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Abstract

Corn kernel breakage is an important cause of corn losses. Beginning at harvest, corn kernels 
are broken by collisions with farm machinery and equipment, drying induces increased kernel 
breakage susceptibility, and equipment transfers and grain loading generate collisions between 
corn kernels and with equipment, increasing the amount of broken kernels. Meanwhile, broken 
kernels increase the risk of insect damage, mold and mildew, as well as aggravate segregation 
during warehousing, which is detrimental to the safety and quality of corn storage. The causes of 
corn kernel breakage from harvest to storage are summarized, the water content is a key factor in 
the post-production quality and quantity of corn, the research results on kernel breakage in recent 
years are summarized, and suggestions are made for the research related to the reduction of corn 
kernel breakage rate.

INTRODUCTION

Corn is one of the food crops with the highest total production 
in the world and is one of the main food rations for human beings. 
To evaluate the quality of corn, in addition to color, capacity, 
and impurity content, the content of broken kernels is also an 
important indicator. According to the 2022/2023 U.S. Corn 
Harvest Quality Report (USGC, 2022), the overall average corn 
brokenness was 0.7%, the average total BCFM (broken corn and 
foreign material) was 0.9%, and 20.7% of the samples contained 
1.0% or more broken corn. Corn goes through a number of 
stages between harvest and storage as shown in (Figure 1), 
including threshing, drying, conveying, drying, and storage, 
and the properties of the corn kernels change along with these 

steps. Corn harvesting and threshing processes commonly use 
instrumental processes, and kernels are highly susceptible to 
shattering when they collide with machinery [1-4]. When drying, 
the moisture content of corn kernels will drop dramatically, and 
some of the grain kernels will be crumpled due to the loss of 
water to produce stress accumulation internally, and cracks will 
appear [5,6]. When conveyed into the warehouse, the kernels are 
subjected to shock loads during instrumental transit, which is 
an important causative factor for corn kernel breakage [7,8]. In 
addition, ventilation and drying are carried out prior to storage, 
and high temperature and rapid drying are highly susceptible 
to cracking of higher-moisture grain kernels, which affects the 
processing quality of maize. Cracked kernels can withstand a 
decrease in the strength of the action, and the cracks are very 
easy to expand during subsequent processing, which in turn 
leads to grain breakage [9,10].

Breakage of corn kernels can cause difficulties in post-harvest 
production and storage. Complex segregation mechanisms such 
as sieving and impact separation after corn entry into the silo 
cause uneven mixing, stratification and segregation of intact 
and broken corn kernels in the form of distribution, resulting 
in uneven porosity distribution within the grain pile, which is 
exacerbated by uneven settlement caused by the self-weight of 
the grain [11,12], which ultimately leads to uneven distribution 
of the airflow resistance within the silo, and over drying of the 
low concentration pile and over wetting of the high concentration 
pile, which in turn induce the propagation of insects and molds. 
Breaking also changes the physicochemical properties of corn Figure 1 All stages of post-harvest corn are accompanied by crushing.
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kernels thereby affecting the final quality of the product. Broken 
kernel surfaces are susceptible to infection and the growth of a 
variety of molds and pests, and the activity of molds and pests 
can lead to regional harborage of insects, condensation, and 
mold, and even to the entire silo [13-16]. Crushing of corn kernels 
likewise contributes to food waste [17]. This article reviews the 
causes and key factors of corn kernel breakage problems, grain 
storage risks induced by broken corn kernels, and the results 
of recent research on reducing corn kernel breakage, as well as 
recommendations on how to control corn kernel breakage and 
future research.

KERNEL BREAKAGE TYPE

The main types of kernel breakage are mechanical, thermal 
and biological breakage. Most of the mechanical breakage is due 
to impact, extrusion, shearing and rubbing between the seed 
grain and the instrument [18]. Thermal breakage is caused by the 
presence of temperature and moisture gradients within the seed 
grain, and uneven internal deformation after heating resulting in 
hygrothermal stresses [19]. Biological breakage is the breakage 
of seeds due to the propagation and activity of pests, molds as 
well as fungi [20].

