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Abstract

Escherichia coli O157 is a food borne Shiga toxin-producing human entero 
pathogenic pathogen known to cause severe diarrhea often accompanied by cramps, 
nausea, vomiting and slight fever in humans. This bacterium is one of the most aggressive 
entero hemorrhagic E. coli strains and probably evolved through horizontal transfer of 
genes encoding for Shiga toxins and other virulence factors. This strain is commonly 
found in the faces of healthy cattle, its major natural reservoir, and is transmitted to 
humans through contaminated food, water, and direct contact with infected people 
or animals. Human infection is associated with asymptomatic shedding, non-bloody 
diarrhea, hemorrhagic colitis, hemolyticuremic syndrome, and death. The antimicrobial 
treatment is not well established and opinions about its efficacy diverge. Some studies 
suggest that antimicrobials may accelerate the development of complication known 
as Hemolytic Uremic Syndrome (HUS), while others suggest no adverse effect and 
health recovery. Alternative treatments are in progress, including vaccine development, 
the bacteriophage- based bio control and the use of probiotics and prebiotics. The 
understanding of the bacterium’s biology and social internalization about the hazards 
of consuming undercooked ground meat or unpasteurized milk products and juices and 
the awareness to personal and collective cleaning are essential to successfully face 
this public health problem. Prevention measures as well as information to public-health 
authorities in case of bloody diarrhea is very important to successfully handle this 
public health problem.

ABBREVIATIONS
VTEC: Verocytotoxin-Producing E. coli; STEC: Shiga-Toxin 

Producing E. coli; EHEC: Entero Hemorrhagic E. coli

INTRODUCTION
The increases of intensive animal production implies 

increment intensive manner to handle and maintain livestock. 
This situation is well correlated with the risks of zoonotic 
infections in animal population and animal-origin food. At 
present, the world is growing smaller as a result of globalization 
with the expansion if human activities and transport facilities, 
the unprecedented growing of economy, trade goods including 
living organism of byproducts raw or processed and greater 
movement of persons making more extensive and complex the 
Food Chain Supply. As a consequence, hosts are facing growing 
level of exposure to different pathogen agents. Great number of 
different global human health problems has animal infections 

as origin [1]. Usually research about zoonotic diseases and their 
impact on human health, environment and other form of life 
has been conducted isolated matter. The pathogen transition , 
intra and inter animal species and then to human, can cause a 
zoonotic outbreaks with a great possibilities to be transmitted to 
human by human-animal contacts or exposure [2]. It’s clear that 
exposure of humans from animal can be resulted in pathogen 
transmission by variation in original pathogen or by changing in 
human susceptibility to specific infectious agents [3].

Escherichia coli is an intestinal bacterium commonly found 
in human and animal intestine. This bacterium were discovered 
in the human colon in 1885 by German bacteriologist Theodor 
Escherich, that also showed that some of strains were the causing 
pathogen for child diarrhea and gastroenteritis, of the most 
important public health problems up to the moment. During 
some time E. coli bacteria were denominated Bacterium coli, but 
making justice to the founder and in his honor the name was 
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finally changed to Escherichia coli [4]. It’s not possible to conceive 
the life science without this bacterium. It is the most-studied 
free-living organism a model to the most important life science, 
including microbiology, genetic, molecular biology, and genetic 
engineering. Routine test for E coli O157 in stool specimens 
is based on isolation by platting and growth on specific media, 
complemented by serological analysis and/or PCR. Up to now 
more than 700 serotypes of E. coli have been identified. The “O” 
and “H” antigens of the bacteria and their flagella were used to 
distinguish sero typically the different strains [5].

Under normal conditions, the intestinal micro flora, 
including many E. coli strains, is harmless and some of bacteria 
are beneficial, while some other can cause illness like slight 
diarrhea, gastrointestinal and urinary tract infections. Such E. 
coli strains are denominated enterohemorrhagic E. coli (EHEC) 
and are particularly aggressive when the bacteria proliferate 
over the normal level. There are six EHEC patho types that cause 
diarrheal diseases in human and animals. The strain Escherichia 
coli O157:H7and some non-O157 serotypes of E.coli also produce 
verocyto toxins, also known as Shiga-like toxins because of their 
similarity to toxins produced by Shigella dysenteriae. These strains 
are called verocyto toxin-producing E. coli (VTEC) or Shiga-toxin 
producing E. coli (STEC). EHECO157:H7causessevere diarrhea 
often accompanied by several abdominal pain, cramps, nausea, 
vomiting and slight fever. This serotype was classified according 
to his O and H flagellar as O157:H7 and represent the most 
common entero hemorrhagic serotype of this bacterium. Inside 
the organism, this strain has the ability to produce attaching and 
effacing lesions [6,7]. Adverse evolutions of pathologic process 
may be occurring and about 5% of the infected persons develops 
hemolytic uremic syndrome (HUS), with a typical hemolytic 
anemia, thrombocytopenia and also renal malfunction. Other 
important complications are thrombotic thrombocytopenic 
purple, pancreatitis and diabetes mellitus. The infection with this 
strain is occasionally fatal [8].

Serotypes of VTEC bacteria include strains with different 
level of virulence because in addition to the toxin are other 
factors influencing the virulence of strains. The high frequency of 
infection with enteropathogenic E. coli in persons and animals, is a 
source of big economic loses for two main reasons: the treatment 
costs and the labor hours or day lost during the diseases, there 
also negative economic impact in animal production and in many 
susceptible steps of Food Chain Supply. It has been estimated that 
EHE Care the causal agent for the numerous case of contaminated 
foods and beverages. The key strain in this health problem is the 
strain EHEC O157:H7.From approximately 100,000 illnesses, 
3,000 hospitalizations, and 90 deaths by the EHEC reported 
annually in the United States [9] the E. coli O157:H7 covered 
the major part of this statistic. EHEC O157:H7 is responsible 
of approximately 73,000 cases and 60 deaths every year while 
non-O157 VTEC serotypes cause about 37,000 cases annually 
[10]. A report published in 2005 estimated the annual cost of 
EHEC O157:H7 illnesses to be $405 million (in 2003 dollars), 
which included $370 million for premature deaths, $30 million 
for medical care, and $5 million for lost productivity [11]. 

This work is focused in Escherichia coli O157:H7, its biology, 
genetics, prevalence and impact in public health and social life as 

well as the measures for prevention and treatment. The need of 
the interdisciplinary work to control the gastrointestinal diseases 
is also reviewed, understanding the problem of co infections and 
multi parasitism. Some aspects related with safety in Food Chain 
Supply are considered important, particularly when facing the 
climatic change and globalization. We also made an assessment to 
different methods to handle Escherichia coli O157:H7 infections, 
including antibiotic treatment, vaccination, bacteriophage based 
bio control, administration of probiotics and prebiotics.

ESCHERICHIA COLI O157:H7
Escherichia coli O157:H7is the serotype that has most often 

been associated with severe forms of diarrhea, but other non 
O157 sero groups causing similar illnesses, have been reported 
[12](Figure 1). The main target of research has been focused on 
O157:H7 serotype, but the rest of Shiga Toxin Producing E. coli 
(STEC) serotypes are also associated to this human illness. Cattle 
and other ruminants as well as healthy swine can be natural 
reservoir for this bacterium. The infection by such bacterium is 
asymptomatic in these and other animals and they can be carriers 
of the bacterial strain for long period [13]. 

Escherichia coli O157:H7 (Figure 1) was first associated with 
human disease after a multi-state outbreak in 1982 involving 
contaminated hamburgers. The strain EDL933 was isolated from 
Michigan ground beef linked to this incident, and has been studied 
as a reference strain for O157:H7 [13,14]. In human, Escherichia 
coli strains O157:H7 causes severe diarrheal disease frequently 
accompanied by bleeding, intestinal obstruction, nauseas, 
vomiting and fever symptoms. In most chronic situations, 
the patients can develop Hemolytic Uremic Syndrome (HUS), 
hemolytic anemia (HA), thrombotic thrombocytopenia purple, 
renal impairment, pancreatitis and even diabetes mellitus. These 
severe chronic affections are caused by Shiga toxins produced by 
this bacterium. Shiga toxins affect systemically sensitive cells in 
different organs including kidneys, brain, and other organs and 
tissues [15,16]. There are other members of enteropathogenic E. 
coli strains that produce these toxins, but the strain E. coli157:H7 
is especially virulent and aggressive and it´s the causal agents 
of for the majority of bacterial infections reported in the world 

Figure 1 Microscopy photography of E. coli 0157:H7. Courtesy of CDC 
(Free image collection at USCDCP, author: Janice Haney Carr).
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[15,17]. Such virulent characteristics can be explained by its 
extraordinary ability to colonize human and animal intestines 
together with the great capacity to survive in the different 
environmental conditions [18-21]. Other important aspects are 
the ability to use animals, particularly, farm animals as reservoirs 
and carriers, making the farm and animal economic activities in 
important contact liker for the transmission of this infectious 
agent to humans.

Animal reservoir and human infection sources. 
The adaptive bacterial responses of Escherichia 
coliO157:H7

Cattles have been considered the major reservoir, natural 
carriers and transmitters of Stx-producing microbes, directly 
in farms and also as a source of contamination bovine-derived 
food chain supply. In consequence, prevalence studies of 
Escherichia coli O157:H7 are important for monitoring safety in 
food processing and preservations activities. The low number 
of colonizing bacteria in intestine of animal carrier resulted 
in difficulties for quantification by sampling and culturing 
approaches [22,23]. Because the ability to detect and quantify the 
number of E. coli O157:H7 depends of the methodology used. This 
dependence explains the difficulty to provide complete view of 
the bacterial prevalence and circulation in animals whose role in 
transmission of the pathogen remains undetermined. The bacteria 
can be isolated and grow by plating on sorbitol MacConkey 
agar supplemented with cefixime and potassium tellurite (CT-
SMAC) [22,23]. Them the resulted colonies are serologically 
and biochemically analyzed as colonies positive for O157 and 
H7 antigens. In some case the CT-SMAC is supplemented with 
4-methylumbelliferyl-beta-d-glucuronide that is transformed 
in 4- methyl umbelliferone [25] or 8-hydroxyquinoline-beta-
d-glucuronide [26] by the majority of E. coli, including most 
non-O157:H7. The first conversion product is UV-fluorescing 
while the second one product can be observed with light-visible. 
Selective plating can occasionally generate false-positives and 
false-negatives because some E. coli O157:H7 isolates may be 
sorbitol-fermenting and exhibit glucuronidase activity [27].

