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INTRODUCTION
Activity of CGRP and specific CGRP receptors in the heart 

produce positive-inotropic [1,2] and anti-apoptotic [3,4] effects, 
which are key adaptations to exercise and cardiovascular disease. 
CGRP is a 37-aminoacid, regulatory peptide derived by alternative 
splicing of the calcitonin gene located on chromosome 11 and one 
of a family of multifunctional peptides that includes amylin and 
adrenomedullin (AM) [5]. Amylin is also a 37-aminoacid peptide, 
named for its deposition of amyloid and role in glycemic control, 
released from the pancreas with insulin. Amylin inhibits gastric 
motility and appetite, thereby regulating blood glucose [6-8]. AM 
is a 52-aminoacid peptide, named for the pheochromocytoma cell 
in which it was originally discovered, is highly expressed in cardiac 
and vascular tissues and, like CGRP, is a potent vasodilator [9]. 
CGRP is also synthesized in and released from sensory neurons, a 
mediator of pain signaling and plays a central role in sensitizing 
the trigeminal ganglion to Ca2+ in migraine headache [10,11]. 
AM has both positive- and a negative-inotropic effects in cardiac 
myocytes [12], decreases papillary muscle contractile force (Bell 
et al 2010) and increases cell resistance to oxidative stress and 
production of NO [13]; whereas, CGRP increases cardiomyocyte 

contractile force [1] and is released by K+ induction of Ca2+ 
currents [14] as well as by NO [15] and the pro-inflammatory 
cytokine TNF-α [16]. These calcitonin regulatory peptides appear 
to regulate Ca2+ fluxes, activate adenylate cyclase and, therefore, 
increase cellular cAMP activity [17,18] but by actions on different 
receptor motifs.

The two forms of CGRP are α-CGRP and β-CGRP are different by 
three aminoacids; however, β-CGRP is expressed from a separate 
gene that does not produce calcitonin [5,19-21]. Activity of CGRP 
depends on the calcitonin receptor-like receptor (CL), associated 
with G proteins, and three distinct receptor activity modifying 
proteins (RAMP1, RAMP2 and RAMP3). These RAMPs are 
determinants of membrane localization and binding specificity 
of CL receptors. A CL-RAMP1 complex constitutes the CGRP-1 
receptor, activated by α-CGRP and CL-RAMP2 and CL-RAMP3 
complexes are receptors for AM [22]. Although the nonfunctional 
CGRP8-37 molecule antagonizes the CGRP-1 receptor, CGRP also 
binds to the CGRP-2 receptor that is not affected by CGRP8-37 [23]. 

Abnormal plasma levels of AM and CGRP are reported in 
pre-eclampsia and other cardiovascular diseases associated 
with endothelial dysfunction [24]. Moreover, both AM and 
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Abstract

CGRP and specific CGRP receptors are found in the heart where they produce positive-inotropic and anti-apoptotic effects, key adaptations to exercise 
and cardiovascular disease. PI3K/Akt and MAPK signaling imbalances are associated with cardiomyocyte pathologies; however, the effects of CGRP on 
these pathways are unclear. Therefore, we hypothesized that CGRP modulates inotropic and apoptotic adaptations of cardiomyocytes by regulating PI3K/
Akt and MAPK/ERK signaling balances. We treated cardiomyocytes with combinations of CGRP, PI3K/Akt and MAPK signaling agonists and antagonists. We 
evaluated expression of the mRNA and proteins levels of survival signaling molecules related to the PI3K/Akt and MAPK and measured apoptosis by caspase 
3/7 activity. CGRP1-37 decreased Akt, NFkB, SOD-3 and increased ERK1/2 and p38 MAPK expressions, which was antagonized by CGRP8-37. Akt-negative 
construct transfection, Ad.Akt(K179M), inhibited the CGRP1-37-induced increment in MAPK expressions. A PI3K-antagonist treatment with LY294002 or CGRP1-

37/Ad.Akt(K179M) co-treatment alleviated the CGRP-increased caspase activity and -decrements in SOD-3. 