Mechanical Breakage

Mechanical harvesting: The popularity of mechanized 
harvesting of corn has been increasing, accompanied by the 
mechanical harvesting process of the kernel crushing problem 
has become a new challenge [21-25]. Mechanical harvesting of 
corn consists of two main parts: picking and threshing as shown 
in (Figure 2) and in (Figure 3). The current development of 
corn harvester mainly through the picking roller picking cobs, 
picking mechanism through the roller shaft on the stalk to realize 
the picking cob, therefore, the roller type, roller speed and the 
gap between the concave plate, will affect the harvesting of the 
kernel breakage rate [26,27]. The mainstream “roller plucking” 
mainly pulls corn cobs off the plant through a number of pairs of 
relatively rotating plucking rollers. During the process, the high-
speed rotating cob picking rollers are in direct contact with the 
cobs, which can easily lead to serious cob injuries, kernel drop, 
and high breakage rate [28]. Geng A, et al. found that the impact 
force on the cobs in cob picking increases with the increase in cob 

diameter and the decrease in the gap of the cob picking rollers. 
In addition, the rotational speed of the picking rollers during 
spike picking is also closely related to the seed breakage rate, 
when the rotational speed of the picking rollers varies from 650 
to 850 r/min, the cob loss rate and the seed breakage rate show 
a tendency of decreasing and then increasing with the increase of 
the rotational speed, which is due to the positive correlation of 
the cob damage rate and the seed breakage rate with the contact 
time between the cobs and the picking rollers [29]. 

During threshing, the concave plates of the drum and the 
threshing elements on the drum in the threshing machine act 
on the cob to remove the kernels [30,31], and the corn cob is 
subjected to mechanical forces of pulling, rubbing, shearing, and 
impact [32]. The threshing force exerted on the cob by too slow a 
rotational speed or too large a plate spacing will make it difficult 
to meet the threshing conditions, and too high a rotational 
speed and a small plate gap will exert too much force on the cob, 
resulting in excessive kernel breakage. When corn threshing is 
carried out, the drum speed, drum diameter, ripple spacing, 
concave plate gap, feeding volume and feeding direction of the 
threshing machine have an effect on the threshing efficiency 
and breakage rate [33], and the results of the study show that 
reducing the drum speed is the most effective way to eliminate or 
reduce the kernel breakage, but the reduction of the drum speed 
also reduces the efficiency of threshing work [34].

The moisture content of corn at mechanical harvest is 
another key factor affecting kernel breakage [35], and studies 
have shown that the breakage susceptibility of corn first 
decreases with increasing moisture content and then increases 
above a certain moisture content [36,37], and harvest breakage 
is minimized when the moisture content of the corn is between 
22 and 26%, and harvest breakage is greater when the corn 
has a low moisture content of 22% or a high moisture content 
of 26% [38,39]. When the moisture content of maize exceeds 
26% during harvest, the plasticity of maize kernels is weakened 
and the compressive strength is reduced [40], and the moisture 
content continues to decrease after it falls below 13%, which 
results in a small increase in the plasticity of maize kernels, the 
compressive strength of maize kernels, and a small increase in Figure 2 Structure and working line of corn combine harvester.

Figure 3 Structure and working line of corn thresher.
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compressive capacity [41]. Johnson, et al. [42] investigated the 
principles of mechanical threshing and found that the energy 
required for high moisture content kernels to be threshed was 
greater, and that their kernels were subjected to greater forces 
during threshing, and the breakage rate was significantly higher 
(0.5% at 20% moisture content of kernels, and more than 3.5% at 
35% moisture content of kernels). The response trend between 
corn mechanical harvest crushing rate and water content was 
consistently positively correlated, and the relationship curve 
conformed to a quadratic parabolic shape [43]. The moisture 
content of corn kernels during harvesting directly affects the 
quality of corn machine harvesting, and excessive moisture 
content not only increases the corn kernel crushing rate during 
harvesting, but also has a great impact on the physicochemical 
properties of corn kernels, which is more prone to mold and 
insect problems [44].

