacetic 

Acid; CAT: Catalase; SOD: Superoxide Dismutase; APX: 
Ascorbate Peroxidase; ROS: Reactive Oxygen Species; PAR: 
Photosynthetically Active Radiation; PAB: PAR+UV-A+UV+B

INTRODUCTION
Cyanobacteria are Gram-negative, cosmopolitan, photolysis 

mediated oxygen evolving prokaryotes that can survive and 
flourish in almost every habitat ranging from hot springs to 
Arctic and Antarctic regions as well as in the form of symbionts in 
plants, lichens and several protists [1,2]. They play a significant 

role in global photosynthetic biomass production, CO2 fixation, 
successional processes, nutrient cycling and as a potent natural 
biofertilizer in rice paddy fields [3,4]. 

The depletion of stratospheric ozone has resulted in an 
increase of deleterious ultraviolet radiation (UVR) at the Earth’s 
surface. These biologically effective doses of UV-B radiation can 
penetrate deep into the water column, and cause generation of 
reactive oxygen species (ROS) from the photosynthetic system 
in plant cells [5]. These increased ROS can easily destroy 
DNA,proteins and other biological molecules, and subsequently 
affect growth and reproduction, survival, photosynthetic 
energy harvesting enzymes, and the content of photosynthetic 
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pigments [6-9]. However, cyanobacteria have also developed 
adaptation strategies to counteract the damaging effects of UVR, 
which include avoidance, scavenging, screening, repair, and 
programmed cell death (PCD) [10-13]. 

Besides this, soil and water pollution due to pesticides 
and herbicides has become a common concern among 
environmentalists. Use of pesticides and herbicides became 
indispensible and an integral part of modern agricultureand their 
use under Integrated Pest Management Programme to save the 
crop losses is becoming quite decisive in countries like India in the 
wake of second green revolution likely to be experienced in next 
few years. We cannot rule out the use of these chemicals (such as 
2,4-D)in agricultural fields because of steady but continuous rise 
in population and lesser availability of agricultural fields [14]. 
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used in 
many countries to control weeds. 

Phenoxy acetic herbicides 2,4-D have auxin like activity 
and are used to control the growth of weeds with many crops 
including rice. Auxinic herbicides have been reported to be less 
toxic than other types of herbicides for cyanobacteria [15]. Low 
concentrations of 2,4-D (0.01-0.5 mM) were reported to stimulate 
growth and nitrogen fixation in several strains of nitrogen fixing 
cyanobacteria [16,17]. No stimulation, however, was reported 
with hormonal concentrations (10- l to 10 -4 M) of the natural 
auxin IAA (indole acetic acid) [18]. The toxicity range of 2,4-D 
varies depending on the strains and the culture conditions. Most 
reports indicate that cyanobacteria can readily tolerate up to 1 
mM of 2,4-D. The lethal dose generally appears with herbicide 
concentrations ranging between 4-5 mM [15,19]. In contrast with 
the extensive literature regarding the interaction of 2,4-D with 
cyanobacteria(16, 17), little work has been done on the combine 
effect of herbicide 2,4-D,UVR and PAR on cyanobacteria. 

In the present study, we have evaluated the possible 
stimulatory and/or inhibitory effect of combined exposure 
of UVR, PAR and 2,4-D on the roof top inhabiting desiccation 
tolerant cyanobacterium Scytonema geitleri strain HKAR-12. 
Survival mechanisms were investigated in terms of pigments and 
protein contents and antioxidant enzymes activity in response 
to the damage caused by combination of UVR, PAR and 2,4-D. 
Furthermore, information obtained with these photosynthetic 
organisms can be useful in understanding the mode of action 
of phenoxy acetic herbicides on higher plants. Cyanobacteria 
are a prokaryotic abundant group of primary producers and 
constitute the base of the trophic webs. Furthermore, they can fix 
atmospheric nitrogen into bioavailable forms, so that they are an 
important source of bioavailable nitrogen for many ecosystems 
[20]. Therefore, any detrimental effect on cyanobacteria may 
have an impairing negative effect on productivity of aquatic and 
terrestrial ecosystems; hence, present investigation becomes 
important for understanding survival strategies adapted by these 
organisms under combination of various stresses.

MATERIALS AND METHODS

Sampling and cultivation

Scytonema geitleri strain HKAR-12 (Accession number: 
KP271353), was collected aseptically from roof top of 

department of botany, Banaras Hindu University (BHU), 
Varanasi, UP, India, was taken in the present study. Standard 
microbiological techniques [21] were adopted for isolation of 
Scytonema geitleri strain HKAR-12whichwas grown axenically in 
BG-11 medium [22] without nitrogen source in a culture room at 
28 ± 2 °C, and illuminated with fluorescent light of 12 ± 2 W m-2. 
Scytonemageitleri strain HKAR-12is an autotrophically growing 
heterocystous, firmly sheathed and filamentous cyanobacterium 
that has pseudo branching in its filaments, a feature which is 
characteristic of the family scytonemataceae. Branches formed 
generally in between heterocyst, firm sheath, trichome single in 
each sheath and hormogones were present.