These findings demonstrate a CGRP negative effect on the PI3K/Akt signaling pathway and CGRP receptor-induced crosstalk between PI3K/Akt and 
MAPK in normal cardiomyocytes. Future studies to differentiate CGRP effects on intracellular signal transduction mechanisms in pathological conditions will 
elucidate the significance of CGRP in, and provide novel therapeutic targets for, heart failure. 
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CGRP appear to mediate positive-inotropy in cardiac myocytes 
[1,12]. These findings suggest that CGRP receptors could provide 
novel, specific targets for preventing and treating cardiovascular 
disease. Moreover, AM is reported to exert its effects by MAPK/
ERK [25] and CGRP by PI3K/Akt intracellular signaling pathways, 
shared by other regulators of positive-inotropy [1,2]. There is also 
substantial crosstalk between these pathways in experimental 
models [4]. The early signs of cardiovascular disease include 
hypertension with increased contractile force and Ca2+ fluxes, 
leading to cardiac remodeling, fueled by oxidative stress with 
apoptosis [26]. However, the linkages between CGRP receptors 
and intracellular signal transduction pathways for positive-
inotropy and anti-apoptosis remain unclear [27]. The present 
study was, therefore, designed to determine the relationships 
between specific CGRP-1 receptors and PI3K/Akt and MAPK/
ERK pathways for signaling positive-inotropic and anti-apoptotic 
effects in cardiomyocytes.

MATERIALS AND METHODS

Conformity statement

All the procedures used in this study conform to the Guide 
for the Care and Use of Laboratory Animals published by the US 
National Institutes of Health (NIH) publication No. 85-23, revised 
1996.  The animal protocol has been independently approved 
by Howard University institutional animal care and usage 
committee.

Animal preparation

Male Sprague-Dawley rats, 200-250 g body weight, were 
purchased from Harlan Laboratories (Madison, WI). The animals 
were allowed to recover and become familiar with their new 
environment upon arrival to the animal house of the Howard 
University College of Medicine, for 1 week. The animals were 
housed in secure, clean and environmentally-controlled room 
temperature (70°F-74°F) with a 6:00 h to 18:00 h light cycle and 
were fed food and water ad libitum.  

Tissue samples and treatment conditions

Cardiac tissue was obtained from adult male Sprague Dawley 
rats. Hearts were removed from the Sprague Dawley anesthetized 
rats (halothane) and perfused with either 10 µM CGRP1-37, 
10 µM CGRP8-37, 1 µM LY249002; or adenovirus strain with a 
modified construct: Ad:Akt(K179M) or Ad:myrAkt alone or in 
combination in a perfusion buffer (11.9 mM NaCl, 46.9 mM KCl, 
9.4 mM MgSO4, 12.2 mM KH2PO4, 1 mM Ascorbic acid, 250 mM 
NaHCO3, 115.4 mM Glucose, and 1 mM CaCl2) for 45 min.  The 
Ad:Akt(K179M) and Ad:MyrAkt both are adenoviral construct 
that expresses a kinase-inactive, dominant negative Akt mutant.  
The CGRP and LY249002 concentrations used were similar 
to previously reported effects of these molecules in the rodent 
cardiovascular system [1,28-31].

qRT-PCR

Total mRNA (from perfused heart tissue) was isolated us-
ing the Aurum Total RNA Fatty and Fibrous tissue Kit (Biorad; 
Hercules, CA) according to the manufacturer’s manual. 1 µg of 
total mRNA was then used for reverse transcription and am-
plification using the SuperScript-III One-step RT-PCR kit (Life 

Technologies; Grand Island, NY) following the manufacturer’s 
protocol. PCR was performed using Akt, SOD-3, NFκB, ERK1, and 
p38 MAPK primers. Rat beta-actin forward 5’-TCGTGCGTGACAT-
TAAGGAG-3’ and reverse 5’-GTCAGGCAGCTCGTAGCTCT-3’; en-
dogenous rat sod3 forward 5’-GACCTGGAG ATCTGG ATGGA-3’ 
and reverse 5’-GTGGTTGGAGGTGTTCTGCT-3’; AKT-1 forward 
5’- CTGGGTTACCCCGGTGTGT-3’ and reverse 5’- GCACATCCGA-
GAAACAAAA-3’; ERK1 forward 5’- GAGCCCAGGGGAACTGCT-3’ 
and reverse 5’-CTGGAAGCGGGCTGTCTC-3’; P38/MAPK14 for-
ward 5’- AGGAGAGGCCCACGTTCTAC-3’ and reverse 5’- TCAG-
GCTCTTCCATTCGTCT-3’.  β-actin was employed as an internal 
control. The Biorad iQ5 cycler was used for the qRT-PCR. 