Transportation: The use of precarious roads for 
transportation, excessive speed, old trucks or body failures, lack of 
qualification of drivers, and damage to the tools of transportation 
equipment lead to corn being subjected to crushing, collisions, 
impacts, insects and molds that can cause kernel breakage during 
transportation operations [45]. R Paulsen, et al. measured the 
breakage of two shipments of maize transported from Toledo 
to Rotterdam and from Peoria to Mexico, respectively, and the 
average rate of breakage increased from 3.6% to 15% from 
Toledo to Rotterdam. In the transportation from Peoria to Mexico, 
the average rate of breakage increased from 1.2% to about 5.3% 
[46]. The transportation chain is subjected to multiple equipment 
transports, where corn is subjected to repeated actions and 
high percentages of breakage occur [47,48]. Mainstream corn 
transportation machines include belt conveyors, Pneumatic 
conveyors, bucket elevators, and scraper conveyors, and 
(Figure 4) lists the commonly used handling machines. Corn 
transportation will use a large number of these machines, and the 
extrusion and collision between materials generated by machine 
constraints can damage the kernels [49,50], and the excessive 
speed of equipment transportation during transportation 
operations can lead to high-speed, violent impacts between 
corn kernels and conveying and storage equipment, resulting 

in kernel breakage [51]. JM Boac, et al. used a bucket elevator to 
transport 25 tons of corn for corn transportation breakage tests 
and found that the average breakage rate increased by 3.83% 
compared to the pre-transportation period [52]. Mwaro WB, et 
al. calculated the amount of particle breakage that occurs in bulk 
corn kernels transported through a drag chain conveyor with a 
steel plate, and the results showed that a drag chain conveyor 
with a steel plate can result in bulk corn kernel breakage up to 
2.63%. The kernel breakage rate increased with decreasing belt 
loading and decreasing moisture content. Corn kernel breakage 
also increased with repeated handling [53].

In addition to this, corn kernels dropped during transshipment 
or transferred between different equipment resulting in height 
differences, such as when unloading corn kernels from combines 
to wheelbarrows or filling storage bins, are subjected to impact 
loading, resulting in breakage of corn kernels with higher 
moisture content, whereas corn kernels with lower moisture 
content show better impact tolerance [54]. The results of drop 
impact tests conducted on corn, soybeans and wheat showed that 
mechanical damage to grain kernels increased with increasing 
drop height [55], which was attributed to the fact that grain 
kernels gained greater velocity with increasing drop height, 
which resulted in greater impact forces [56]. In drop impact 
experiments, the velocity of the grain stream may exceed the 
final velocity of individual grains when the drop height exceeds 
15 m because the resistance acting on individual grains is not 
exactly the same when the grain stream falls as a whole [57]. In 
addition, intergranular constraints are an important factor in the 
different behavior of granular flows with respect to the impact 
characteristics of individual grains [58]. When the granular 
flow is impacted, it causes secondary impacts between particles 
under the influence of rebound angle and rebound velocity [59]. 
Secondary impacts also cause breakage.

Mechanical breakage model: Mechanical breakage is 
the main form of post-production corn shattering that occurs, 
mostly due to corn kernels being subjected to forces that exceed 
their own strength. Mechanical breakage is a more serious 
problem than thermal and biological breakage. The control 
of kernel mechanical shattering can be predicted by studying 
the mechanical properties of kernels and building mechanical 
models for targeted prevention and control [60-62]. The index 
generally used to indicate the damage resistance of seed grains 
is the fracture force or critical damage energy [63,64], and seed 
grains exhibit different mechanical properties under dynamic 
and static loading. Under static loading conditions, the fracture 
force or critical damage energy can be measured by a uniaxial 
compression test [65], during which a single corn kernel is 
slowly compressed between two parallel plates until the kernel 
breaks [66]. The value of critical breaking force or critical energy 
of corn has been studied more [67-69] and can be found in the 
published literature. There are also several studies using three-
point bending tests and compression tests to determine the 
breaking force of kernels [70,71]. Under dynamic loading, such 
as when impact forces are applied, the seed grain is subjected 
to large transients, and there are two main ways to study the Figure 4 Several common corn transportation apparatus.
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impact breakage characteristics of seed grains, which are 
categorized as multi-particle impact breakage and single-particle 
impact breakage. Multi-particle impact breakage test needs to 
be combined with empirical knowledge to analyze the crushing 
mechanism, and it is difficult to reveal the seed kernel breakage 
characteristics in detail, and single-particle impact breakage test 
can be equipped with a high-speed camera to record the crushing 
process in detail, and a large number of scholars have established 
the grain impact damage model through the single-particle 
impact test [72,73].

