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INTRODUCTION
The filtration system of a kidney is critical for retaining 

essential proteins from the blood plasma and removal of toxic 
waste from the body. When a kidney loses its filtration function 
it results in life threatening complications and the survival 
usually depends on dialysis and eventually surgical intervention 
requiring a kidney transplant. The filtration function in a kidney 
is carried out by glomeruli and each glomerulus with its tubules 
is termed as a “nephron” which is also known as the filtration unit 
of the kidney [1]. A human kidney is composed of approximately 
1 million glomeruli and on an average filters about 200 quarts of 
blood plasma generating about 2 quarts of urine per day [2]. The 
filtration function of a glomerulus is affected by a wide spectrum 
of diseases such as FSGS (focal and segmental glomerulosclerosis) 
and various nephrotic syndromes that are also the leading causes 
of end-stage renal disease (ESRD) [3-5]. The incidence of ESRD 
is increasing at an alarming rate and costs about $49 billion 
a year in patient care [6,7]. Limited progress has been made 
in the therapeutic advancement in this field primarily due to 
poor understanding of the basic mechanisms that regulate the 
different layers of the filtration assembly of the glomerulus.

The filtration barrier of a glomerulus is composed of 

three major cellular layers, the fenestrated endothelium, 
the intervening glomerular basement membrane (GBM) and 
podocytes, which collectively contribute towards the selective 
ultrafiltration of the blood plasma (Figure 1) [8,9]. This three 
layered structure facilitates the flow of plasma water and small 
solutes while restricting the flow of large plasma proteins such as 
albumin. Increased amount of albumin in the urine is the primary 
indication of a defective glomerular filtration barrier, a condition 
commonly known as “proteinuria” or “albuniuria”. Various 
glomerular diseases that induce proteinuria also demonstrate 
significant structural damage to podocytes [3,5,10]. These 
changes in podocytes have become the hallmark of proteinuria 
and serve as the diagnostic marker for various glomerular diseases 
[3,8]. This has also resulted in the worldwide acknowledgement 
of podocytes as the primary target for developing therapies 
against the existing glomerular diseases [11-13]. A significant 
effort is being made worldwide to understand the underlying 
mechanisms that regulate the structural and functional 
development of podocytes [14-16]. The past decade has seen a 
tremendous progress in the field of glomerular biology where a 
number of biomolecules and pathways have been uncovered that 
play a critical role in the maintenance of the filtration function 
of this filtration barrier  [11,17,18] (Figure 1). Furthermore, it 
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Abstract

A glomerulus is the filtration unit of a kidney where its primary function is to filter 
the blood and produce urine. The filtration apparatus of a glomerulus is composed of 
a three layered cellular assembly that consists of endothelial cells, GBM (glomerular 
basement membrane) and epithelial cells known as podocytes with their specialized 
junctions commonly known as the “slit diaphragm”, or the filtration slits. Injury to 
podocytes has been shown as a common denominator in various glomerular diseases 
leading to ESRD (end stage renal diseases) and renal failure. The podocytes have a 
unique architecture that is composed of a podocyte cell body and primary and tertiary 
processes that are critical for podocyte function. Podocytes lose their unique structure 
in the event of a glomerular injury, which is most often associated with podocyte actin 
cytoskeleton damage and podocytes detachment from the GBM leading to the loss 
of renal function. Studies over the past decade have established podocytes as a cell 
type critical for glomerular function, thus making them an ideal therapeutic target to 
develop therapies directed towards preserving glomerular filtration function. Recent 
studies have highlighted several cellular mechanisms and signaling targets such as 
suPAR, PLA2R, Rac1, Crk1/2, Trpc5, mTOR, Trpc6 and Notch that are involved in 
regulating podocyte function. More importantly, these studies have fueled the recent 
discoveries aimed at the identification and development of novel therapies or agents 
with the ability to preserve podocyte structure and function. The present review is 
an attempt to summarize the recent discoveries that have been made in the field of 
podocyte therapeutics and their impact on podocyte biology. 
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is critical that we understand the assembly and maintenance 
of this structure that will contribute towards designing novel 
therapies towards the prevention of this structure in the event of 
a glomerular injury (Figure 1).