Caspase 3/7 activity assay

Caspase 3/7 activity has been measured according to 
the manufacturer instructions, Promega (WI).  Accordingly, 
protein extracts from treated homogenized cardiac tissue 
were incubated for 30 minutes in 96-well plates. Caspase-3/7 
activity reagent (Promega, WI) was added to samples in 1:1 
dilutions.  This reagent causes lysis of the cell and cleavage of 
the DEVD-aminoluciferin substrate, which is freed and degraded 
by luciferase enzyme.  Thus, a luminescent signal is emitted 
corresponding to caspase-3/7 activity.  The samples were 
analyzed using Victor V³ multiplate plate reader (Perkin Elmer) 
at the excitation wavelength of 485 nm. 

Western blotting assay

Total protein was isolated from rat hearts and exposed to 
RIPA lysis buffer which was composed of: EGTA(1 mM),) EDTA 
(2mM), DTT (2 mM), benzamidine (10 mM), b-glycerophosphate 
(20 mM), Na3VO4 (0.2 mM), NaF (20 mM), NaVO3 (0.5 mM), 0.6% 
deoxycholate, 0.1% Triton X-100, and 1 tablet/10 mL of complete 
protease inhibitors. The lysates were incubated on ice for 15 min 
and centrifuged for 20 min at a speed of 14,000 rpm.  Protein 
concentrations were recorded from the samples, separated by 
SDS-PAGE and transferred onto nitrocellulose membranes where 
NFκB, ERK1/2, phospho-ERK1/2, p38 MAPK, GAPDH (as control) 
antibody probes were used to display protein expression. 
The above mentioned probes along with the secondary anti-
rabbit monoclonal antibody were employed in this protocol 
(Cell signaling). Bands were visualized by chemiluminescence. 
Membranes from three separate experiments were scanned and 
the densities of the bands were evaluated using the NIH “Image 
J” software package.

Statistical methods

Statistical analyses were performed using Prism 6.0 
(Graphpad) software and verified using Microsoft Excel, which 
gave the same results. Paired Student’s t-tests were used to 
compare the pre- and post-treatment data for the same animal 
group.  The heteroscedastic two-sample unpaired Student’s 
t-test, assuming unequal variances, was used to compare 
treatment effects between two different animal groups. Using the 
null hypothesis, P ≤ 0.05 was significant.

RESULTS
Effects of CGRP on the survival and the proliferative 
pathways gene expression  

We initially evaluated the direct effects of CGRP on Akt 
gene expression in hearts perfused with CGRP1-37 alone and 
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in combination with the PI3K/Akt activator (IGF-1) or the 
PI3K inhibitor LY294002.  We also incorporated an adenoviral 
construct containing coding for kinase-inactive dominant 
negative Akt mutant in cardiac tissue using Ad.MyrAkt or 
Ad.Akt(K179M). As shown in (Figure 1A), the CGRP1-37 treatment 
decreased Akt mRNA expression (-1.48 ± 0.36 fold, P<0.05).  
Inhibition of PI3K or transfection with Ad.MyrAkt also decreased 
Akt mRNA expression in the presence of CGRP1-37 (-1.78 ± 0.67 
fold and -1.20 ± 0.84 fold, respectively, P<0.05). The IGF-1 
treatment increased Akt mRNA expression (1.41 ± 1.08 fold, 
P=0.03), even in the presence of CGRP1-37, thereby counteracting 
the effects of CGRP1-37.   As expected from an acute effect, changes 
in gene expression are small but significant.  We also evaluated 
the effects CGRP1-37 on NFκB mRNA expression, downstream of 
Akt.  (Figure 1B) shows that the CGRP1-37 treatment decreased 
NFκB mRNA expression (-3.36 ± 0.81 fold, P<0.05).  This CGRP1-
37-induced decrement in NFκB mRNA expression was blocked 
by LY294002 and by Ad.Akt(K179M) treatments (1.70 ± 0.66 
fold, P<0.05 as compared to CGRP1-37 alone).