In our laboratory, we were able to standardize many of these 
experimental procedures, each methodology was normalized 
but when the same samples were analyzed by different methods 
we obtained different quantities of UFC. The prevalence studies 
carried using different detection methods resulted in different 
estimated quantifies of this strain. We have develop a multi-
primer real time PCR method discriminating the different E. coli in 
intestinal, stool and other samples and we obtained encouraging 
but preliminary results and the method needs to be validated. In 
general, genetic analysis of E. coli O157:H7 is hampered by a high 
degree of variation and need to study if the proposed method has 
practical significance. Low prevalence results usually reflect a 
reduced probability of detecting E. coli O157 due to one or more 
aspects of methodology including single sampling visits, small 
numbers of tested animals per farm, absence of comprehensive 
farm surveys, and selective or no enrichment applied to stored 
samples. 

The relative population of animals per farm and its correlation 
with positive identified cases was not well established; probably 

the general livestock health and living conditions vary from 
farm to farm enough to affect correlation studies. Other aspect 
of prevalence studies are related with the fact that the bacteria 
can be found out of the intestine and that the period of intestinal 
carriage is usually short [28,29]. We have carried a study in 
bovines compared the intra-intestinal and extra-intestinal 
prevalence of E. coli O157:H7 in 30 animals during winter and 
summer and winter seasons, using traditional selective plating 
combined with multi primer real time PCR (data not shown, 
method in process of validation). We found that intra-intestinal 
prevalence is higher during summer season (10%) than during 
winter season (3%) while extra-intestinal prevalence decreases 
during summer (1 %) compared with the results obtained 
during the winter (5.25 %). Probably external climatic factors 
such as insolation, temperature and climatic seasons resulted 
in the reduction of bacterial colonies found outside intestine 
but stimulate rapid spread and transmission of bacteria. These 
results are preliminary but showed us the same tendency 
obtained earlier by Dunn [30]. 

Healthy domesticated ruminants are the major animal 
reservoirs and carriers, particularly cattle [15], followed by sheep 
and possibly goats [31]. Human isolates associated with severe 
diarrheic diseases represented a minority of E. coli O157:H7 
found intra-intestinally in cattle [19]. Genetic analysis of E. coli 
O157:H7 isolates resulted in the identification of two different 
linages according to the fact that 11 distinct genetic regions 
were found in 80% of human harboring isolates (Linage I) and in 
92% of cattle harboring isolates (Linage II). In consequence the 
Linage I is more associated with human disease than the strains 
of lineage II, usually found in cattle and even in other ruminants 
[32]. Both linages share many genetic characteristic and 
virulence factors but the majority of bovine isolates doesn’t infect 
or have low prevalence in humans [33]. But nerveless the strains 
belonging to linage II are potential human pathogens [34,35]. The 
general concern is that cattle are the main source of human E. coli 
infections [36,37] and the probability of pathogen transmission 
and infection to human from cattle is high due the role of beef and 
dairy cattle consumption among domesticated animals, and size 
and economic importance of bovine in food industry. Isolation of 
enteropathogenic E.coli, including the serotype O157:H7, have 
been reported in other farm and domestic animal but in lower 
frequency. The studies that measured intestinal prevalence of E. 
coliO157:H7in cattle and sheep at slaughter consistently show 
higher prevalence in cattle. For example in the United Kingdom, 
the bacteria were found in 4.7% of cattle and1.7% of sheep [41], 
in 15.7% of cattle versus 2.2%of sheep [42], and in 4.7% of cattle 
and 0.7% of sheep [43]. The same was reports for other countries 
although numerically the results show differences from one 
country to other [34]. Small ruminants can be a significant source 
of human infection too [31], and of strains of E. coli O157:H7were 
identified in sheeps [42], lambs [43] and goats [44]. In the case 
of pigs, usually they carry E. coli strains and intra-intestinal 
colonization by E. coli O157:H7 have been observed but at low 
frequency [45]. This bacteria can also colonized chickens but 
shed for up to 11 months [46]. This fact is considered as poor 
transmission event rather than host incompatibility, builds a 
wall to infection. Prevalence in domestic animals and animals 
living in anthropogenic environments, like urban birds, rodents 
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and petsis very infrequent [46,47]. Because of bacterial high 
mutability reflected in the potential adaptive capacity it can be 
possible making these species as reservoir and transmission 
organisms. In the nature wild live is not considered an important 
animal reservoir of this bacterium and only sporadically isolation 
of E. coli O157:H7 strains were found other than deer. This can be 
carried by amphibians and fish, as well as invertebrates, such as 
insects and mollusks. It has reported in fish caught in place near 
to cattle’s slaughter in Africa [48]. In another report this strain 
was found in American bullfrogs (Rana catesbeiana) [49]. Insects 
may be especially important for its high proliferation rates, 
mobility and even for its adaptive responses to climatic change. 
That found the bacteria in 11.4% of cattle (n¼1407), 1.2% of 
swine (n¼1102), 3.6% of sheep and goats (n¼364), and in 5.2% 
of 154 fly pools; at some fairs, isolates from cattle, swine, and 
flies shared indistinguishable subtypes [50]. The transmission 
of this strain mediated by animal vectors is not clear, but all 
evidences indicate that this is an important step accounting for 
transfer without direct contact between natıve and colonized 
carriers. An extensive compilation of E. coli O157:H7 findings in 
farm, domestic and wildlife animals have been reported showing 
remarkable differences in infestation values [16].

According to our experience the manipulation of samples is 
a crucial fact explained the presence of “false negative”. In our 
case the samples were taken from 100 healthy cattles samples 
obtained from diarrheic calves. We introduced different 
variations in sample preparation, including bacterially enriched 
cow fecal samples and the results were similar with those 
obtained by other authors when optimized sample preparation 
method was established [51-54].

Characterization of shiga toxin subtypes and 
virulence genes in Escherichia coli O157:H7

The Shiga toxin, also called verotoxin, is produced by Shigella 
dysenteriae and enterohemorrhagic Escherichia coli (EHEC), but 
the strain O157:H7 has become the best known for its implication 
in public health and food security. They are classified in two 
major antigenic forms, defined as Stx1 and Stx2, but variants 
were defined in both classes: three subtypes for Stx1: Stx1a, 
Stx1c, Stx1d, and seven subtypes for Stx2: Stx2a, Stx2b, Stx2c, 
Stx2d, Stx2e, Stx2f and Stx2g respectively [55,56]. The Stx1a 
has been directly related human illness but others like subtypes 
Stx2a, Stx2c, and Stx2d are frequently found associated with the 
development of most extreme form of illness in human [55,56]. 
“In vitro” experiments carried in cell lines showed that the 
subtypes Stx2a and Stx2d were more toxic that Stx2b and Stx2c. 
Experiments in mice confirmed also these results [57]. There 
are reports indicated that toxicity of different subtypes varies 
in different animals [58-60]. For example, Swine STEC strains 
commonly produce Stx2e [61-63], which may cause edema 
disease in weaned pigs, often lead to ataxia and death [64]. 
Another subtype, the Stx2e, not represent a particular threat for 
humans [13,55].

Shiga Toxin is considered an essential virulence factor in 
human disease mediated by Escherichia coli O157:H7 [64]. Since 
its identification, in 1982, the incidence of E. coli O157:H7 in 
human diseases annually grow in the world. Two antigenically 

distinct Stx variants, the Stx1 and Stx2, produced by E. coli are 
related to the Shiga toxin produced by Shigella dysenteriae [65], 
which was first isolated and identified over 100 years ago [66]. At 
amino acid level the similarity between the sequences of E. coli-
derived and the Stx of S. dysenteriae is very high and Shigella and 
E. coli Shiga toxin genes have been expressed by other bacteria: 
Enterobacter, Citrobacter, Acineobacter, Campylobacter, and 
Hamiltonella [67]. 

The broadly distribution of these Shigella-derived genes 
encoding was achievement probably by horizontal transfer. In the 
original host, S. dysenteriae, Stx genes are placed on the bacterial 
chromosome. In E. coli, the Stx genes are associated with active or 
cryptic lambdoid prophages. The lambdoid or lambda-like phages 
are a group that includes properly lambda phage, phi80, and 
also several so-called Hong Kong phages, like HK97 and HK022, 
among others. This group includes also some Salmonellassp-
phage [13,64]. The lambdoid phages are grouped together 
because they share a common genetic map [67]. Recombination 
between different species of this group, including partial and 
complete prophages, resulted in viable hybrids. Genes encoding 
both Stx1 and Stx2 toxins in Escherichia coli O157:H7 are located 
on different lambdoid bacteriophages that lysogenize this strain. 
Bacteriophages that separately encode Stx1 and Stx2 have been 
isolated from various EHEC strains. The overall construction of 
Stx1 phages is similar to that of Stx2-encoding phages, and their 
genes display some similarity [68], whereas other Stx1 phages 
contain different sets of homologous genes. The component genes 
of individual lambdoid phages are arranged modularly and are 
generally a mosaic of genes from a particular gene family despite 
that most component genes are homologous. The sequence of 
the DNA binding domain at the N-terminus of the repressor of 
phage 933W is nearly identical to that of the non-toxic lambdoid 
phage HK022, but the sequence of the oligomerizing C-terminal 
domain of this protein is identical to that found in the repressor 
of the Stx1-encoding phage H19-B [69]. By recombination can 
be possible the opportunity to create new species by analysis 
of the genomic sequence of the E. coli O157:H7 [70]. This strain 
harbors two active bacteriophage, each expressing stx1 or stx2 
genes, showing that a Shiga toxin-producing E. coli (STEC) strain 
can harbor more than one Shiga toxin encoding bacteriophage. In 
addition, this strain is lysogenic for many cryptic phage genomes, 
providing ample material for recombination and a strategy for 
rampant spread of Stx in the environment [72].