Experimental setup

The cyanobacterial cultures (OD750 nm=0.6 ± 0.2 for a path 
length of 1 cm) were transferred into sterile transparent Petri 
dishes (75 mm) and kept in an assembled closed light chamber 
equipped with rotary shaker for uniform exposure to PAR and 
PAB with 100 μg/mL 2,4-D. Two cut-off filter foils of 395 nm 
(Ultraphan, UV Opak Digefra, Munich, Germany) and 295 nm 
(Ultraphan, Digefra, Munich, Germany) were used to get the 
desired radiation regimes of PAR and PAB respectively. The 
irradiation on surface of vessel was maintained at 12 ± 2 W m−2 
for PAR, UV intensity of  ̴ 0.5 W m−2 for UV-B and 1.0 W m−2 for 
UV-A. During course of treatment (up to 72 h), all experimental 
cultures were exposed with constant temperature of 25 ± 
2⁰C. Subsequently, desired amounts (50 mL) of samples were 
withdrawn at regular intervals after 12 h of exposure and then 
harvested by centrifugation and subjected to further study.

Chlorophyll a (Chl a) and total carotene analysis 

Pigments were analyzed taking equal amount (5mL) of 
sample, extracted in 90% methanol (v/v) and the absorption 
spectra were measured in a Hitachi U-2190 UV-Visible double 
beam spectrophotometer in the wavelength range of 200-800 nm 
using quartz cuvettes. Quantity of Chl a and total carotene was 
estimated using the methodology of Dere et al. [23].

Determination of proteins

Total soluble proteins were measured by the method as 
described by Lowry et al. [24]. Bovine serum albumin was used 
as standard for quantification of proteins.

Determination of superoxide dismutase (SOD), 
catalase (CAT) and ascorbate peroxidase (APX) 
activity 

For assaying antioxidant enzymes, cells from UV irradiated 
samples and controls were harvested by centrifugation at 12,000 
g for 15 min at room temperature. Cell extracts were prepared 
by sonicating cells in 2 mL of extraction buffer under ice-cold 
conditions. The extraction buffer consisted of 50 mM potassium 
phosphate buffer (pH 7.5), 1mM ethylene diamine tetracetic 
acid (EDTA), 1% (w/v) polyvinylpyrrolidone (PVP), 0.5% (w/v) 
Triton X-100 with the addition of 1 mM ascorbate in the APX 
assay. The homogenate was centrifuged at 10,000g for 10 min 
at 4 °C, and the supernatants were collected and used for assays 
of SOD, CAT and APX. CAT and APX activity was determined 
according to the methods of Aebi [25] and Nakano and Asada 
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[26] respectively. SOD activity was measured by monitoring 
the inhibition in reduction of nitro blue tetrazolium (NBT) as 
described previously by Fridovich [27] and Beyer and Fridovich 
[28].

Statistical analysis

The experiments were repeated thrice for accuracy of the 
results. All results were presented as mean values of three 
replicates. Statistical analyses were done by one way analysis 
of variance (ANOVA).Once a significant difference was detected 
post-hoc multiple comparisons were made by using the Tukey 
test (SPSS 16.0). The level of significance was set at 0.05 for all 
tests.

RESULTS AND DISCUSSION

Effects of UVR and 2,4-Don Chl a and total carotene 
content 

Chl a and total carotene content of cyanobacterial cells varied 
with the duration of PAR, PAR+ 2,4-Dand PAB + 2,4-Dexposure as 
depicted in Figure (1) and Figure (2).The initial values (8.011µg/
gfw) of Chl a increased up to 36h(11.120 µg/gfw) of PAR 
exposure and thereafter declined to approximately 35% (5.21 
µg/gfw) and 45.63% (4.35 µg/gfw) under PAR and PAR+2,4-D 
after 72h of exposure respectively. As duration of PAB and PAB 
+ 2,4-D exposure increased, Chl a content of cyanobacterial cells 
decreased (P<.005). Maximum decrease was observed under PAB 
and PAB+ 2,4-D after 72h of treatment. Decrease upto 61.42% 
and 73.53% was reported in both conditions as compared to the 
control (8.011 µg/gfw).

Initial level of total carotene content was recorded to be 2.177 
mg/gfw. However, a progressive increase in carotene content was 
observed after increasing duration of PAR, PAR+2,4-D, PAB and 
PAB+ 2,4-Dexposure which was about 17.58%, 41.93%, 57.55% 
and 72.48% respectively after 36h of exposure. However, a 
subsequent decline in the level of carotene content was reported. 
Carotene content declined upto72h and maximum decline was 
observed after 72h of PAB (63.25%) and PAB+ 2,4-D (81.6%) 
respectively.