The effects of CGRP1-37 on SOD-3 mRNA expression are shown 
in (Figure 1C). The CGRP1-37 treatment decreased SOD-3 mRNA 
expression (-2.03 ± 0.68 fold, P<0.05). To evaluate the associations 
of CGRP1-37, Akt and SOD activities, we treated hearts with CGRP1-

37 in combination with either Ad.Akt(K179M), or LY294002. 
These co-treatments decreased the CGRP1-37-induced decrement 
in SOD-3 mRNA expression (-0.675± 0.99 fold, P=0.04 and -1.16 

± 0.78 fold, P=0.02 compared to CGRP1-37 alone, respectively). The 
IGF-1 treatment also decreased the CGRP1-37- induced decrement 
in SOD-3 mRNA expression.

Parallel MAPK signaling molecules such as ERK1 and 
p38 MAPK are shown to respond to stress stimuli associated 
with apoptosis, growth factors, interleukins, and interferons. 
Therefore, we evaluated the effects of CGRP on mRNA expression 
of these MAPKs.  As shown in (Figure 1D), the CGRP1-37 treatment 
increased ERK1 mRNA expression (1.54 ± 0.80 fold, P<0.05). 
This CGRP1-37-induced increment in ERK1 mRNA expression was 
effectively antagonized by co-treatment using the dominant-
negative Ad.Akt(K179M) (-2.88 ± 1.00 fold, P=0.007). The CGRP1-

37 and IGF-1 co-treatment failed to further modulate the CGRP1-

37-induced increment in ERK1 mRNA expression. The CGRP1-37 
treatment decreased p38 MAPK mRNA expression as depicted in 
(Figure 1E) (-2.14 ± 0.32 fold, P<0.05). The CGRP1-37 co-treatments 
using LY204002 and Ad.Akt(K179M) failed to further modulate 
the CGRP1-37-induced decrement in p38 MAPK mRNA expression. 
The IGF-1 treatment decreased the CGRP1-37-induced decrement 
in p38 MAPK mRNA expression (-0.90 ± 0.38 fold, P=0.02).

Effects of CGRP on survival and proliferative pathways 
activities 

Recently, we have shown that CGRP1-37 treatment similar to 
that used in this study decreased the expression of Akt protein 
[1]. This CGRP1-37 induced decrement in Akt expression was 

Figure 1 Effects of CGRP on the survival and the proliferative pathways gene expression. A. The CGRP1-37 + IGF-1 treatment increased Akt mRNA expression. All 
other treatments decreased Akt mRNA expression. B. The CGRP1-37 + LY294002 and the CGRP1-37 + Ad.Akt(K179M) treatments both increased SOD-3 mRNA expression, C. 
All the treatments decreased p38 MAPK mRNA expression. D. The CGRP1-37 treatment decreased NFκB mRNA expression CGRP1-37. NFκB expression was increased by the 
CGRP1-37 + LY294002, the CGRP1-37 + IGF-1 and the CGRP1-37 + Ad.Akt(K179M) treatments. E. The CGRP1-37 + Ad.Akt(K179M) treatment decrease ERK1 mRNA expression. 
(N=6, * P<0.05).
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effectively antagonized by the CGRP8-37 treatment.  IGF-1 co-
treatment also decreased the CGRP1-37-induced decrement in 
Akt protein expression.  In this study, the CGRP1-37 treatment 
increased ERK1 protein activity (56.02 ± 14.15%, P=0.03 
compared to control). This CGRP1-37-induced increment in ERK1 
activity was antagonized by the CGRP8-37 or by the Ad.Akt(K179M) 
co-treatments (Figure 2).  IGF-1 co-treatment did not further 
affect the CGRP1-37-induced increment in ERK1 activity (77.88 ± 
6.09%, P=0.02 compared to control).  There was no significant 
effect of CGRP1-37 on ERK2 protein activity. 