E. coli O157:H7 isolates from the bovine reservoir was 
considerably broader than it was expected on the basis of analysis 
of human isolates [72]. Many of the genotypes distinguished 
among bacterial isolates from cattle and human composed the 
major representation in both cattle and human derived samples. 
Analyzing different cattle samples, it was found that more 
represented genotypes isolated in cattle were well correlated 
with data over the genotypes identified in clinical cases. Bresser 
et al. [72], considered that some events like phage lysogenization 
and excision in the short terms could result in changes in the 
Stx-encoding bacteriophage insertion site in E. coli O157:H7. The 
reported studies indicated that in E. coli O157:H7 the acquisition 
of Stxen coding phages plays a crucial role in the evolution of this 
pathogenic clade from precursor strains and thus predated the 
divergence detected on the basis of these genotypes within the 
clade [73,74]. 
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Among the others virulence factors, the Shiga toxins (Stx) 
and the ability to colonize the epithelial colonic surface through 
the functions are the most important. Both factors are believed 
to play a crucial role in the patho physiological process caused 
by E. coli O157:H7. The attachment to epithelial colonic cells, are 
the results of the expression of genes placed in a pathogenicity 
island named the Locus of Enterocyte Effacement (LEE) [75]. 
The heterogeneity of E. coli O157:H7 genotypes in bovine seem 
to have implications for pathophysiology, evolutionary genetics, 
and food safety. The majority of isolates, including those with 
geno types underrepresented in clinical isolates, displayed both 
of these factors but significantly differ in the expression level of 
Stx or LEE encoded protein [72]. More than 250 serotypes of Stx-
producing E. coli have been detected in the bovine reservoir, but 
less than 100 have been associated with human illnesses, and 
only a few sero types cause most human infections [75,76]. It is 
possible that expression of virulence factors determines character 
and distribution of nonclinical genotypes of E. coli O157:H7 and 
in addition the distribution of nonclinical Stx-producing E. coli 
serotypes. This fact supports the idea that the vast majority of E. 
coli O157:H7 isolates reside in the animal reservoirs and not in 
humans [73]. 

Differential distribution of E.coli O157:H7 lineages among 
isolates from cattle and humans were consistent with differences 
in human infectivity orpathogenicity in certain isolates has been 
reported [73]. Using octamer-based scanning was identified two 
major class of E. coli O157:H7 lineages, one more frequently 
found in human clinical isolates and the second one, that are more 
frequently in bovine isolates. The variation among genotypes was 
linked with bacteriophage-related sequences. The E. coli O157:H7 
sequentially acquired Stx-encoding bacteriophages in specific 
chromosomal locations [78,79]. The nonrandom distribution 
of E. coli genotypes lineages in cattle and human hosts occur 
but at the degree that is considerably lower than expected [73]. 
Strains of E. coli O157:H7 exhibit high genetic variability but 
typically a small number of genetic types predominate in groups 
of cattle and a farm environment. Transmission to people occurs 
primarily via ingestion of inadequately processed contaminated 
food or water and less frequently through contact with manure, 
animals, or infected people. The interest and knowledge about 
non-E. coli O157:H7STEC and its importance inhuman Illness 
have increased. There is a need to develop a model for molecular 
risk assessment associated with STEC [80]. Knowledge of the 
virulence gene combinations that distinguish highly pathogenic 
E. coli from less virulent strains remain sun clear, particularly for 
LEE-negative STEC Additionally, new virulence-associated and 
put a tivevirulence-associated factors are being identified [81-
84]. 

Expression of phage-harboring stx genes in host 
organism

In bacterial chromosomes there are genomic sequences 
that show high frequency of both cryptic and active temperate 
phage. Despite that Stx toxins affect mammals, including human, 
these phage-harboring stx genes are also found in free phages 
and lysogenic bacteria isolated from environments, where the 
presumed corresponding targets (mammals) are not present [85]. 
The most important priority of bacteriophages is to survive and 

reproduce by following lytic or lysogenic ways (Figure 2). Once 
the bacteriophage progeny is obtained these phages kill their 
host and the resulted progeny goes abroad to find another host 
cell. Despite phage DNA encodes exotoxins they are tolerated in 
the host bacterial chromosome probably because their presence 
helps bacterial population to prevent predation providing 
advantages to bacteria. This hypothesis tray to explain why the 
exotoxin genes are always located in active bacteriophages and 
according to this, humans and susceptible animals are neither the 
original nor primary targets of these toxins [86]. 

In the stx-encoding phages, the stx genes are located in 
the late region of the phage, downstream from PR. The PR’ is 
inducible promoter, only active during lytic growth but not 
during lysogenic fate, the lysis-lysogenicway of growth is a 
kind of control fact over the Stx production [87-90]. Once the 
hos organism, like E. coli O157:H7 is transfected and the phage 
begins lytic development way, the transcription initiates at 
the early promoters PL and PR. The PL promoter allows the 
transcription and translation of the gene N. The N activity allows 
the RNA polymerase transcribing from PR to read-through 
transcription terminators and extends transcription into the Q 
gene. Q binds DNA at a site partly overlapping PR’ and acts as 
an anti-terminator thereby allow RNA polymerase to transcribe 
an oper on that includes the stx genes [88-91]. Synthesis of Q 
depends on the activities of the early lytic promoters PR and PL. 
These promoters are repressed in lysogenic fate by repressor 
DNA binding. During induction to lytic fate, repressor became 
inactivated, making possible the expression of Q and them the 
expression of stx genes. The synthesized Stx lacks any secretory 
signal for bacterial secretory systems, it’s accumulated in the 
cytoplasm until the lytic development is completed and the 
host bacterium is lysed according to the phage-encoded genetic 
program, and the Stx is released.

Figure 2 The lytic and lysogenic phase of phageson E. coli O157:H7.
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The phage’s choice to follow lytic and lysogenic development 
is induced by external conditions. The influence of local factors 
over the lifecycle of lambdoid prophages in the environment 
is linked and well correlated with the Stx production [88-90]. 
All lambdoid bacteriophages have a common developmental 
program. Upon infection of a host bacterial cell, the lambdoid 
phages choose between two developmental fates: lytic and the 
lysogenic fate. The lytic fate ends with the lysis of host cells 
releasing new generation of prophages. In lysogenic growth, the 
phage chromosome is inserted into the host chromosome and is 
replicated along with it, until a signal that induces lytic growth is 
perceived by the lysogenized cell. The genes for Stx are encoded 
in the late region of the phage. Late genes, including stx genes, are 
only expressed while the bacteriophage is growing lytically [71].

In the lysogenic phase, the repressor cI protein is produced 
and the synthesis of Stx is blocked. The protein cI acts as 
repressor for others gene, including some involving in lytic way 
of development. To inactivate cI repress or during lysogenic fate, 
the phage takes advantage of part of the host’s SOS response; the 
pathway involved in general response to DNA damage, particular 
important is the interaction with host Rec A, the crucial regulator 
of the host’s SOS response system. RecA stimulates the intrinsic 
auto proteolytic activity of the phage’s repressor protein cI, 
making possible the transcription of early repressed phage genes 
including stx genes [92]. The RecA stimulated intrinsic auto 
proteolytic activity of the repressor cleavages the repressor’s 
C-terminal oligomerization domain separating it from the 
N-terminal DNA binding domain. In that condition cI loss the 
capacity to bind DNA depressing the expression of all the genes 
involved in lytic growth, and the stx genes. In infected mammals 
by E. coli or other Stx producing bacteria, hosted the prophages 
with stx genes, the leukocytes and neutrophils activates the SOS 
response in Stx encoding E. coli (STEC) by release superoxide. This 
process leads to the release of the Stx toxin and to the subsequent 
cell death [89,93]. Without external stimulation, prophages have 
the ability to produce free phages by spontaneous induction. 
But the number of spontaneously produces phage in very low 
compared with the inducing external factors are present. But even 
in spontaneous phage induction the active RecA is crucial because 
the process is also mediated by changes in repressor levels [94]. 
The spontaneous induction in also designed as DNA damage-
independent (spontaneous) induction occurs in other related 
bacteriophages but in stx-encoding bacteriophages the frequency 
of this process is higher than in the rest of bacteriophages. The 
explanation of that behavior has been attributed to possible 
lower requirements in concentration of active RecA necessary 
for induction [94]. 

Repressor levels in a lambdoid phage lysogen are regulated 
by autogenously positive and negative control where differential 
site binding by repressor and hence repressor gene activity is 
the key for understanding such regulation. Repressor cI binding 
to one subset of binding sites leads to activation of repressor 
synthesis, whereas repressor occupancy of additional sites leads 
to repression of repressor expression. In the well-studied non-
STEC lambdoid phages, differential site binding by repressor and 
hence repressor gene activity depends on the cooperative binding 
of the repressor to multiple sites, some of which are separated by 
up to 2.5 kb but in other bacteriophage, like 933W, DNA binding 

does not cooperatively [92]. May be bacteriophage 933W has 
evolved by other alternative way of repressor regulation.

There are other than Stx virulence factors in illness, including 
genes encoding for proteins involving in cell adhesion, proteases, 
and toxins, particular combination of all these factors and the 
proportion in the composition among these factors may be 
important in severity of human illness [64,95]. Some of these 
factors aren’t well studied, that is the case on eibG, lpfA, saa, and 
sab genes, encoding for proteins acting as virulence factor, like 
the adhesion of the bacteria to the intestine wall [96].

Distribution and role of Shiga toxin in environment

In the environment, microbial biodiversity emerges as a set 
of large and complex living networks closely linked to specific 
ecological niches, which are defined as microbiomes. Shiga toxin 
(Stx) producing microbes are part of such microbiomes and can 
exist in multiples environmental conditions and ecological niches. 
But there are difficulties to isolate and grow microorganism from 
microbiomes. The core of the problem besides in the fact that 
only small proportion of microbiome could be grow at laboratory 
conditions. Shiga toxin producing microbes are present in 
terrestrial and aquatic environments, in free living condition or 
in organism-carries like cattle, pigs, farm and domestic animals 
and even in wildlife animals and plants [97-99]. The actual 
biodiversity among Stx-producing microbes in animals, including 
Cattle and other farm, domestic and wildlife animals, is difficult 
to define due of differences in methodologies used for Stx 
determination that offer different quantifiable results. Usually 
the number of samples resulted positive in verocell cytotoxicity 
assay from different fecal samples from healthy animals, only 
5% were tested positive to Stx production, whereas with PCR 
and real time PCR, using phage-specific primers, the proportion 
of samples harboring Stx producing bacteria the proportion 
of positive samples increased to 9% and 11% respectively. 
Other farm animals can be considered in this regard [16,100]. 
The presence of Stx producing microorganisms in farms have 
proved in different farms animals including sheep [101,102] goat 
[31,103], pigs [104, 105]. Chickens, turkeys, and rabbits, have also 
been classified as reservoirs for Stx-producing microorganisms 
too, but at lower level, according to our experience [34,106-108]. 
There are evidences addressing the existence of Stx-producing 
microorganisms in other domestic and wild-free animals 
[27,109,110]. Birds populations have been shown to harbor 
organisms which possess the stx gene and probably the E. coli 
O157:H7, we tried to study the fecal samples of 10 bird species, 
but up to now we found stx gene in only one bird, thrush (Turdus 
migratorius) (preliminary results). We must to increase the 
number of processed fecal samples because actually is too low 
to formulate any conclusion. Hughes et al. [111], make a test in 
wildlife birds, 12 different species tested positive for stx1 gene 
and 30 bird species tested positive for the stx2 gene. Airborne 
particulates in a contaminated building have been shown to 
contain bacteria with stx genes [111]. 