Podocytes organization and the slit-diaphragm

The podocytes are highly specialized epithelial cells that 
consist of a cell body that branch off to give primary, secondary 
and tertiary processes. The tertiary processes also known as 
“foot processes” are attached to the GBM and extend as finger 
like projections that surround the glomerular capillary in an 
interdigitating fashion with the cell body facing the Bowman’s 
capsule and the urinary space [19]. The podocytes are highly 
polarized cells with apical or luminal and a basal cell membrane 
domain. The basal membrane, which contains the sole of foot 
process, is affixed to the GBM. The surface of the apical membrane 
is negatively charged because of its composition that contains 

sialoglycoproteins such as podoclyxin and podoendin [20]. 
Both apical and basal membranes are heterogeneous in nature 
with respect to their lipid composition [21,22]. Foot processes 
from different cell bodies interdigitate and the spaces between 
adjacent foot processes are connected via a thin membranous 
structure that is 40nm wide and is commonly known as the 
filtration slit or “slit-diaphragm” [3,5]. The unique structural 
organization of the slit diaphragm has been proposed to function 
as a permeability barrier, where it is freely permeable to water 
and small solutes and restricts the passage of large molecules 
such as albumin [3,23]. Several research findings reveal that 
proteins localized at the slit diaphragm play a critical role in 
maintaining the structure and function of podocytes [3,5,24]. 
Extensive research in this field has identified transmembrane 
proteins including Nephrin, Neph1, podocin, FAT and P-Cadherin 
that serves as the building blocks for this fascinating structure 
[3,5,10]. The cytoplasmic domains of Nephrin and Neph1 

Figure 1 (A) The schematic representation of the glomerular filtration assembly. The Glomerular filtration barrier is composed of fenestrated endothelium (FE), 
glomerular basement membrane (GBM), podocytes (P) and their specialized junctions known as the slit-diaphragm. Podocytes slit diaphragm is a dynamic structure that 
originates as the junction between two adjacent foot processes. The glomerular diseases induce injury to podocytes leading to the loss of slit diaphragm that is strongly 
associated with leakage of protein in urine and loss of renal function. Ultrastructural analysis of this structure shows the presence of various proteins including Nephrin 
and Neph1 whose extracellular domains provide the structural framework of slit diaphragm and the intracellular domains assemble key signaling pathways that regulate 
the integrity of this structure. (B) A number of these pathways are being recognized as therapeutic targets for developing therapies to prevent podocyte damage. 
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have been shown to serve as a structural link between the slit 
diaphragm and the actin cytoskeleton of podocytes and therefore 
were shown to participate in the signaling events that regulate 
the overall structure and function of podocytes [3,23]. Apart from 
these, several adapters, signaling and motor proteins including 
zona occludens-1 (ZO-1), CD2 adaptor protein (CD2AP), Nck, 
Crk 1, 2 and 3, Myo1c and Myo1e have also been identified that 
together contribute to the maintenance and integrity of the slit 
diaphragm [25-30]. Inactivation or genetic deletion of these 
proteins has been shown to induce structural alterations in 
podocytes leading to podocyte dysfunction and proteinuria in 
mice; more importantly, various glomerular diseases in humans 
have been shown to be linked to genetic mutations in many of 
these proteins [3,5,15,19,31], which further substantiates the 
role of these proteins in glomerular biology [23,32,33]. 