Figure 3A shows that the CGRP1-37 treatment increased p38 
MAPK protein expression (75.72 ± 1.62%). The CGRP1-37-induced 
increment in p38 MAPK expression was effectively antagonized 
by the CGRP8-37 or Ad.Akt(K179M) co-treatments, but not by the 
LY294002 co-treatment.  The co-treatment with IGF-1 reduced 
but did not alleviate the CGRP1-37 effect on p38 MAPK protein 
expression (46.48 ± 3.86%; P=0.05 compared to control; which 
is -56.42 ± 1.16%, P=0.05 compared to CGRP1-37 alone).  (Figure 
3B) shows that the CGRP1-37 treatment did not change NFκB 
protein expression significantly (-8.02 ± 0.34%, P>0.1). The 
LY294002 or the Ad.Akt(K179M) co-treatments decreased NFκB 
protein expression (-14.77 ± 0.36% and -19.67 ± 0.46%, P=0.05).  
The IGF-1 co-treatment increased NFκB protein expression 
marginally (9.95 ± 0.60%, P= 0.10).

Effects of CGRP1-37 on cellular apoptosis

Figure 4 demonstrates that the CGRP1-37 treatment and the 
CGRP1-37/IGF-1 co-treatment had no direct effects on caspase 3/7 
activity. In order to verify the functionality or the responsiveness 

of the caspase 3/7 in our preparation, we inhibited the PI3K/
Akt pathway with LY294002 treatment which increased 
caspase 3/7 activity (27.0 ± 11.2%, P=0.02) and with CGRP1-37/
Ad.Akt(K179M) co-treatment which also increased caspase 3/7 
activity (19.2 ± 1.7%, P=0.02). 

DISCUSSION
The main finding of this study is that physiologically-active 

CGRP1-37 treatments shifted the intracellular signaling balance in 
normal cardiomyocytes. These effects of CGRP1-37 were, largely, 
antagonized by pretreatments with the physiologically-inactive 
specific CGRP-1 receptor blocker CGRP8-37 which decreased 
specific activities of PI3K/Akt cell survival signal transduction 
molecules and increased specific activities of MAPK/ERK, 
oxidative stress and apoptosis transduction molecules.  The 
effects of CGRP1-37 not antagonized by CGRP8-37 suggest that some 
of the effects of CGRP were mediated by the CGRP-2 receptor. 

In this study we have shown that the CGRP1-37 has a 
detrimental effect on the survival signaling pathway related 
to PI3K/Akt in the heart.  To that effect we have demonstrated 
that CGRP1-37 induces a reduction in Akt gene expression that 
corroborates with a lower Akt protein activation level.  This 
effect seems to be a direct effect of CGRP1-37 as transfection with 
the dominant negative Akt or inhibition of its direct upstream 
effector, PI3K, induced the same level of decrement in Akt gene 
expression similar to what we have recently found with its 
protein activity level [1].  Interestingly, IGF-1 offsets the CGRP1-37 
effect, which may indicates that Akt is sufficient and necessary 

Figure 2 Effects of CGRP on the proliferative pathways activities, ERK1 and ERK2. Upper: sample western blots for ERK1 (left) and ERK2 (right) total and 
phosphorylated form with the corresponding loading control GAPDH.  Lower: Bar graphs depicted the effects of CGRP1-37 in the presence or absence of antagonists 
(CGRP8-37) or Akt activator- (IGF-1) or down-regulator (Ad.Akt(K179M)).  (N= 6, * p<0.05).
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Figure 3 Effects of CGRP on the survival pathways activity, p38 MAPK and NFkB. A. The CGRP1-37, the CGRP1-37 + LY294002 and the CGRP1-37 + IGF-1 treatments 
increased p38 MAPK protein expression. B. CGRP1-37 decreased NFκB protein expression and the CGRP1-37 + IGF-1 treatment increased NFκB protein expression (N=6, * 
P<0.05).

Figure 4 Effects of CGRP1-37 on cellular apoptosis. Caspase 3/7 activity 
from protein extracts that were treated alone with CGRP1-37 or in combination 
with CGRP8-37, LY294002, Ad.Akt (K179M) and IGF-1. Caspase activity is 
expressed as relative fluorescence units (RFU).  The CGRP1-37 treatment did not 
directly affect caspase 3/7 activity. The CGRP1-37 + LY294002 and CGRP1-37 + 
Ad.Akt(K179M) treatments increased caspase 3/7 activity (P<0.05). The IGF-1 
+ CGRP1-37 treatment had no effect on caspase 3/7 activity (N=3; * P<0.05).