It seems that Stx-producing organisms are very abundant 
in terrestrial ecosystems but also were found in aquatic 
environments including in potable water source and supply lines 
[112]. Stx producing microorganisms are a possible pathogenic 
causal agent in gastrointestinal illness outbreaks [112-118]. 
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In general aquatic environment including fresh water sources, 
potable and drinking water systems as well as lakes and rivers 
using for recreational activities has also been found to contain 
organisms which produce Stx and may cause human illness 
[120-121]. From all these studies we can conclude that stx 
gene distribution in aquatic ecosystems can be highly variable, 
likely owing to local conditions which impact organism survival, 
variation in organism population, in the lifecycle of lambdoid 
prophages harboring stx genes, its expression in suitable hosts 
and the production of Stx [122-124].

What is the role of Shiga-toxin in the ecological niches 
occupied by such producing microbes? One of must accepted 
hypothesis resides in the necessity of microorganism colony to 
self-defense against other microorganisms but bacterial predator. 
Phage-encoded exotoxin as a defense anti-predator activity 
include the sacrifice of part of bacterial population succumbing 
to produce a toxin to kill a population’s major predators but 
preserving the greater part of bacterial population. In the logic 
of this hypothesis we can consider induction factor as a signal to 
predator´s presence. This hypothesis was tested in Tetrahymena 
thermophile, a unicellular eukaryotic predator model. When 
co-cultured with T. thermophile Stx-encoding bacteria are able 
to confront and kill this predator. It is necessary to extend this 
kind of study to other exotoxin-encoding bacteriophage resident 
within bacteria influences the growth and survival of the bacterial 
population [93]. As we already observed, the ant predator 
defense by using phage-encoded Stx as an ant predator defense, 
the lysogenic bacterial host dies releasing new phage progeny 
and exotoxins, protecting the overall bacterial population-a 
population that would include cells that are not lysogenic for the 
toxin-encoding bacteriophage. But this act means the sacrifice 
of a few for the welfare of the majority because Stx-encoding 
phages lysogenize hosts at low frequency in relation with whole 
bacterial population [94]. And some data suggest that there is 
some mechanism over the proportion of suicidal cells. These 
lysogenic populations sacrifice a few cells to produce a toxin that 
kills its major predator and produce infectious phage that have 
the potential to eliminate bacterial competitors [89]. Apparently 
growing prevalence of Stx-encoding bacteria and phages within 
the biosphere may be considered as an example that such 
hypothesis is highly effective collective defense mechanism 
although we don’t know the number and identities of microbial 
predators, as some protozoa and even nematodes, which are 
sensitive to Stx or other cytolitic exotoxins [125,127,128]. This 
is a promising way to better understand the environmental 
factors that activate the genetic machinery to produce Stx, and 
the consequence this has on other microbes within an ecosystem, 
are needed to provide greater clarity regarding the functionally 
of Stx in the environment, its role and haw the complex phage-
host population works in the nature.

Molecular characterization of Escherichia coli 
O157:H7

Genomicis undoubtedly the best source of information and 
the basis to develop better methods to advance in understanding 
the evolution of E. coli, through comparison with the genome 
of the non-pathogenic laboratory strain E. coli K-12 laboratory 
strain MG1655. The genome of Escherichia coli O157:H7 strain 

EDL933 was sequenced was and taken as a reference strain for 
O157:H7. This strain is very pathogenic and it was isolated from 
ground beef during outbreak incident allowing the study genes 
involved in pathogenicity [129]. 

The sequence of the genome of E. coli O157:H7 allows identify 
genes putatively responsible for pathogenesis (Gene Bank 
Accession NumberAE005174) [14]. According to the reported 
data, the chromosomal size of E. coli O157:H7 is 5.5 Mb. This 
genome includes a 4. 1 Mb backbone sequence highly conserved 
in all E. coli strains while the remaining 1.4 Mb, is specific to E. 
coli O157:H7. Compared E. coli O157:H7 with nonpathogenic E. 
coli K12 shows that 0.53 Mb of DNA is missing for E. coli O157:H7 
probably as a result of genomic evolution [96]. Horizontal 
transfer is very extensive, in fact, 1,387 new genes encoded in 
strain-specific clusters of diverse sizes were found in O157:H7. 
These include candidate virulence factors, alternative metabolic 
capacities, several prophages and other new functions-all of 
which could be targets for surveillance. These strains last shared 
a common ancestor about 4.5 million years ago6. The two E. 
coli genomes revealed an unexpectedly complex segmented 
relationship, even in a preliminary examination. They share a 
common ‘backbone’ sequence which is co-linear except for one 
422-kilobase (kb) inversion spanning the replication terminus 
[129-131].

It is considered that both strains share a common ancestor 
and a complex segmented relationship was evident. They share a 
common `backbone’ sequence (4.1 Mb), which is co-linear except 
for one 422-kilobase (kb) inversion spanning the replication 
terminus. Homology is punctuated by hundreds of islands 
of apparently introgressed DNA numbered and designated 
K-islands’ (KI, 0.53Mb) or ̀ O-islands’ (OI, 34Mb), where K-islands 
are DNA segments present in the reference E. coli K12 strain 
MG1655 but not in E. coli O157:H7 strain EDL933, and O islands, 
composed by segments exclusively found in are unique segments 
present in EDL933 [132]. An important part of genes located in 
O-islands have unknown function, but exclusivity of this segment 
as well as the fact that many classifiable proteins are related to 
known virulence-associated proteins, from other E. coli strains 
or related enterobacteria. For those reasons this segment is 
considered important bacterial virulence. Each island might be 
ancestral and lost from the reciprocal genome; but analyzing base 
composition an atypical base composition were found suggests 
horizontal transfers of relatively recent origin from a donor 
species with a different intrinsic base composition. Undoubtedly 
this segment contains the some of the key to establish the 
molecular basis of adaptation and virulence of E. coli O157:H7, 
but we cannot limit the study to this large genome segments 
since probably associated with virulence are not limited to the 
largest islands and some of them interacts in trans forms.

The majority of E. coli O157:H7-specific DNA sequences (1.4 
Mb) are horizontally transferred foreign DNAs such as prophage 
and prophage-like elements. E. coli O157:H7 contains 463 
phageassociated genes compared with only 29 in K-12 strain 
[13]. A change in G+C contents is one of the indications that a 
genomic region has been acquired by horizontal transfer, and 
estimated that at least 53 different species have contributed to 
these unique sequences in E. coli O157:H7. Virulence-associated 
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genes between two sequenced E. coli O157:H7 strains are nearly 
identical (99%) [133]. Both the acquisition and loss of DNA have 
played an important role in the evolution of pathogenesis of E. 
coli O157:H7.These evidences helps to broad array the whole 
genomic information for obtaining a complete set of genes 
potentially related to the pathogenicity of O157:H7 and is crucial 
for better understanding the evolution of E. coli strains.

The plasmid O157 in Escherichia coli O157:H7

In addition to chromosomally encoded Stx and LEE proteins, 
all clinical isolates of E. coli O157:H7 possess a putative 
virulence plasmid called pO157. This plasmid contains genes 
encoded for pathogenesis-related proteins that are required in 
many enteropathogenic bacteria including Shigella, Yersinia, 
Salmonella, and E. coli species [131]. This function allows us to 
understand why this plasmid is highly conserved in those types of 
bacteria. It is a non-conjugative F-like plasmid and his size varies 
from 92 to 104 kb. The complete pO157 sequences in strains 
isolated from two different outbreaks have been published [134]. 
This plasmid has different mobile genetic elements including 
transposons, prophages, insertion sequences (IS), and parts 
of other plasmids, evidencing recombination and horizontal 
transfer events. In the plasmid it is possible delimit the co-
responses to functional regions of pO157. The IS or remnants of 
IS are frequently associated with the virulence-related segments, 
which are similar to compositions of the large virulence plasmid 
in Shigella spp. [131-133]. According to sequence analysis and 
comparison with homologue elements in other enteropathogenic 
bacteria we can say that actual pO157 is formed by integration of 
fragments from multi plesevolutional and species origins into an 
F-like plasmid, and thus virulence factors or putative virulence 
factors on the different segments of pO157 may be from different 
origins. In this plasmid were described 100 open reading frames 
(ORFs) [132], of them 43 ORFs presented sufficient similarities 
to known proteins, suggesting putative functions for each. But 
22 ORFs had no convincing similarity with any known proteins. 
Thirty-five proteins are presumably involved in the pathogenesis 
of E. coli O157:H7 infections, but of which only 19 genes have been 
previously characterized. However, the biological significance of 
pO157 in pathogenesis is not fully understood [131].

MANAGEMENT OF ESCHERICHIA COLI O157:H7 
INFECTIONS

Antibiotics and antibiotic resistance in Escherichia 
coli O157:H7

Antibiotics have been an essential component of the infectious 
disease treatment resistance. In 1928, Alexander Fleming 
identified penicillin, the first chemical compound with antibiotic 
properties while working on a culture of disease-causing bacteria 
and realized that the spores of a little green mold (Penicillium 
chrysogenum) killed the bacteria in one of his culture plates. 
Antibiotics are not antimicrobial but antibacterial compounds. 
Frequent confusion of both terms and easy access to antibiotics 
together within correct follow of medical guidelines; have led to 
misuse and overuse of these antibacterial substances. Antibiotics 
are not effective against viruses such as the common cold or 
influenza, and even common diarrheic illness. This inappropriate 
management allows the emergence of resistant organisms. Today 

as a consequence of a development and spread of antibiotic and 
the lacks of control in their use, become also a global problem 
in human and veterinary medicine through the development of 
multi resistance [135]. World Health Organization to classify 
antimicrobial resistance as a serious threat that is no longer 
a prediction for the future, it is happening right now in every 
region of the world and has the potential to affect anyone, of any 
age, in any country. When bacteria become resistant to three 
or more antibiotic classes is defined as a multidrug-resistant 
bacteria strain. Multi resistance is a term also defined as 
multidrug-resistant. An antibiotic is a secondary metabolite used 
in bacterial control and antibiotic can eliminate certain a group 
of bacteria when it is used, be it for human, animal or plant, but 
it also can promote the emergence of resistance by selection of 
resistant population and further promote the dissemination of 
resistant bacteria genes and their horizontal transfer [136,137]. 
An extensive and detailed review of this important for public 
health and safety of food chain supply has been published by 
Colello et al. (2015) [138], and periodic report appears in WHO 
and FAO official bulleting [137]. 