Podocyte injury

Podocyte injury is the common denominator in many forms 
of human and experimental glomerular diseases such as minimal 
change disease, focal segmental glomerulosclerosis (FSGS), 
membranous glomerulopathy, diabetic nephropathy (DN), and 
lupus nephritis [2,4]. Numerous studies now suggest that the 
injury to podocytes is the direct leading cause of glomerular 
disease development particularly in the case of FSGS [34-36]. Most 
notably, using various animal models it has been demonstrated 
that podocytes are the most vulnerable components of the 
glomerular tuft and that in majority of FSGS cases, it is the injury 
to podocytes that initiates the definitive pathologic sequence 
[37]. Podocytes are severely limited in their ability to repair 
themselves and are unable to replicate postnatally as suggested 
by the lack of an increase in podocyte cell number postnatally and 
during compensatory growth [34,38,39]. Data from the podocyte 
cell culture studies suggest that the differentiated podocytes are 
unable to proliferate, whereas undifferentiated or dedifferentiated 
podocytes from isolated glomeruli can proliferate [40-42]. An 
experimental animal model suggested that podocytes subjected 
to sustained mitogenic stimulation by FGF-2 [43] entered the 
cell cycle but were unable to reach the complete cell division, 
and resulted in bi- or multinucleated podocytes. Multinucleated 
podocytes were also observed in studies involving experimental 
[38,44] and human glumerulopathies [45-47]. Additionally, the 
loss of differentiated podocytes markers GLEPP1, synaptopodin, 
C3b-receptor and the transcription factor WT-1 expression was 
noted in these models [48]. These studies highlight the need for 
developing therapeutic alternatives that are directed towards 
preserving podocyte loss in the event of a glomerular injury.   

Several studies of podocyte injury models note that early 
podocyte injury can be reversible where the actin cytoskeleton 
of podocytes has the ability to reorganize and restore the 
unique podocyte morphology [49-51]. Based on the nature of an 
injury, there are two models of podocyte injury, characterized 
as either chronic or acute; however, both lead to the loss of 
normal podocyte architecture and progression towards ESRD 
[50-52]. Additionally, there are different pathways including 
a dysregulated, inflammatory pathway, and a degenerative 
pathway that is proposed to function in podocyte injury [14,53]. In 
a dysregulated pathway that is commonly seen in the case of HIV-
associated nephropathy, the dedifferentiation of podocytes leads 

to podocyte proliferation within Bowman’s space, collapsing of 
the glomerular tuft, GBM wrinkling and capillary loss [53,54]. 
The inflammatory pathway can lead to podocytes fixation to the 
parietal basement membrane followed by the establishment of 
tuft adhesions to Bowman’s capsule [53]. Further proliferation 
of podocytes and parietal cells results in the formation of 
cellular crescents and the healing of lesions by fibrosis results in 
segmental glomerulosclerosis [53]. In the case of degenerative 
form, which is most commonly observed, the persistent podocyte 
injury causes cell body attenuation, podocyte hypertrophy, 
and detachment from the GBM, and podocyte death leading to 
glomerulosclerosis and loss of renal function [53,54].

The Podocyte pathological lesion is also of common 
occurrence in other glomerular diseases such as inflammatory 
diseases (glomerulonephritis), immune-mediated diseases 
(membranous nephropathy, Heymann nephritis), mechanical 
stress (glomerular hypertension) and animal models of PAN 
(puromycin aminonucleoside) treatment. The Podocyte lesions 
may develop because of direct injury to podocytes, detachment 
of podocytes from the GBM or the damage of GBM [55,56]. Among 
the various animal models of podocyte injury developed over the 
years, the two models that have gained widespread recognition 
are the rat model of PAN injury where injury is induced by the 
administration of PAN and the protamine sulphate mouse model 
where podocyte damage occurs in response to the infusion 
of a highly cationic compound [26,49,57-59]. Importantly, 
these models have also been replicated in the podocyte cell 
culture system and thus have served as an excellent source to 
demonstrate cytoskeletal and molecular changes in podocytes 
and identify the various pathways that are affected during injury 
to podocytes [60-62]. 

An alternate mechanism of podocyte injury was noted in the 
study of integrins that play a central role in the attachment of 
podocytes to the GBM [63-65]. The antibodies directed against 
the antigens present in the basal podocyte cell membrane such 
as gp330 [66-68] or dipeptidylpeptidase IV [68] were shown to 
affect α3β1 integrin-fibronectin/laminin interactions leading to 
podocyte detachment from GBM and podocyte damage [37,65]. 
Furthermore, the genetic inactivation of α3 or β1 integrins 
was shown to induce severe disorganization of podocyte foot 
processes (FP) and loss of kidney function in newborn mice 
[69]. Damage to the GBM itself has been observed in various 
inflammatory and immune-mediated diseases where the injury 
is induced by reactive oxygen species (ROS) from neutrophils, 
monocytes/macrophages or resident glomerular cells that 
attack the GBM, or direct oxidation of GBM and by the activity of 
proteases that degrade the GBM or the connection of podocytes 
with the GBM [64,65,70-76].  Collectively, these studies highlight 
several mechanisms that contribute towards the podocyte injury 
and thus present multiple targets in podocytes that can be 
exploited therapeutically. 