PI3K
 

 

 

CGRP 

CGRP-1 Receptor 

Akt 

ERK/1 
P38 

MAPK Activation Oxidative Stress 

Cardiocyte 
Survival 

SOD-3

Figure 5 Diagram showing the inhibitory effect of CGRP on the PI3K/
Akt pathway protein expression via the CGRP-1 receptor.  P38-MAPK 
and ERK1/2-MAPK are activated by CGRP1-37 in an Akt-independent and 
dependent manner, respectively.  The activation levels of the latter versus the 
level of oxidative stress may dictate the overall cellular response to CGRP1-37.  
Filled arrows designate an inhibitory action, while unfilled arrows denote an 
activation process.  

signaling switch for the CGRP effects.  It has been recently shown 
that nerve growth factor (NGF) improves neurite outgrowth 
[32,33] mainly through PI3K/Akt activation of cGMP in CGRP-
containing DRG neurons [34,35].  Furthermore, NGF is reported 
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to induces expression of CGRP in DRG [36].  Thus, in accordance 
with our present data, it seems likely that the CGRP is part of a 
regulatory mechanism that monitors the NGF activation of the 
PI3K/Akt signaling pathway.  No comparable studies have yet 
been performed on cardiac myocytes which makes the present 
report novel and significant. Akt signaling is central to many 
cellular survival mechanisms and decreased Akt expression 
or activation could, therefore, be a key factor in a number of 
pathophysiological events and sequelae [37].  Accordingly, the 
present study demonstrates that the CGRP1-37 treatment also 
decreased mRNA expressions of the anti-oxidant enzyme SOD-
3, as well as the anti-apoptotic Akt-downstream effector, NFκB.  
We realize that changes in mRNA levels are limited, but this is 
expected from a short-term acute effect. These anti-survival 
effects were produced by CGRP-induced down-regulation of 
Akt because they were prevented by either PI3K inhibition or 
dominant-negative Akt. The PI3K/Akt signaling agonist IGF-1 
also counteracted the CGRP-induced decrements in NFκB and 
SOD3 mRNA expression, thereby corroborating the central role 
of Akt.  This finding is also consistent with previously reported 
CGRP effects on cell survival and cardiac inotropic function [1].  
Nonetheless, this finding contradicts a previous report that 
CGRP alleviated SOD activity in a model of hyperoxia-induced 
lung injury [38].  However, our findings agree with those of 
others demonstrating that exogenous CGRP decreased NFκB and 
induced apoptosis in thymocytes [39]. These disparate findings 
suggest tissue-specificity in the downstream apoptotic and/
or oxidative effects of CGRP.  Thus, the finding that the CGRP1-37 
treatment decreased both Akt and NFκB mRNA expression, the 
latter downstream of Akt mRNA expression, suggests that such 
NFκB mRNA expression is indicative of the capacity for CGRP to 
employ the entire PI3K/Akt cell survival signaling pathway that 
includes an anti-apoptotic effect. This interpretation is bolstered 
by the finding that LY294002 and Ad.Akt(K179M) decreased 
basal NFKB mRNA expression.

In cardiac myocytes, we previously demonstrated cross 
reactivity, also called crosstalk, between the PI3K/Akt and MAPK 
signaling pathways [4]. The MAPK pathway, particularly ERK1 and 
p38 MAPK, has been implicated in signaling cellular proliferation 
such as that which occurs in the development of cardiac 
hypertrophy, [28,29,40,41].  Thus, it was important to probe such 
interactions in the context of the CGRP1-37 deactivation of the Akt 
activity.  We found that the CGRP1-37 treatment increased ERK1 
mRNA and protein expression in an Akt-dependent manner.  This 
was evidenced by the finding that CGRP1-37-induced increase in 
ERK1 mRNA expression was inhibited by dominant-negative Akt 
co-transfection. These findings may suggest that CGRP modulates 
ERK1 partly via Akt signaling.  Similar findings are reported in 
hepatocytes and PC12 cells, suggesting PI3K positive crosstalk 
with ERK1/2 [42,43].  On the other hand, the CGRP1-37 treatment 
noticeably reduced p38 MAPK mRNA expression, independently 
of PI3K/Akt, but enhanced p38 MAPK protein expression in 
an Akt-dependent manner.  This peculiar interaction suggests 
an auto-regulatory translational mechanism involving Akt, 
whereby a CGRP induced reduction in Akt activation may have 
relieved an Akt-driven inhibition of p38 MAPK protein synthesis, 
perhaps by an epigenetic mechanism. This was evidenced by the 
findings that PI3K inhibition (which decreases Akt activation) 