Bacteria are able to acquire antibiotic resistance genes that 
provide protection against most antibiotics. The dissemination 
and acquisition of such genes by horizontal gene transfer has led 
to the rapid emergence of antibiotic resistance among bacteria 
[138]. This process is promoted when the wrongly antibiotic 
administration takes place: administration of sublethal doses, 
incomplete treatment, and inadequate disposal of antibiotic 
residues. In the antibiotic resistance transfer play a crucial role 
the genetic structure named Integron, a mobile DNA element that 
can capture and carry genes, particularly those responsible for 
antibiotic resistance. 

Integrons are a part of bacterial DNA harboring the genetic 
determinants for a site-specific recombination system that 
recognizes and captures the mobile genes cassette. The antibiotic 
resistance genes that integrons capture are located on gene 
cassettes, which can exist as free circular DNA. By site-specific 
recombination the cassette can be integrated into the integron 
and additional gene cassettes can be integrated, resulting in the 
integration of several genes. Structurally an integron is minimally 
composed by a gene encoding for a site-specific recombinase: 
intI, belonging to the integrase family, a proximal recombination 
site: attI, which is recognized by the integrase and at which gene 
cassettes may be inserted and a promoter: Pc, which directs 
transcription of cassette-encoded genes. There are several classes 
of integrons based upon which integrase gene they contain but 
so called Classes I and II are the most frequent in clinical E. coli 
isolates and they are directly involved in the dissemination of 
antibiotic resistance [139-141].

The Integron has a 5 conserved segments called functional 
(5 CS), a functional platform contained elements necessary 
for site-recombination. The int1 gene encoding a site-specific 
recombinase, an adjacent site, that is recognized by the 
integrase and is the receptor site for the cassettes encoded 
gene, and a promoter suitably oriented for the expression of the 
cassette [141]. The integrons have the ability to recognize and 
associate with insertion sequences present in transposons or in 
conjugative (helper) plasmids that act as transfer tool for their 
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intra- or inter-species transferences [142-144]. There are five 
classes of integrons are known to play a role in the dissemination 
of antibiotic resistance genes [145-148]. The most common 
structure is the Class I follows by Class II. Class I integrons are 
characterized by the presence of two conserved fragments, 
separated by a segment of variable length (sequence) which 
includes inserted antibiotic resistance gene cassettes. The 5’-CS 
contains the int I gene, the att I site and the promoter, while the 
3’-conserved segment (3’-CS) where usually is placed the sul1 
gene, conferring resistance tosulphonamides and the qacE1 gene, 
conferring resistance to quaternary ammonium compounds used 
as disinfectants[147,148]. The Class II 2 integrons are embedded 
within transposable elements Tn7 and its derivatives. The gene 
coding for the integrase class 2 (intl2) is located at the 5-CS [148]. 
Its 3 conserved segment usually contains five genes involved in 
the movements of the transposon (tnsA, tnsB, tnsC, tnsD, tnsE) 
[140]. Some reports indicate that STEC multi resistant strains 
isolated from humans and animals have acquired antibiotic 
resistance genes almost twenty years ago [149,150]. It is clear 
that the Class 1 and 2 integrons are linked multi resistance to 
antibiotic in STEC isolated [138,151,152].

In the USA 93 (34%) of 274 STEC from poultry, cattle, 
swine, and humans were resistant to streptomycin, 89(32%) 
to sulfamethoxazole, 83 (30%) to tetracycline, 48(18%) to 
ampicillin, 29 (11%) to cefalothin, 22 (8%) to trimethoprim/
sulfamethoxazole, 18 (7%) to gentamicin, 13(5%) to 
chloramphenicol, and 10 (4%) to cefoxitin. Forty three (16%) 
of the STEC isolates harbored class 1 integronsand 41 (95%) 
of STEC positive to class 1 integrons were resistantto one or 
more antibiotics [153]. In USA during 2005 on24 E. coli isolates 
from dairy farms. From that, 14 E. coli were isolated from dairy 
cows with mastitis (ECDM), 9STEC O157:H7 from dairy cow and 
only one from bulktank milk. These strains were evaluated for 
sensitivity to 19antibiotics used in human and/or veterinary 
medicine. Class 1 integrons were found only in eight of 10 isolates 
(one STEC O157:H7 and seven ECDM). Eight of 10 STECO157:H7 
and six of 14 ECDM were susceptible to all tested antibiotics 
[154]. Since 1983 to 2003, a total of 105 epidemiologically 
unrelated STEC isolates from humans and cattle from Germany 
were tested for susceptibility to 17 different antibiotics agents 
by microbiological and molecular methods, the last one to 
observe if the class 1 and 2 integrons were present. Resistance 
was found in 76% of the isolates, with a prevalence of 72% for 
multi resistance. The most prevalent resistance patterns were 
to streptomycin, sulfamethoxazole and tetracycline (72-68%), 
followed by spectinomycin, ampicillinand kanamycin/neomycin 
(39-25%). The molecular screening showed the presence of Class 
1 integronsin 41% of the isolates while class 2integrons were 
detected in only one isolated [138,151].

Derived from this situation and for public health interests, it´s 
clear the needs to increased surveillance and the development 
of adequate prevention and treatments strategies based in 
the multi parasitism character of diarrheic diseases and using 
different alternative procedures to antibiotics, such as vaccine 
development, bacteriophage based biocontrol, the administration 
of prebiotics and probiotics, an preventive epidemiological and 
sanitary measures. 

Vaccines

Vaccination has proven to be the most cost-effective strategy 
for controlling a wide variety of infectious diseases in humans 
and animals. The new vaccines are greatly demanded to 
effectively control newly- and reemerging pathogens in livestock. 
Development of veterinary vaccines is a challenging task, due 
to a variety of pathogens, hosts, and the uniqueness of host-
susceptibility to each pathogen. Some surface proteins, including 
intimin, are important antigens which give bacteria the ability 
to adhere tightly to host cells [155-157]. It can be assumed that 
vaccine-induced antibodies against these surface antigens would 
effectively hamper the adherence of the challenge bacteria to the 
target cells [158,159] Bacterial ghost (BG) is produced by the 
expression of PhiX174 lysis gene E, and results in cellular lysis 
and cytoplasmic loss. BG maintains the cellular morphology and 
native surface antigenic structure, and displays the adjuvant 
property [160,161]. The effects of BGs vaccines have been 
demonstrated in various pathogens, such as Vibrio cholera [162], 
Pasteurella haemolytica [163] and Helicobacter pylori [164]. The 
Bacterial ghost has been developed to be the candidate vaccine 
against the infection of E. coli O157:H7 [165,166]. The use of such 
procedure could induce Stxs-specific antibodies in sera induced 
by the surface expression of Stxs antigens in BALB/c mice but 
failed to induce Stxs-specific IgG antibodies in irrigating solution 
[167]. May be the reason for this results is the interruption of 
intestinal mucosa against IgG antibody and the low titer of IgG 
antibody. The Stxs-specific antibodies could neutralize the 
Stxs, and the antisera could provide effective cross protection 
against other subtype of Stxs but the low titer of the Stxs-specific 
antibodies is a problem to reach by increasing of toxoid on the 
surface of E. coli O157:H7 [166]. 

Immunization in catles with vaccine candidate composed by 
recombinant E. coli O157:H7EspA, intimin and Tir resulted in the 
generation of antibodies capable of cross-reacting with antigens 
from non-O157 EHEC serotypes, suggesting that immunization 
with these antigens may provide a degree of cross protection 
against other EHEC serotypes [168]. Further studies are now 
required to test the efficacy of these vaccines in the field, and to 
formally test the cross-protective potential of the vaccines against 
other non-O157 EHEC. Interesting could be the use of different 
carries and adjuvants to test the effectiveness this vaccine 
candidates including the Heat-labile toxin B subunit (LTB) of 
enterotoxigenic E. coli (ETEC). The LTB can be used as an adjuvant, 
carrier of fused proteins, and antigen itself. Immunization of 
B Subunit-Whole Cell Cholera Vaccine LTB protein induced 
humoral and secretory antibody immune responses and resulted 
in cross-protection against Diarrhea Associated with Heat-Labile 
Toxin-Producing E. coli in humans [169]. This indicated that 
LTB protein associated with other antigens can be a promising 
vaccine candidate against ETEC. Another promising adjuvant and 
carrier is Stx1B. The adjuvant property of Stx1B is well known, 
this protein can mediates adhesion between O157:H7 and target 
cells by Stx2 [170]. The two Stx toxins are complex holotoxins 
within the basic 1A:5B structure and two subunits [171,172]. At 
amino acid level both Stx toxins show high similarity: the A and B 
subunits of Stx1 and Stx2 are 68% and 73% similar. But immune 
logically they are different [173,174]. A hybrid StxA2/StxB1 
holotoxoid and a genetic Stx2B-Stx1B could elicit neutralizing 
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antibody response, and a safer and higher production of genetic 
toxoid SAmB which could induce cross-neutralizing antibodies 
has been found recently [167,175,176]. Intimin, like other 
surface proteins, are important antigens which give bacteria 
the ability toad here tightly to host cell and in consequence it is 
considered antibodies induced against these surface antigens 
would effectively prevent adherence of the challenge bacteria 
to the target cells [158,159]. The use of this model of vaccine 
candidate, higher intimin-specific IgG antibody was induced and 
higher titers of antibodies were obtained generating stronger 
protection against E. coli O157:H7 [166].