Molecular changes in an injured podocyte

The actin cytoskeleton of podocytes contributes towards 
the structural framework, unique morphology and maintaining 
the podocyte cell body and the function of podocytes. This actin 
cytoskeleton is divided into two major groups, the longitudinal 
actin microfilaments and the meshwork of actin filaments beneath 



Central

Fitzner1 et al. (2013)
Email: fhconsultants.kf@gmail.com 

Ann Clin Exp Hypertension  1(1): 1003 (2013) 4/10

the cell membrane [24,51,77]. The cytoskeleton of the primary 
podocyte FPs is composed of microtubules that in addition to 
providing structural support to the cell, anchors the intracellular 
molecules and impart the contraction and expansion abilities to 
the cells [23,24]. The FPs are also characterized by the cortical 
network of short branched actin filaments and the presence 
of highly ordered parallel, contractile actin filament bundles, 
which are thought to modulate the permeability of the filtration 
barrier through changes in foot process morphology [24,51,77]. 
Apart from the structural stability the actin cytoskeleton plays 
a major role in cell signaling and the intracellular organization 
of podocyte proteins [15,32,51,52]. The disorganization of 
this well characterized podocyte actin cytoskeleton is a major 
event evidenced during podocyte injury [11,51,52,78]. These 
changes often lead to flattening of podocytes that is commonly 
referred to as “podocyte effacement” and loss of the slit 
diaphragm [14,26,37]. Over the years several actin associated 
proteins including actinin-4 and synaptopodin that regulate 
the dynamics of actin cytoskeleton have been investigated. 
Genetic mutations of Alpha-Actinin-4 in human and knockout or 
over expression have been associated with the development of 
glomerular diseases leading to proteinuria [79-81]. Analysis of 
synaptopodin-null mice showed that these mice were resistant to 
protamine sulfate induced foot process effacement synaptopodin 
suggesting a critical role for synaptopodin in podocyte biology 
[81]. Additionally, actin based molecular motors such as Myo1c 
and Myo1e that are associated with protein trafficking has been 
recently investigated for their role in podocyte development, 
maintenance and glomerular function [25,29,82,83]. Growth 
factor receptors such as vascular endothelial growth factor 
[84,85] and transforming growth factor β [70], GPCRs such as the 
angiotensin type 1 receptor (AT1R) [86,87], signaling through 
Notch [88,71] or integrins [89-92], TRPC ion channels such 
[93,72,73], suPAR [74], PLA2R [94] and many other molecules 
have been identified for their role in podocyte injury. 

The increasing evidence now overwhelmingly suggests that 
maintaining a healthy actin cytoskeleton is central to podocyte 
maintenance and function and therefore, targeting the well 
being of podocyte actin cytoskeleton is a reasonable therapeutic 
approach to prevent podocyte function in the event of a 
glomerular injury. 

Podocytes as therapeutic target

With the growing incidences of glomerular diseases 
worldwide, there is an urgent need for better therapies that 
are directed towards preserving podocyte function and reduce 
the morbidity and mortality rates associated with renal failure. 
Recent advancements in the drug therapy field has led to the 
identification of many drugs including glucocorticosteroids and 
calcineurin antagonists with observed potent protective effects; 
however, the nonspecific nature of these drugs with undesirable 
systemic adverse effects severely limits their potential use 
and suggests the need for further research to uncover novel 
therapeutic alternatives to prevent podocyte damage [11]. 
Among the podocyte targets, angiotensin inhibition has gained 
significant attention due to its ability to prevent the development 
of glomerulosclerosis in animal and cell culture models [95,96,75]. 
The soluble form of the urokinase plasminogen-activator receptor 

(suPAR) that was earlier investigated for its possible role in cell 
motility, invasion and metastasis was recently characterized as 
the FSGS inducing factor and was shown to be elevated in the 
FSGS patients [74,97]. This finding has galvanized the podocyte 
community and has led to the designing of therapies directed 
towards lowering the suPAR levels in blood plasma [74,97].