Effect of UVR and 2,4-Don total protein content

The initial protein content (0.933 mg/mL) was found to be 
adversely affected by PAB and PAB+ 2,4-D treatment upto 72h 
of exposure (Figure 3). Decrease of approximately 68.0% (0.301 
mg/mL) and 76.0% (0.224 mg/mL) protein content was observed 
(P<.005) after 72h of PAB and PAB+ 2,4-D exposure respectively 
as compared to the control (0.933 mg/mL).

Effect of UVR and 2,4-Don antioxidative enzymes 
activity

Figures (4-6) depicts the activities of antioxidant enzymes 
in Scytonema geitleri strain HKAR-12. The studied enzymatic 
antioxidants, i.e. SOD (EC 1.15.1.1), CAT (EC 1.11.1.6) and APX 
(1.11.1.11) showed differential responses when treated with 
PAR, PAR+2,4-D, PAB and PAB+2,4-D stress. Significant changes 
in the levels of studied antioxidative enzymes were observed in 
Scytonema geitleri strain HKAR-12. SOD activity showed about 
45.71% (0.306 U mg-1 of protein) increase in PAR, 65.23% 
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Figure 1 Effect of 2,4-D in combination with PAR and PAB on Chl a 
content of Scytonema geitleri strain HKAR-12 after varying duration 
of exposure. H represents 2,4-D. Results are expressed as means of 
three replicates. Vertical bars indicate standard deviation of the 
means.
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Figure 2 Effect of 2,4-D in combination with PAR and PAB ontotal 
carotene content of Scytonema geitleri strain HKAR-12 after varying 
duration of exposure. H represents 2,4-D. Results are expressed as 
means of three replicates. Vertical bars indicate standard deviation 
of the means.
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Figure 3 Effect of 2,4-D in combination with PAR and PAB on protein 
profile of Scytonema geitleri strain HKAR-12 after varying duration of 
exposure.H represents 2,4-D. Results are expressed as means of three 
replicates. Vertical bars indicate standard deviation of the means.
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Figure 4 Effect of 2,4-D in combination  with PAR and PAB on 
antioxidative enzyme superoxide dismutase (SOD) in Scytonema 
geitleri strain HKAR-12 after varying duration of exposure. H 
represents 2,4-D. Results are expressed as means of three replicates. 
Vertical bars indicate standard deviation of the means.
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Figure 5 Effect of 2,4-D in combination with PAR and PAB on 
antioxidative enzyme catalase (CAT) in Scytonema geitleri strain 
HKAR-12 after varying duration of exposure. H represents 2,4-D. 
Results are expressed as means of three replicates. Vertical bars 
indicate standard deviation of the means..
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Figure 6 Effect of 2,4-D in combination with PAR and PAB on 
antioxidative enzyme ascorbate peroxidase (APX) in Scytonema 
geitleri strain HKAR-12 after varying duration of exposure. H 
represents 2,4-D. Results are expressed as means of three replicates. 
Vertical bars indicate standard deviation of the means.

(0.347 U mg-1 of protein) in PAR+2,4-D, 86.42% (0.391 U mg-1 of 
protein) in PAB and 95.7% (0.411 U mg-1 of protein) increase in 
PAB+2,4-Dexposure in comparison to the control (0.210 U mg-1 
of protein) after 48 h of treatment, thereafter a decline in activity 
was observed (p<0.05) (Figure 4).

CAT activity showed the similar trend as that of SOD. Initially 
an increase in the CAT activity was observed in comparison to the 
untreated control culture.In PAR small increase in CAT activity 
was observed upto 48 h of treatment thereafter it became constant 
(Figure 5). CAT activity increased upto 157% (0.2416 µmol.min-

1 mg protein-1) after 36 h of PAB+2,4-Dexposure andincrease of 
about 137% (0.214 µmol.min-1 mg protein-1)of PAB exposure 
after 48 h and 120% (0.198 µmol.min-1 mg protein-1) in PAR 
after 48h of treatment thereafter the activity began to decline as 
compared to the control (0.09 µmol.min-1 mg protein-1).

Similarly APX activity increased upto 125% (0.412µmol.
min-1 mg protein-1) in PAB+2,4-D treatment, 113% (0.391µmol.
min-1 mg protein-1) in PAB followed by 59% (0.291 µmol.min-

1 mg protein-1) in PAR+2,4 D and50% (0.274µmol.min-1 mg 
protein-1) in PAR treatment after 48h of exposure as compared to 
the control (0.183 µmol.min-1 mg protein-1) thereafter it started 
decreasing in all experimental setups (Figure 6).