mimicked the CGRP1-37 treatment effect on p38 MAPK and that 
the CGRP1-37 and IGF-1 co-treatment significantly dampened 
the CGRP1-37-enhanced p38 MAPK protein expression.  The fact 
that the Ad.Akt(K179M) co-transfection blocked this CGRP1-37-
induced p38 MAPK effect suggests that Akt activation rather than 
the Akt protein expression level is relevant here. An epigenetic 
hypothesis for exogenous CGRP signaling is also consistent with 
the finding that although the CGRP1-37 treatment decreased NFκB 
mRNA expression, it had no effect on NFκB protein expression. 
Therefore, it is suggestive that IGF-1 has the capacity to counteract 
the CGRP-induced decrement in p38 MAPK mRNA expression.

All these CGRP1-37 induced effects on PI3K/Akt, MAPK and 
NFκB were blocked by the calcitonin receptor-like receptor 
(CALCRL) antagonist CGRP8-37 thereby indicating that CGRP1-37 
was acting via its membrane receptor on the cardiomyocytes.  
These results imply that CGRP1-37 weakens the anti-apoptotic and 
strengthens the proliferative signaling pathways, notably in an 
Akt-dependent manner. 

The cellular biomarkers for apoptosis, caspase 3/7 activity 
were apparently not modulated directly by exogenous CGRP. 
However, inhibition of Akt by either the LY294002 or the 
Ad:Akt(K179M) treatment increased the caspase 3/7 activity, 
irrespective of CGRP1-37, indicating responsiveness of the caspases 
to changes in Akt expression.  Thus, it seems that enhancement 
of signaling in a pathway parallel to PI3K/Akt, the MAPK/ERK 
pathway, may have counter-balanced the decrement in anti-
apoptotic signaling via the PI3K/Akt pathway. A compensatory 
activation of ERK1 induced by down-regulation of PI3K/Akt 
signaling is reported in transgenic mice [44].  To the extent that, 
as we describe herein, MAPK/ERK signaling enhancement can be 
Akt-dependent, Akt appears to be playing an auto-regulatory role 
in maintaining cell survival in the presence of CGRP1-37.  

In summary, this is the first study to demonstrate the 
effects of CGRP on the PI3K/Akt and the MAPK pathways for 
cell survival, apoptosis and stress.  As depicted in the diagram 
in (Figure 5), on one hand CGRP induces down-regulation of the 
PI3K/Akt/SOD pathway which may lead to elevated oxidative 
stress. On the other hand, this CGRP effect does not affect NFκB 
nor caspase 3/7 activity, which could be due to the observed 
enhancement of the anti-apoptotic MAPK (ERK1/2 and p38) 
pathways [45]. Furthermore, in our setting ERK1/2 activation 
seems to be Akt dependent, whereas p38 is mostly Akt-
independent.  P38-MAPK is known to respond to environmental 
stress such as the oxidative ones induced by CGRP [45]. Thus, the 
activation levels of the both MAPKs versus the level of oxidative 
stress may dictate the overall cellular response to CGRP.  These 
effects of CGRP treatments demonstrate that the PI3K/Akt cell 
survival and MAPK cell anti-apoptotic (ERK) and stress (p38) 
signaling pathways are not exclusive, exhibiting substantial 
interdependence, connectivity and crosstalk. These findings 
together with those of previous studies from our laboratory, 
showing CGRP1-37-induced positive-inotropic effects correlated 
with changes in Ca2+ fluxes in cardiomyocyte, sarcomere and 
whole heart preparations; suggest that CGRP receptors could 
be useful targets for preventing and treating cardiovascular 
disease.  Future studies to differentiate the effects of CGRP on 
the intracellular signal transduction mechanisms in pathological 
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conditions, such as cardiac hypertrophy will, no doubt, help 
elucidate the significance of CGRP dysregulation in, and provide 
novel therapeutic targets for, heart failure. 
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