Among the other pathways, the transmembrane receptor, 
M-type phospholipase A2 receptor (PLA2R), has been identified 
as a target antigen in membranous nephropathy [76,98] The 
glomerular PLA2R expression was elevated in the MN patients 
that contained increased anti-PLA2R antibody levels as compared 
to the MN patients without detectable anti-PLA2R antibodies or 
patients with other types of glomerular diseases [99]. The PLA2R 
expression can be assessed in kidney biopsies and differentiates 
patients with MN caused due to anti-PLA2R antibodies from those 
with secondary forms of MN. The Rituximab-Induced depletion of 
Anti-PLA2R autoantibodies has emerged as a promising therapy 
for MN patients; however, some patients entered into remission 
following this therapy [100], which further suggests that further 
investment should be made in understanding the pathogenesis of 
this disease and designing alternate therapies. 

Molecular targets in podocytes

It is of no big surprise that many investigators are recognizing 
the potential of podocytes as therapeutic targets and are 
targeting pathways specifically within the podocytes to develop 
therapies for preserving glomerular filtration function. Some of 
the most promising strategies include targeting the B7 protein 
and the TRPC (transient receptor potential) channels [93,101]. 
A recent study suggested that the expression of B7-1 (CD-80) 
protein was elevated in certain glomerular disease conditions 
[101]. The B7-1 promotes disease-associated podocyte 
migration through inactivation of β1 integrin and hence the 
B7-1–positive podocytes demonstrate reduced ability to attach 
to the surrounding matrix through β1 integrin. The increased 
B7-1 protein expression is associated with increased podocyte 
migration, which serves as a marker for podocyte effacement and 
proteinuria [101]. Remarkably, Abatacept (CTLA-4–Ig) a known 
inhibitor of the T-cell co-stimulatory molecule CD80 appears to 
cure the nephrotic syndrome patients that were shown to contain 
increased levels of B7-1 protein [101].

The other major pathway that recently gained significant 
attention for its therapeutic value involves TRP channels. The TRP 
channels are highly conserved nonselective cationic channels, 
and play a major role in chemo and mechanosensation [93,101]. 
The TRPC6 channel was shown to be a functional component 
of podocytes where it was investigated for its interaction with 
scaffolding molecules, signaling proteins, cytoskeletal elements, 
and many ion channels such as Ca2+-activated K+ channels (BKCa 
channels) [93,101]. Alteration in the function of this ion channel 
was shown to be associated with podocyte damage suggesting 
its role in maintaining glomerular function [93,102,103]. 
Moreover, gain of function mutations in TRPC6 in humans or 
the overexpression of the wild-type TRPC6 protein in mice both 
induced renal damage [104,105]. Although TRPC6 is expressed in 
many cells types but mutation of TRPC6 primarily demonstrated 
FSGS like symptoms and did not produce any other pathological 
phenotype [106]. This unique glomerular phenotype suggests the 
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exceptional role of TRPC6 in podocytes that may regulate subtle 
changes in Ca2+ dynamics and actin cytoskeleton [106,107]. 
These studies have led to multiple experimental hypotheses, 
which focus on modifying TRPC6 expression or blocking TRPC6 
channels using specific inhibitors as potential therapeutic 
strategies [90,107]. Another TRP channel, the TRPC5 that is 
highly expressed in brain and kidney was recently shown to 
be an essential component of the glomerular filtration system 
[108,109]. The TRPC5 and TRPC6 channels act as antagonistic 
regulators of actin remodeling and cell motility in fibroblasts and 
kidney podocytes [72]. Recent study revealed that loss of TRPC5 
in mice or the pharmacological inhibition of TRPC5 by a small 
molecule inhibitor prevented the activation of small GTP binding 
protein Rac 1 and stabilized Synaptopodin and protected mice 
from albuminuria [109].