Quasi-static load model: The static strength of corn kernels 
can be estimated from the fracture force and critical damage 
energy measured by bending and compression tests. Zoerb and 
Hall (1960) determined the basic mechanical and rheological 
properties of corn [74]. These properties include compressive 
strength, modulus of elasticity, maximum compressive stress, 
shear stress and stress relaxation. They also evaluated the 
modulus of elasticity (defined as the energy required to deform 
a corn kernel to its yield point) and the modulus of toughness 
(defined as the energy required to deform a corn kernel to its 
maximum compressive force) in compression tests. The values of 
the modulus of elasticity and modulus of toughness of corn were 
also roughly estimated. sheleff and Mohsenin (1969) investigated 
the effect of moisture content on the mechanical properties of 
corn [75] by uniaxial compression of individual kernels of corn 
at moisture contents ranging from 6.5% to 28% (dry basis). 
Linear ultimate load, apparent modulus of elasticity and modulus 
of deformation were determined using cylindrical indenter, 
spherical indenter and parallel plate, respectively, and each of the 
evaluated parameters decreased with increasing kernel moisture 
content. Hammerle and Mohsenin (1970) determined the tensile 
relaxation modulus of corn cuticular endosperm as a function of 
time, temperature and moisture content [76]. By superimposing 
rate sensitivity and time-temperature, the authors found that 
corn kernel cuticular endosperm had a flatter curve in relation 
to tensile relaxation modulus at temperatures ranging from 5.0°C 
to 69.4°C and moisture contents ranging from 13% to 27%. Su, 
et al. (2019) determined the extreme points of kernel stress for 
different shapes of corn kernels and for the same kernel with 
different stress sites, and determined that corn kernel maximum 
stress was most likely to cause kernel breakage in the abdomen 
[77]. The bending stress mathematical modeling of corn kernels 
enables the assessment of the deformation limits of the kernels 
when subjected to loads, such as stresses during kernel transit, 
pressures under stacking loads, and the extent to which the 
kernels are affected by moisture content, temperature, and time 
when stored in bins. In addition, the numerical data obtained 
from the results of bending and compression tests can help to 
provide more insight into the cracking damage to corn kernels 
caused by bending and compression phenomena that may be 
encountered during the relevant harvesting or sowing stages.

Impact model: Impact damage is another major cause of 
grain breakage during harvest and transit. The degree of impact 
damage is mainly influenced by impact velocity (for corn, impact 
damage is more significant when the impact velocity is greater 
than 10 ms-1 [78]), moisture content, impact angle and impact 

surface. The instantaneous loading rate of impact is much higher 
compared to static compression and bending [79]. In order to 
evaluate the ability of seeds to resist impact damage, researchers 
have introduced a seed quality index known as breakage 
sensitivity [80]. However, breakage sensitivity can only provide 
an estimate of the extent of damage, and the actual damage 
depends on the physical properties of the seed kernel as well as 
the degree and number of times the seed kernel has been loaded, 
which cannot be predicted by breakage sensitivity [81]. In order 
to relate kernel breakage to impact loading, many researchers 
have modeled breakage using single kernel impact tests. K (1979) 
built a small rigid hammer mill and used it to determine kernel 
damage due to impact. The results were described in terms of 
breakage rate and were used to evaluate the effects of sieve size, 
milling speed, kernel size, moisture content, and temperature on 
breakage rate, and it was found that corn kernel impact breakage 
was strongly correlated with moisture content (impact damage 
was least when the moisture content of corn kernels was 25%, 
and increased rapidly with increasing or decreasing moisture 
content), and it increased significantly with increasing particle 
size as well as with decreasing temperature [82]. S (1983) used 
an experimental setup with a purely random impact loading mode 
to predict the impact damage of corn kernels under real working 
conditions, linking the breakage susceptibility to the moisture 
content of the kernel and the loading rate. Fu, et al. (2009) defined 
the critical impact velocity at which breakage of a kernel occurs 
(the critical velocity is defined as the minimum impact velocity 
at which one or more cracks are observed within the kernel) 
[83]. Long (2022) established a DEM model of corn kernel and 
determined that the head of corn kernel has a strong capacity to 
withstand impact loads through high-precision simulation [84]. 
These models have improved researchers’ understanding of seed 
kernel impact damage factors, and in addition, these studies have 
greatly contributed to the development and improvement of 
devices that may produce seed kernel breakage.