The development of vaccines for cattles, a natural reservoir 
of E. coli O157:H7 may be the most important target of vaccine 
development programs. Epidemiological studies indicate there 
is an association between higher rates of human infection with 
E. coli O157:H7 and the areas associated with higher cattle 
densities. This is the result of the logical linking of high cattle 
densities and the greater chance of infestation by human-
animal and human-human contacts, as well as the extension 
contamination throughout the different steps of food chain in 
animal production: contamination of meat, vegetables, fruits and 
water, etc. Livestock, including cattle, are routinely immunized 
against common pathogens to prevent infection and disease. 
Incorporation of an additional vaccine against to E. coli O157:H7 
into existing animal health management protocols will reduce 
the possibilities of foodborne outbreak cause by this bacterium. 

Bacteriophage-based biocontrol

Among the various assessment available to control enter-
opathogenic E. coli (i.e. probiotics, prebiotics, oligosaccharides, 
antimicrobial peptides and essential oils) the use of bacteri-
ophages are starting to receive increased attention due to their 
special biological characteristics. Bacteriophages are viruses 
causing lysis of the host bacteria and were discovered by Twort in 
1915 and d’Herellein 1917. Since that bacteriophages have been 
extensively studied and in recent years have exploited as a tool 
to control bacteria [177,178]. Bacteriophages have widespread 
distribution, self-replication and a lack of effects on the normal 
microflora of treated animals [179]. They can horizontally trans-
fer genetic material and affect bacteria. They are very common in 
all natural environments and play an important role in bacterial 
evolution [180], including in the evolution of enteropathogenic 
bacteria E. coli O157:H7. The increase in development of multid-
rug, particularly multi antibiotic, resistant bacteria has become a 
global public health problem which has prompted research into 
the development of alternative disease control strategies for the 
animal production industry and has received more attention by 
the food industry and medical science [181-183]. 

The U.S. Food and Drug Administration (FDA) approved Listex 
P-100 (Micros Food Safety, Netherlands, www.foodsafetynews.
com/files/2013/05/Listex) and EcoShield (Intralytix Inc., 
USA, www.businesswire.com/news/home/20110614007247/
en/Intralytix) for the commercial use of one or more specific 
bacteriophages to clean hard surface in food processing 
plant and to reduce the risk of meat contamination by Listeria 
monocytogenes (L. monocytogenes) or Escherichia coli O157:H7, 
respectively. The test of such technology showed the inhibitory 
effect of bacteriophage cocktails on E. coli O157:H7 (on hard 

surfaces and in tomato, spinach, ground beef, and meat [184,185] 
Bacteriophage BPECO19 strain was selected for the bio control 
of E. coli O157:H7 under in vitro condition and on beef, pork, and 
chicken meat the results [186,187]. 

Bacteriophages can be an alternative approach against 
bacterial pathogens with the flexibility of being applied 
therapeutically or for biological control purposes by affecting 
host bacteria without induction selection pressure for resistance, 
without exerting selective pressure resistance, as do antibiotics. 
The establishment of Good Practices in the different operations 
of animal production as well as in controlling zoonotic human 
diseases by reducing the bacterial load spread prevents the E. coli 
O157:H7 spread from food chain supply to humans through the 
milk, meat and residues. The use of phage to control pathogenic 
E. coli in pigs, calves and lambs are very encouraging [180]. E. coli 
O157:H7 and other Shiga toxin producing bacteria are relative 
abundant in their natural reservoirs and carries and for obvious 
reason, specific phage was isolated from swine feces [188]. In a 
previous work a 4.2 × 107 PFU/g of the E. coli O157:H7 specific 
phage PP01, indicating that phage PP01 might suppress its host 
E. coli O157:H7 in the gastrointestinal ecosystem isolated from 
swine stool sample have been isolated [189].

The antibacterial ability of phages in E. coli has been 
investigated [190]. The efficacy of a two-phage mixture against 
infection induced by the ETEC strain P433 in neonatal pigs has 
been evaluated. In an in vitro experiment, both phages showed a 
high capacity to lyse bacteria with nine particles of P433/1 and 
four particles of P433/2 required to completely lyse broth cultures 
of their respective hosts [32,190]. In addition, the results of this 
work indicated that phages that targeted colonizing pili were 
more effective in controlling a larger proportion of the porcine 
ETEC than phages that target other pili. These observations 
show us the importance to isolate specific phages from specific 
hosts to obtain better results in phage-mediated control of 
enteropathogenic E.coli [191]. conducted an experiment in 
swine using anti-ETEC phage therapy. Six phages lysing the ETEC 
strain O149:H10:F4 and three phages lysing the ETEC strain 
O149:H43:F4 were isolated with 10strains of ETEC used in total. 
For 85 strains of O149:H10 ETEC, Phage GJ1-GJ6 lysed 99–100 
% of them, while for 42 strains of O149:H43 ETEC, only 0–12 % 
strains were lysed by phage GJ1-GJ6. Three other phages (GJ7-
GJ9) selected against an O149:H43 hoststrain lysed 86–98 % 
of 42 strains of O149: H43 and 2–53 % of strains of O149:H10 
[192]. Subsequently, the phages (GJ1 to GJ7) were individually 
assayed for their capacity to treat an experimental infection with 
an O149:H10:F4 enteropatho genic E. coli in weaned pigs an 
important reduction in severity of symptoms (diarrhea and the 
composite diarrhea) was observed. Better results were obtained 
in prophylactic treatment supplemented with a combination 
of three phages, a clear indication that specific selected phage 
cocktail was effective in controlling the experimental infection 
induced by ETEC strainO149:H10:F4 [192]. Waddell et al. [193], 
successfully control E. coliO157:H7 in experiment with similar 
characteristic but carried out in calves. They orally inoculated 
a mixture of six phages on days: −7, −6, −1, 0 and 1 after oral 
inoculation of animals with pathogenic E. coli O157:H7. (109 
CFU). The results obtained with pigs and calves reinforce 
the idea that treatments with multiple doses and different 

http://www.foodsafetynews.com/files/2013/05/Listex
http://www.foodsafetynews.com/files/2013/05/Listex
http://www.businesswire.com/news/home/20110614007247/en/Intralytix
http://www.businesswire.com/news/home/20110614007247/en/Intralytix
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administration times are important in effective phage therapy, 
which will make significant differences to the effectiveness of 
phages: This experiment has other important results. The results 
proved the effectiveness of phage treatment in controlling E. 
coli in polygastric (ruminant) animals, the suitability to use this 
approach as an important preventive treatment. 

One important source of food contamination by E. coli 
O157:H7 is the transmission of the bacterium from fecesonto 
meat during slaughter [32,194]. Could be a phage cocktail be used 
to remove or decrease bacteria on meat car casses? O’Flynn et 
al. [185], demonstrated that a phage cocktail which consisted of 
phages e11/2, e4/1c, and pp01 pipetted medially onto nine slices 
of meat contaminated with a rifamp in-resistant derivative of E. 
coli O157:H7strain P1432 can decrease the of this bacterial strain 
in the meat. It was significant tat among those phage-treated 
phage samples; seven of the nine samples were completely free 
of bacteria but control non-treated pieces of meat were positive, 
exhibiting counts of E. coli O157:H7 of 105 CFU/mL [185]. The 
results are very promising and probably this approach can be 
viable to use in other types of animal production. A phage cocktail 
(PC1), able to lyse a variety of Salmonella enterica (formerly 
Salmonella choleraesuis) was modified to use the broad host-
range phage Felix O1 and three phages isolated from sewage 
sludge and water. Phage cocktail of PC1, which was applied to 
pig skinartificially-contaminated with multi-drug resistant S. 
typhimurium U288, produced a significant (P < 0.05) decrease 
in S. typhimurium U288 [195]. The use of a MOI (Optimal 
Multiplicity of Infection) in excess of the bacterial concentration 
seems to be closely related to the effectiveness of the treatment 
[32]. It is significant that the low temperature (4 °C) required 
for meat storage did not decrease the passive activity of the 
phage, indicating that the contaminating Salmonella ssp. could be 
eliminated by phage before potential exposure of consumers to 
meat products.

The effectiveness of bacteriophage-base anti enteropathogenic 
bacterial control depend not only to the host-range of phage 
but also in bacteriophage concentration and conditions of 
preservation before use or administration [187,197, 198].

Prebiotics

Prebiotics are non-digestible food ingredients that stimulate 
the growth of bifidogenic and lactic acid bacteria in the gastro-
intestinal tract and typically, the prebiotics consist of dietary 
fibers and oligosaccharides [199]. Prebiotics have a positive 
influence on the gastrointestinal tract’s immune system, and 
is often referred to as gut-associated lymphoid tissue or GALT 
and works to protect the body from invasion [200-202]. The 
GALT is an example of mucosa-associated lymphoid tissue. 
Gut-associated prebiotic have distinct origins and manners 
of action. Some of the most well-known prebiotics are: Inulin, 
mannooligosaccharides, fructooligo saccharides, arabino 
galactans, β-glucans [203,204]. Prebiotic preparations have been 
used for the optimal gut function, for favoring the proliferation of 
normal bacterial flora, and for impeding the growth of pathogenic 
organisms preventing different diseases [205]. The consumption 
of prebiotics can modulate immune parameters in GALT, 
secondary lymphoid tissues and peripheral circulation. Probiotic 
and prebiotic administration manipulate the intestinal bacterial 

community, accelerating the growth of commensal bacteria. In 
vivo experimental result from animal studies and human trials 
suggest that probiotics decrease the incidence of E. coli [204,206]. 
Prebiotic supplemented formula increase stool colony counts 
of bifido bacteria and lactobacilli in preterm neonates without 
adversely affecting weight gain [207]. Probiotics do reduce E. coli 
O157:H7 shedding in experimental-challenged immature calves 
and adult cattle. To be effective as pathogen mitigation agents, 
probiotics or prebiotics must escape fermentation in the rumen 
and digestion in the abomasum prior to reaching any pathogen 
colonization sites in the intestinal tract [208]. There is evidence 
to suggest that prebiotics do survive the rumen environment 
[150] and as such, these agents may be useful for addressing 
pathogen issues and disease. Fructooligo saccharides (FOS) are 
being increasingly included in food products and infant formulae 
due to their laxative effect. Their consumption increases fecal 
bolus and the frequency of depositions, reducing instances of 
constipation, considered one of the growing problems associated 
with inadequate fiber diet consumption in the modern society and 
neonates [209,210]. Eco-friendly alternatives to the therapeutic 
use of antimicrobials are always being investigated. Salmonella 
typhimurium and Escherichiacoli O157:H7 are one of the major 
etiological agents of food-borne illness in humans. The prebiotic, 
CelmanaxTM, formulated with a non-living yeast cell walls or 
MOS, acts as an anti-adhesive for Shiga toxin producing E. coli 
O157:H7 colonization and a mycotoxin in vitro. The CelmanaxTM 
also improves milk production and feed conversion efficiencies 
in dairy cattle [211,212].