Cell signaling as a potential target in podocyte

The Rho-family small GTPase including RhoA and Rac1 are 
associated with cellular signaling, cell migration and inflammation 
in a variety of cell types [110,111]. Activation of these molecules 
has been associated with podocyte injury and proteinuric kidney 
disease [110,111]. The role of small GTPases has been implicated 
in dynamic shape changes seen in podocytes during development 
and in disease states [51]. The GTPase Cdc42 has been shown 
to play a role in the podocyte development, whereas, RhoA and 
Rac1 GTPases are seems to be involved in post development 
stages of podocyte maintenance [112]. The Activation of RhoA 
or the overexpression of dominant negative RhoA resulted in 
foot process effacement and proteinuria [113,114]. In contrast, 
the podocyte-specific loss of Rac1 protected mice from the 
glomerular injury induced by protamine sulfate infusion [115]. 
Further the rac1 inhibitors were found to inhibit the increased 
Rac1 and CDC42 dependent cell migration observed in steroid 
resistant nephrotic syndrome (NS) [116]. Additionally, the 
podocyte-specific, inducible transgenic mice expressing 
constitutively active Rac1 lead to the rapid onset of proteinuria 
and foot process effacement [112]. Collectively, these findings 
provide ample evidence for the role of GTPases in regulating 
podocyte structure and function and thus modulating their 
function has become a novel approach in developing therapies 
for the treatment of chronic kidney diseases [112].

A recent report highlighted the role of another signaling 
protein Crk and its family members (Crk1/2 and CrkL) that 
were shown to interact with the slit diaphragm protein nephrin 
[26,32]. Crk plays a pivotal role in transducing signals that 
regulate actin cytoskeletal dynamics, cell spreading, and motility 
by mobilizing and activating Rho family of small GTPases, [117-
119]. Crk-mediated signaling can be initiated by a variety of 
stimuli including growth factors, cytokines, or integrin-mediated 
cell adhesion, and is involved in cell proliferation, differentiation, 
and cell motility [119]. Interestingly, the podocyte specific 
deletion of Crk1/2 in mice prevented foot process effacement 
in a podocyte injury model where the injury was induced by the 
infusion of protamine sulfate [26]. It is notable that Crk mediates 
its function through FAK (focal adhesion kinase) and Cas protein 
complex which were also hyper-phosphorylated in the glomeruli 
of minimal change disease and membranous nephropathy 
patients [26]. This study was remarkable in the sense that it 

provided FAK as a novel therapeutic target in podocytes [26]. 
Indeed, genetic and pharmacological inactivation of FAK was 
shown to attenuate the foot process effacement and proteinuria 
in various diseased models [120]. Although these studies have 
shown promising targets for preventing podocyte damage in 
response to glomerular injury, they may only target a subset of 
glomerular diseases [26]. Therefore, future studies should be 
considered to evaluate such inhibitors in specific susceptible 
subsets of human glomerulopathy in which podocyte FAK and 
Cas are phosphorylated.

Activation of Notch pathway plays critical role in the 
development of a kidney and the pathogenesis of glomerular 
diseases [71,121]. Four Notch receptors exist in mammals that 
are activated upon the binding of ligands such as Delta-like1, 
3, and 4, and Jagged 1 and 2 leading to a series of proteolytic 
steps initiated by presenilin-dependent gamma secretase-like 
protease [122]. This results in the release of Notch intracellular 
(IC) domain, which ultimately translocates to the nucleus and 
binds RBP-jk transcription factor and activate the expression 
of Notch effector protein [122,123]. While Notch signaling is 
required during nephrogenesis, its suppression is necessary 
for differentiation [124-127]. The upregulation of Notch 
signaling has been identified in many kidney diseases including 
inflammation and fibrosis, and during glomerular injuries such 
as immunodeficiency virus-associated nephropathy (HIVAN) 
[121,122,128,129]. It was further established that the activation 
of Notch pathway specifically in podocytes was sufficient 
to induce podocyte loss and glomerular failure. In contrast, 
the genetic ablation of Notch pathway resulted in resistance 
to podocyte apoptosis and albuminuria [71]. Interestingly, 
γ-secretase inhibitors also prevented disease onset in a toxic 
podocyte damage model, further supporting Notch signaling as a 
therapeutic target for preventing podocyte damage  [130].