Herbicides are environmental pollutants of high concern in 
terrestrial and freshwater environments due to their ubiquity 
resulting from their extensive use in modern agriculture and 
their persistence. The 2,4-D, a very common hormone weed 
killer, is used in paddy fields to control weeds. Its field dose is 
about 40 μg/mL[29]. Herbicides have detrimental effects on 
growth, photosynthetic pigments, protein content and oxidative 
stress in cyanobacterial cells [30,31]. The use of herbicides may 
decrease pigment content, destroy chloroplasts, thylakoids and 
photosystem II (PSII), and even cause DNA damage in organisms 
[32-34] which suggested that the damage process may be due to 
the ROS generation [35,36]. Loss of pigments might be another 
reason to protect against ROS generation and inhibition of 
photosynthetic electron transfer [37]. Our results showed that 
UVR and 2,4-D caused serious damage to Chl a, total carotene and 
protein content in Scytonema geitleri strain HKAR-12. However, 
aquatic and terrestrial organisms have developed a number of 
repair and tolerance mechanisms to counteract the damaging 
effects of UVR [13,38] along with herbicides. The synthesis of 
antioxidative enzymes such as SOD, CAT and APX is one such line 
of defense mechanisms in the test organism. Our study suggests 
that enzymatic defense mechanisms confer protection to the 
organism under UVR and 2,4-D stress. A multifold induction in 
the antioxidative enzymes was observed. Scytonema geitleri 
HKAR-12 was found to be more potent in the induction of SOD 
after 48 h of PAB along with 2,4-D exposure as compared to the 
control. Similar trend was observed in case of other antioxidative 
enzymes such as CAT and APX. However, the activity of CAT under 
UVR and 2,4-D stress was not significant as compared to the 
other studied antioxidative enzymes. Probably, relatively higher 
levels of antioxidant enzyme activity even after 48 h of prolonged 
UVR and 2,4-D exposure might contribute to the higher survival. 
The present study clearly suggests the role enzymatic defense 
mechanisms in conferring protection under UVR and herbicide 
stress. 
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The antioxidative enzymes SOD, CAT and APX showed a 
multifold induction upto 48h of UVR and 2,4-D exposure and were 
responsible for the survival even after 48h of continuous stress in 
Scytonema geitleri strain HKAR-12. A gradual decrease in their 
concentration was noticed after 48h of exposure suggesting that 
they may not be effective for a longer duration. The increasing 
duration of UVR and 2,4-D resulted in the decreased survival 
of the test organisms. Hence, lower values of all the studied 
parameters were recorded with increasing duration of exposure 
time. However, the cells maintained a basal level of the studied 
parameters even after prolonged UVR and 2,4-D exposure upto 
48h and was able to cope up the detrimental effects of the highly 
energetic radiation and 2,4-D stress. Extensive large-scale use 
of pesticides and herbicides in agriculture for improving crop 
yield has caused concern among environmentalists. Herbicides 
used in agricultural practices are transported to water bodies 
through run-off, drift and leaching, which increase the risk of 
exposure in non-target organisms [30]. Some herbicides cause 
metabolic alterations in algae due to oxidative stress [35], and 
others function via binding to the exchangeable quinone site in 
the photosystem II (PSII) reaction center, thus blocking electron 
transfer [39].

CONCLUSION
The present work suggests that treatment of cyanobacterial 

cells with UVR and herbicide causes severe damage to these 
organisms. Extensive large-scale use of pesticides and herbicides 
in agriculture for improving crop yield has caused concern among 
environmentalists. 

In the present study strongest modifying effect was 
found for PAB whose toxicity increased with 100 μg/mL 2,4-
D exposure. UVR and herbicides have detrimental effects on 
growth, photosynthetic pigments, protein content and oxidative 
stress in cyanobacterial cells. Several studies have dealt with 
co-exposure of UVR with a variety of herbicides, and different 
patterns of interactions have been found depending on the 
tested cyanobacteria [14,40]. These results suggest that the 
combination of UV-B and exogenous herbicides have detrimental 
effects on cyanobacterial metabolism through either a ROS-
mediated process or by affecting the electron transport chain and 
may cause serious damage to cyanobacteria [40, 41].

Our study shows the inhibitory effect of UVR and herbicide 
2,4-D on the cyanobacterium Scytonema geitleri HKAR-12 
and effect of one stress is aggravated by other stress and vice-
versa. These results suggest that UVR and herbicide 2,4-D 
have different degree and different mechanisms of toxicity on 
Scytonema geitleri HKAR-12through either a ROS-mediated 
process or by affecting the Chl a, carotene and total protein 
content. Thus, the combination of UVR and herbicides may cause 
serious damage to cyanobacteria anddecrease the growth rate 
of cyanobacterial population hence more studies are needed for 
proper understanding of the use of herbicides and outcomes of 
its interactions with other abiotic stresses in cyanobacteria.
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