Probiotics

Probiotics, a living “microorganisms which when 
administered in adequate amounts, confer a health benefit on 
the host’ [213]. The interest for those organisms and their use 
is increasing in the world during the last two decades. They 
play a role in the stabilization of the intestinal micro flora by 
competition against pathogens [214], reduction of lactose 
intolerance [215] prevention of antibiotic-induced diarrhea 
[216] and stimulation of the immune system [217], are just some 
of commonly recognized benefits. Microorganisms categorized 
as a probiotic must exhibit resistance to technological processes 
used in preparing the vehicle of probiotic delivery and produce 
antimicrobial substances [218]. It is clear that the inhibition 
of Escherichia coli by ingestion of a selected consortium of 
specially adapted probiotic microorganisms. A combination of 
L. plantarum, L. fermentum, B. bifidum LMG 11041, B. longum 
LMG 13197 and B. longum Bb 46 reduced E. coli resulted better 
to control E. coli. For the control of S. aureus, Lactobacillus ssp. 
strains were displayed better than others inhibitory effect. 
Lactobacilli strains are very flexible for growing and show a great 
adaptation to different conditions of application [219-221].

Theantagonistic effects of the probiotic cells towards the 
pathogensare mostly related to the ability of the strain to excrete 
the broad spectrum antimicrobial substances [222]. Therefore, 
the results suggest that exposure of the probiotics did not have 
negative effects on the ability of the probioticsto excrete the 
antimicrobial substances, a phenol type that is directly linked to 
pathogen inhibitory abilities of probiotics. The pre-adaptation 
of probioticsto multiple stresses enhanced their anti pathogenic 
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effects. The main advantage of using combination of probiotic 
is that they display beneficial effects against a wide range of 
nutritional, pathogenic, disorders and water regulation disorders 
[223]. We were able to detect better rates of weight grow rates 
when a mixture of probiotic was administrated to chickens 
during 12 weeks, but in our experiment the best results were 
obtained when the probiotic combination was supplemented 
with two prebiotic compounds enhanced hepatic function and 
immunological activity at the intestinal membrane level [de la 
Riva and Lopez, 2016, personal communication]. Probiotic is 
already important in clinical protocols and in nutritional practice 
in both humans and animal. It was reported that he administration 
on single probiotic as well as probiotic consortium can inhibit 
pathogen adhering to the human intestinal mucus [224]. As 
well as other authors I think that a consortium of probiotic, with 
different type of action, can better inhibit pathogen. 

Probiotics inhibit the virulence-related gene expression in 
Escherichia coli O157:H7 [225] affecting the attachment of this 
enterohemorrhagic bacterium to host intestinal epithelial cells, 
an essential step for the development of hemorrhagic colitis 
and hemolytic-uremic syndrome in humans. Genes involved 
in attachment are carried within a LEE (Locus of Enterocyte 
Effacement) known to be directly activated by QS (Quorum 
Sensing). In presence of a Lactobacillus acidophilus-secreted 
production and the expression of several virulence-related genes 
in EHEC O157 are affected at transcriptional level. L. acidophilus 
strain La-5 showed significant inhibition in the expression of 
the LEE genes and AI-2 production by EHEC O157 affecting the 
ability of E. coli to adhere to and cause lesions on mammalian 
cells [225]. 

The enhancement of the pathogen inhibitions will therefore 
be useful in the probiotic concept, but also is important if their 
action is focused not only to pathogen control but also to promote 
beneficial microbiota, promote digestion and nutrient absorption 
and to protect hepatic and kidney functionality. 

The problem of coi nfections and multiparasitism, the 
need of interdisciplinary approaches

Confection is a recent definition based on the facts that 
pathogens or parasites co-exist with other sharing the same 
environment in both the free life and inside of the same host. But 
probably the first the first attempt resulted when in the medical 
practice appeared the term of “syndrome”. This term allowing 
defining syndrome is a set of medical signs and symptoms that 
are correlated with each other and, often, with a specific disease 
according to their symptomatology, when host are independently 
infecting by more than one parasite.

More than 80% of all known species are considered 
parasites, including viruses, bacteria, flatworms, nematodes, 
protozoa and fungi. They are pathogen agents that depend to a 
host species to live and survive, provoking pathogenic process 
of different degree of health impact to that host [226]. Most 
parasites co-occur with other parasites and they regulate the 
populations of a wide number of hosts in all ecosystems by 
establishing certain life conditions for survival [227-229]. For 
this reason, parasitism becomes a tool of natural selection and 
drives evolution playing a significant contribution to biodiversity 

[186,230]. Organisms are a living community sharing specific 
environmental conditions forming co-evolutionary units. In 
those units include environmental and climatic conditions, host 
density levels, host behaviors, or host physiological conditions 
can promote co-infections because the same factors promote 
their presence without any synergistically interactions. It is 
interactions, rather than associations, among parasites that play 
a major role in structuring both parasite populations, both within 
and among hosts, and host populations [231,232]. Such situation 
implies several methodological challenges. When the multilateral 
assessment is evident, the selection of research model became an 
obstacle and represents a serious challenge to be reached at the 
beginning of the research process.

Gastrointestinal diseases, such as causing by Escherichia coli 
O157: H7 and other ETEC are one of the fields that clearly show 
the necessity of that interdisciplinary approach. Those diseases 
implicate a group of pathogens sharing not only the human being 
as a host by also farm animals, natural sources, reservoirs and 
routes of infection mainly through the domestic animals, poisoned 
food, contaminated water source, etc. There are also numerous 
similarities in symptoms, possible complications and affectations 
of these vital organs and body systems. The combination of 
several of these pathogens possibly leads to widespread organ 
failure with a fatal end and it should be analyzed and manage as 
a multi parasitism event. There are two non-etiological factors 
complementing this situation, one is the climatic change and the 
other is the globalization. The climatic change effects will differ 
from one pathogen to other. But there are coincidences that 
warner temperature in the world affects disease transmission 
enhancing the reproduction of pathogens, host or vectors. That 
is the case West-Nile virus, a mosquito-borne vital diseases and 
its transmitting agent [233]. It’s also clear the affectations over 
the land and water source, and over the animal, plant and human 
habitats and their pathogens [234]. The biology of each organism 
will be determinate their behavior to climate change. But it’s 
clear that it’s clear that predict how climate change influences on 
pathogens and their life cycles are uncertain [235].

Fragmentation of research and knowledge on different 
pathogenic agents allow the modeling of the studies given the 
possibility to understand individual process but them we must 
be to integrate the obtained information and put it into a more 
complex model, a network resulting from complex intra and inter 
relationship between different organisms and environmental 
conditions. Another important factor is environmental situation 
will change economic, political and social interrelationship 
between diseases and individuals and communities. Another 
very important factor is globalization. Globalization is a reality 
where the improvement in economy, transport, communication, 
political y social life cut the distances and cultural differences. 
But the increasing in relationships, movement of goods and 
persons is accompanied by the movement of pathogens and 
their transmitting vectors, asymptomatic host and reservoir, 
raw and processed food, products, animal, plants and seeds. All 
these together contribute to quickly spread of diseases and to 
transform outbreak into epidemic diseases. The climatic change 
also stimulates the pathogens to jump from habitual hosts and 
reservoirs to other species, becoming into new hosts or reservoir 
[235]. 
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ANIMAL PRODUCTION AND HUMAN HEALTH

Animal production and Escherichia coli O157:H7

The root of understanding the epidemiology and behavior of 
Escherichia coli O157:H7 is to explore the original reservoir, or 
ecological niche, where this bacterium lives according to their 
natural life cycle. The second point is to know the circumstances 
of contact of humans with this pathogen. Although is most 
frequent the isolation of enteropathogenic EHEC from animal 
to human, and from human to human, the incidence in food and 
water safety have been reported [7,236]. 

This review surveys the literature on carriage and 
transmission of enterohemorrhagic Escherichia coli EHEC 
serotype O157:H7. EHEC O157:H7 strains are hosted by healthy 
cattle and other ruminants. But in general, the majority of bovine 
strains are not transmitted to people, and for this reason they 
don’t present virulence factors responsible directly with human 
disease. This fact led to underestimation of prevalence in livestock 
of Escherichia coliO157:H7 and other EHEC. But taking the farm 
as a particular type of environmental system shared by different 
host species, the prevalence may extend for months or years. 
There are also some carriers displaying the ability to harbor high 
quantities of this bacterial pathogen for significant larger periods. 
Polygastric or ruminants, and particularly cattle are considered 
the major reservoir of EHEC O157:H7. Other ruminants like 
sheep, goats and deer, are also considered reservoir. With a 
low frequency EHEC O157:H7 have been isolated from other 
animals probably because of ingestion of meat, food, and water 
contaminated by ruminants’ stools [97] but in those reservoir the 
infection is asymptomatic with a few exceptions such as diarrhea 
in calves [237].

The prevalence of EHEC in animal seems to be seasonal. In 
cattle the peak of EHEC O157:H7 is observed in the summer 
and is higher in post weaned calves and heifers than in younger 
or older animals. The virulent strains of EHEC O157:H7 is not 
frequently host of pigs or chickens, but isolation in turkeys has 
been reported. In the wildlife EHEC O157:H7 hasn’t been isolated, 
with exception of deer and sporadically occur in amphibian, fish, 
and invertebrate carriers More exceptionally are the reports in 
domestic animals and can colonize plant surfaces and tissues via 
attachment mechanisms different from those mediating intestinal 
attachment. Undoubtedly, the prevalence in farm and food 
producing animal remain us that any step in animal-based food 
chain supply is susceptible and can be invaded and contaminated 
by EHEC. This is an important aspect to be considered when 
sanitary, safety and quality controls must be adopted and updated 
in any of productive step. These controls must be integrative 
and suitable form to warrantee the safety of production chain 
throughout Good Production, Manufacturing, Processing, 
Transporting, Storage and Commercialization Practices, and the 
establishment of suitable safety and quality control system like 
Hazard Analysis and Critical Control Points (International HACCP 
All) [238]. The system was conceived during the 1960s when the 
US National Aeronautics and Space Administration (NASA) asked 
Pillsbury to design and manufacture the first foods for space 
flights. In 1994, the organization of International HACCP Alliance 
was established initially for the US meat and poultry industries 

to assist them with implementing HACCP. Probably the concern 
appeared since the 1982 outbreak causing by Escherichia coli 
O157:H7 over the importance of EHEC bacteria as pathogenic 
agents was one of the reasons that led to that decision.