The mammalian target of rapamycin (mTOR) is a serine/
threonine kinase of the phosphoinositide 3-kinase (PI3K)-related 
kinase family that contains two distinct complexes, mTORC1 and 
mTORC2. Rapamycin is a fungal metabolite that is known for 
its potent growth-inhibitory and immunosuppressant functions 
[131,132]. The mTORC1 is mainly involved in regulating cell 
cycle progression, translational control, and cellular energy 
responses [133], whereas mTORC2 was identified as the kinase 
responsible for phosphorylating Akt and plays a major role 
in regulating actin cytoskeleton [134,135]. Role of mTOR has 
been investigated in various human diseases including cancer, 
diabetes, neurodegenerative disorders, and polycystic kidney 
disease [136,137]. Recent investigations revealed that inhibition 
of mTORC1 by rapamycin or everolimus can favorably modify 
glomerular diseases, such as minimal change disease [138], focal 
segmental glomerulosclerosis [139], membranous nephropathy 
[140,141], crescentic glomerulonephritis [142], and diabetic 
nephropathy [143]. Studies also suggest that mTOR inhibiton 
can protect and prevent podocytes from progressive diabetic 
nephropathy [144]. In diabetic animals, rapamycin prevented 
GBM thickening, glomerular hypertrophy, mesangial expansion, 
and renal macrophage [143]. Despite the protective effect of 
rapamycin in animal models the use of rapamycin therapy in 
human patients has been limited due to a varied human response 
possible due to off-target effects of rapamycin [145]. This 
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further suggests a need for better in-depth understanding of this 
pathway and its functional role in various glomerular diseases. 
Nevertheless, development of drugs that have the potential 
to modify this pathway will be promising future therapeutic 
candidates for the treatment of glomerular diseases.

It is remarkable, yet baffling that the proteins that are so 
essential for podocyte function, their loss (rather than being 
detrimental for podocyte function), protects podocytes from 
injury [26,101,109,112] (Figure 1). There are two possible 
hypothetical explanations for such occurrence; either the protein 
loss has a differential response based on the nature of the 
glomerular disease and thus may offer protection in one model 
but may aggravate disease in other models or the loss of protein 
shuts of the signaling pathway that is involved in the injury 
response and thus rendering the cell unresponsive to the injury 
stimulus. Genetic deletion of Rac1 provides support for the first 
hypothesis since it showed protective effect in the protamine 
sulphate injury model and had aggravated injury response in 
the long-term model of chronic hypertensive glomerular damage 
[112]. Since these signaling proteins mediate a broad range of 
biological processes and are involved in numerous pathways, 
further studies are necessary to identify additional downstream 
or upstream signaling targets that will aid in designing specific 
and highly effective therapies for restoring glomerular function 
during renal injury. 

CONCLUSIONS 
Preventing podpocyte damage will prevent glomerular 

injury and preserve renal function, is soon becoming the mantra 
of the podocyte biologists. This is largely due to our increased 
understanding of the podocyte biology in the last decade. 
Additionally this has significantly contributed towards the 
identification of molecular targets with applications in glomerular 
disease prevention and progression. Understanding of the 
signaling pathways in podocytes have taught us that podocytes 
are regulated through complex set of mechanisms and therefore, 
therapeutic advancement in the field of podocyte biology will 
require multiple approaches to identify multiple targets and 
develop combinatorial therapies to prevent podocyte damage 
and thus preserve renal function. With the increasing knowledge 
of the molecular composition of podocytes, the investigators in 
the field of podocyte biology are uniquely positioned to identify 
several druggable targets that will aid in the development of 
therapies directed towards preventing podocytopathy.
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