Hazard Analysis and Critical Control Points or HACCP system 
is a complex preventive approach to food safety from biological, 
chemical, and physical hazards in production processes that 
can cause the finished product to be unsafe. This system can 
be adapted to any specific kind of food production. The system, 
which is continually being improved and updated, designs 
measurements to reduce these risks to a safe level. Today in USA, 
the Food and Drug Administration (FDA) and the United States 
Department of Agriculture (USDA) [239] require mandatory 
HACCP programs many of chain production including, juice and 
meat, seafood, etc. All other food companies in the United States 
those are required to register with the FDA under the Public 
Health Security and Bioterrorism Preparedness and Response 
Act of 2002. Such regulation also acts for companies that export 
food to the US [238, 239].

Public health perspective

The One Health approach investigates the complexities 
surrounding the interplay between the animal, human and 
environmental domains (Figure 3). Many new and emerging 
diseases are zoonotic, meaning they can be transmitted from 
animals to humans. The approach addresses better control 
of these pathogens by recognizing connections between the 
animal, human and environmental domains. Escherichia coli are 
a bacteria those are commonly found in the gut of humans and 
many warm-blooded animals, because of 36-37°C of optimal 
temperature for growing and mostly they are harmless but other 
are enterohemorrhagic or EHEC, and are able to cause severe 
foodborne diseases. The abundance of such strains in terrestrial, 
aquatic and in air, made the EHEC an important food supply water 
source and distribution systems, contact with plants, animal and 
other potential source of EHEC and de diversity in food supply 
chain operations and trade activities are a potential opportunities 
for E. coli O157:H7 and other EHEC. Foodborne diseases causes 
approximately 76 million illness just in the United States, 
including 325´000 hospitalization and 5’000 deaths, with annual 
medical cost estimated in 5.5-9.4billion. The U.S. Department of 
Agriculture’s, Animal and Plant Health Inspection Service and 
the National Animal Health Monitoring System (NAHMS) have 
a program to determine the prevalence of such bacterial strain 
along the different steps of this production chain, analyzing fecal 
stool from states with the highest production of swine in the food 
chain supply. Such kind of surveillance programs exist in many 
countries including those that were animal production is one of 
the most important sectors in their economy [238-241]. 

E. coli O157:H7 is one of the microorganisms classified as 
Category B. The microorganisms of this group are relatively easy 
to spread and disseminate, causing moderate morbidity rates, 
and with some specific requirements in diagnostic capacity and 
enhanced care and surveillance. There are many pathogens and 
substance, causing foodborne illness as virus, bacteria, worms 
and parasites, fungi, animal toxins, plant substances and metals 
inorganic and organic compounds. It is transmitted to humans 
primarily through consumption of contaminated foods, such 
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Figure 3 Schematic representation of Escherichia coli 0157:H7 transmission to human and the four groups of pathogenic and other virulence factors 
displayed by the bacteria. The most important routes for its transmission are shown, particularly through cattle (natural reservoir) and other plants 
and animals serving as reservoir too, and the contamination of food chain and water supply.  

as raw or undercooked ground meat products, raw milk and 
contaminated raw vegetables and sprouts. it was recognized 
in 1982, following an outbreak in the United States of America. 
EHEC produces toxins, known as vero toxins or Shiga-like toxins 
because of their similarity to the toxins produced by Shigella 
dysenteriae. EHEC can grow in temperatures ranging from 7°C to 
50°C, with an optimum temperature of 37°C. Some EHEC can grow 
in acidic foods, down to a pH of 4.4, and in foods with a minimum 
water activity (Aw) of 0.95. Escherichia coli O157:H7 is the most 
important EHEC sero type in relation to public health; however, 
other serotypes have frequently been involved in sporadic 
cases and outbreaks. This bacterium is a worldwide threat to 
public health. As already was mentioned this strain has been 
implicated in many outbreaks of food diseases and their derived 
complications such as hemorrhagic colitis, vomiting, hemolytic 
uremic syndrome, etc. Some of these diseases provoke fatalities 
caused by generalized organ failures. The severity of disease, 
the absence of effective treatment and the latent and potential 
outbreaks from contaminated food supplies have encouraged 
an intensive research on whole aspects concerning de behavior 
of E. coli O157:H7, its biology, transmission, and pathogenesis, 
prevalence in living organisms and open environment. Outbreaks 
of this strains is caused by ingestion of contaminated meat, 

contaminated fruits and vegetables; unpasteurized milk and 
fruit juice; potable and recreational water such as lakes, rivers 
and streams; and animals at fairs, direct contact with its natural 
reservoir and carriers. The growing knowledge about this 
pathogen enhanced the development of prevention, detection 
and treatments at several moments of food because of the 
complexity of food supply chain from primary producers to final 
consumption, with numerous entry points and supply routes, 
susceptible for the introduction of contaminants and pathogens. 
In addition in any national food supply system are present 
items that are brought from other countries, crossing borders 
in different times according to the characteristic and caducity 
of imported food, some time in less than one day. The food 
supply chain system is a delicate economic and social network 
susceptible to human negligence, technological mistakes and 
even sabotage and terrorism [244-245].

In 1996, the outbreak occurred in primary schools of Sakai 
City, Osaka prefecture in Japan. During that incident more 
than 6000 schoolchildren were affected. EHEC causes not 
only hemorrhagic colitis but also serious complications such 
as hemolytic uremic syndrome (HUS). In the Sakai outbreak, 
approximately 1000 patients were hospitalized with severe 
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gastro-intestinal symptoms and about 100 victims had 
complications of HUS, resulting in 3 deaths. Different outbreak 
involved this pathogen has been developed since the discovery of 
this strain, and since 1982 it is considered significance as a public 
health problem [242,245]. 

This problem is accentuated when additional when outbreak 
is caused by antibiotic resistant bacteria. In 2011 in Germany, a 
large outbreak of HUS associated with the rare hybrid strain of 
Shiga toxin producing Escherichia coli (STEC) and bacteria (EAEC) 
Escherichia coli serotype O104:H4 (248). Compared with other 
outbreaks there are some differences in this case and previous 
outbreaks of STEC infection, particularly with the incident in 
Sakai, Japan (1996). The majority of the cases of the HUS (90%) 
occurred in adults, particularly in women, rather than in children. 
A total of 3816 cases (including 54 deaths) were reported, 845 
of which (22%) involved HUS [244,245]. All isolates classified 
as the outbreak strain were resistant to all penicillins and 
cephalosporins and susceptible to carbapenems. The implication 
of other Escherichia coli strain, serotype O104:H4, instead 
of O157:H7, the antibiotic resistance horizontal transfer and 
particularly the emerging problem of multi antibiotic resistance 
in bacteria represent a serous fact increasing the difficulties to 
manage outbreaks.

An increasing number of outbreaks are associated with the 
consumption of fruits and vegetables (sprouts, spinach, lettuce, 
coleslaw, salad) whereby contamination may be due to contact 
with feces from domestic or wild animals at some stage during 
cultivation or handling. EHEC has also been isolated from bodies 
of water (ponds, streams), wells and water troughs, and has 
been found to survive for months in manure and water-trough 
sediments. Waterborne transmission has been reported, both 
from contaminated drinking-water and from recreational waters 
[239,240].

Person-to-person contact is an important mode of 
transmission through the oral-fecal route. An asymptomatic 
carrier state has been reported, where individuals show no 
clinical signs of disease but are capable of infecting others. The 
duration of excretion of EHEC is about one week or less in adults, 
but can be longer in children. Visiting farms and other venues 
where the general public might come into direct contact with farm 
animals has also been identified as an important risk factor for 
EHEC infection. The number of cases of disease might be reduced 
by various mitigation strategies for ground beef (for example, 
screening the animals pre-slaughter to reduce the introduction 
of large numbers of pathogens in the slaughtering environment). 
Good hygienic slaughtering practices reduce contamination of 
carcasses by faeces, but do not guarantee the absence of EHEC 
from products. Education in hygienic handling of foods for 
workers at farms [240], abattoirs and those involved in the food 
production is essential to keep microbiological contamination 
to a minimum according to Codex Recommended International 
[241-243]. The only effective method of eliminating EHEC from 
foods is to introduce a bactericidal treatment, such as heating 
(e.g. cooking, pasteurization) or irradiation [243-245]. 

Outbreak investigations, especially for emerging pathogens 
such as E. coli O157:H7, pursuits a better understanding these 
pathogens’ epidemiology, because they can affect policy and 

behavior changes in public health systems particularly in 
epidemiological assessments and security in food supply chain 
[244-245]. The study of transmission routes, food vehicles, 
outbreak size, and clinical outcomes over time empowers public 
health officials, regulatory agencies, and health educators to target 
appropriate interventions and reevaluate current prevention 
strategies. To reduce this public health risk, immunization 
of cattle would be an effective intervention. Several models 
have shown that on-farm pathogen reduction programs would 
significantly reduce the risk of human illness.

CONCLUDING REMARKS
The Escherichia coli O157 is one of the major public health 

problem because of its prevalence within the multiple steps in 
the food supply chain, social feeding and the risk for animals 
and people. The problem is complex; the possible outbreaks 
are latent due bacterial prevalence in animal production sector 
and derived food processing system, in animal reservoir, 
animal carries and diverse ecological niches. Although many 
aspects of their pathogenicity, genetic and its prevalence in the 
environment have been studied and clarified; many important 
aspects remain under investigation. In 1996, I was witness of a 
prominent example of E. coli O157:H7 caused outbreak occurred 
in primary schools of Sakai City (Osaka Prefecture, Japan), telling 
us that even in countries with the best health care and sanitary 
standard and well educated society the problem still latent. The 
control of Escherichia coli O157 requires an integral plant of 
measures of different kinds and scope: from health education and 
public informative policy to the complex programs of zoonosis 
and public health epidemiological surveillance and the quality 
control and biohazard control in food chain supply. The control 
of this strain by using biotechnological approach such as vaccine 
development, bacteriophages, prebiotic, probiotic represent a 
promising approach to keep this problem under appropriate 
limits of control. 
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