Thermal Breakage

Dry: Harvested corn with high moisture content needs to be 
dried, which removes some of the pest eggs and molds from the 
surface of the corn kernel and keeps the corn at an appropriate 
moisture content, which is more conducive to subsequent 
storage and other processes [85-89]. However, the drying 
process is also accompanied by drying damage or even breakage 
of corn kernels. From the microscopic level, corn kernel drying is 
a dynamic process of heat and mass transfer, and the structure 
of corn kernels generally consists of seed coat, endosperm, and 
embryo, and the heat transfer coefficients (thermal conductivity) 
and moisture diffusion coefficients of each of the three parts are 
different, and in the process of drying, the internal wrinkles occur 
in the parts due to the lack of coordination of the heat as well 
as the mass transfer, resulting in the internal During the drying 
process, the uncoordinated transfer of heat and mass from each 
part leads to internal wrinkles and structural damage, which is 
further exacerbated by the uneven change in moisture content 
of the grain due to the different moisture diffusion coefficients 
[10,90-94]. The main reasons for kernel breakage are:
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A.	 Excessive drying temperature makes corn kernels expand, 
generating internal accumulated stresses, destroying 
the internal structure of the kernel and increasing its 
susceptibility to breakage [89,95].

B.	 Excessively fast drying rate makes the rate of internal 
moisture transfer to the surface of the grain smaller than 
the rate of surface moisture evaporation, generating a 
large moisture gradient inside the grain, which results in 
differences in volume shrinkage [96,97].

C.	 Uneven drying makes the drying process of grain grain 
temperature gradient, grain surface layer first drying, and 
grain center part of the moisture to diffuse, then continue 
to pass the hot air, drying efficiency is reduced, and easy 
to produce broken [98].

Drying temperature, drying rate, moisture content 
and temperature gradient: In the process of thermal drying, 
drying temperature is an important index that affects the drying 
quality of grains [99,100]. Many researchers have studied the 
deformation characteristics of corn kernels in thermal drying, 
and the force-deformation curves of corn kernels show linear 
changes at different temperatures, and with the increase of drying 
temperature corn kernels begin to appear rupture phenomenon 
[89,96,101]. The drying process is most concerned about the 
drying rate, the faster drying rate can bring more revenue space, 
however, with the increase of drying rate, the percentage of kernel 
stress rupture also increases [102]. Maintaining a reasonable 
drying rate is the key to ensure drying efficiency and corn 
quality. The initial moisture content of the kernel during drying 
is also an important factor that should not be ignored. Moisture 
content acts on the heat and mass transfer process during kernel 
drying, and is related to kernel drying effectiveness and breakage 
rate, and kernels of corn with high moisture content undergo 
greater volume changes during drying, and are more susceptible 
to breakage due to water dissipation and kernel crumpling 
[103,104]. In addition, the components of the corn kernel, such 
as the pericarp, hard endosperm, soft endosperm, and germ, have 
different water dissipation efficiencies, and it has been found that 
differences in changes in the moisture content of the internal 
structure of the corn kernel under the same drying conditions 
can trigger a moisture gradient and create stresses that can crack 
when the destructive strength of the corn kernel is exceeded 
[105-107]. The effect of temperature gradients during drying 
can also lead to corn kernel breakage, and temperature gradients 
caused by non-uniform drying environments or non-consistent 
drying rates can cause kernel cracking during drying [97], with 
temperature gradients typically arising within approximately 
20 seconds after the start of drying and disappearing after 2 to 
3 minutes [97,108]. Intermittent drying is an effective way to 
reduce the temperature gradient, and cracking due to excessive 
hygrothermal stress can be avoided by keeping the grain kernels 
in closed bins for a certain period of time, which makes it possible 
to maintain low moisture and temperature gradients within the 
kernels through natural heat and moisture transfer.

Dry kinetics: Considering the effects of the above factors, 
equations describing the change in moisture during drying of 
grain kernels can be obtained and the emergence and expansion 
of cracks can be predicted from the change in moisture content, 
on which the drying kinetics are based. Drying kinetics studies 
the relationship between the amount of moisture removal and 
various governing factors in the drying process. The study of 
drying kinetics is mainly the mathematical simulation of the 
thin-layer drying (thin-layer drying refers to the drying process 
in which the surface of the material layer of less than 20mm is 
completely exposed to the same environmental conditions, and it 
is the basis for the study of the deep-bed drying characteristics) 
curves to obtain the equation of the thin-layer drying. Since the 
19th century, researchers have used the Fick’s law of diffusion 
for describing the drying behavior of the material [109], which 
is used to describe the drying behavior of the material under 
the assumptions of the uniformity and isotropic, the resistance 
to flow of moisture within the material is uniformly distributed, 
the diffusion coefficient D is independent of the local moisture 
content, and the volume contraction of the material is negligible, 
Fick’s second law will be simplified as:

 
2

2

X XD
xτ

∂ ∂
=

∂ ∂
 		  (1)

where X is the wet fraction ratio (defined as the ratio of 
the free wet fraction to be removed to the initial wet fraction 
at a certain moment); τ is the drying time; D is the diffusion 
coefficient/m2∙s-1; and x is the diffusion distance/m. 

For an infinitely large flat plate (thin sheet layer material) 
with uniform initial moisture distribution, mass transfer 
symmetric about the center, and instantaneous equilibrium 
state of moisture content on the surface of the sample with the 
surrounding drying medium, the initial and boundary conditions 
can be determined, from which the theoretical equations of thin-
layer drying, i.e., the diffusion equation, can be obtained:

 π τ
π

∞

=

 − − +
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∑
2 2

c
2 2 2

00 c
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	     (2)

where MR is the moisture ratio at a certain moment; L is half 
of the thickness of the infinite flat plate/m.

Lewis [109] proposed a thin-layer drying rate equation 
similar to the Newton cooling rate equation for convective heat 
transfer and derived the Lewis equation:

 

π τ
π

∞

=

 − − +
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∑
2 2

c
2 2 2

00 c
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(2 1) 4R

n

X X n DM
X X n L      

(3)

where k is the drying constant/s-1.

Page [110] modified equation (3) to obtain the Page equation 
for thin layer drying of grains:

  exp( )n
RM kτ= − 		

 
(4)		

Karathanos [111] tabulated the first three terms of Eq. (2) 
into three exponential equations to obtain a semi-theoretical 
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equation for thin-layer drying, which is simple in form and meets 
the accuracy requirements of the engineering:

 1 1 2 2 3 3exp( ) exp( ) exp( )RM a k a k a kτ τ τ= − + − + −       (5)

where a1, a2, a3, k1, k2, and k3 are empirical constants.

Also listed in (Table 1) are a number of equations for drying 
kinetics for different grains, and with appropriate assumptions 
and modifications, some of these equations can be applied to 
predict damage and fragmentation during drying of corn kernels.

Biological Breakage

Storage is a crucial link in the whole post-production chain 
of maize, and microbial and pest infestation is a major threat to 
the safety of maize storage. The burrowing nature of pests can 
lead to the shattering of corn kernels [116]; microbial infestation 
can lead to the development of diseases in corn in storage bins, 
weakening of corn kernels, and increased risk of shattering [117].

Injurious insect: Storage pests include as many as 20 species 
of Coleoptera, Lepidoptera, and Ixodes [118-121], as listed in 
(Table 2). In order to accurately investigate the problem of corn 
kernel breakage caused by corn storage pests, researchers have 
proposed the concept of infection index to calculate the degree of 
infestation of the pests [122,123]. It has been investigated that 
after 5-6 months of storage without protective measures, the 
average breakage rate of stored maize affected by pests can reach 
75.85%, with losses ranging from 51% to 85% [124]. The degree 
of pest infestation is closely related to the temperature and 
humidity of the storage bin, and in the case of the maize weevil 
population, 30°C and 75% RH are the optimal environments for 

its growth on stored maize [125]. Kernel hardness is also a key 
factor for insect resistance and is influenced by moisture content 
[124,126]. Moisture content above 16% reduces corn kernel 
strength [127] and makes it more susceptible to infestation by 
corn storage pests. In addition, given the soft nature of the kernel 
and the proximity of nutrients to the kernel, adult pests feeding 
on corn kernels are biased to penetrate the flatter side, which is 
more likely to cause through cracks, resulting in breakage and 
shattering of the kernel [119].

Microorganisms: Microbial invasion is one of the main 
causes of quality deterioration in maize [4,20,128-130]. In 
particular, fungal contamination, fungal infestation of stored 
maize can lead to heat generation, mold production, and 
increased susceptibility of maize kernels to breakage [131]. 
Heat treatments such as roasting using temperatures above 
150°C during grain storage can reduce mycotoxin levels [132-
134]. However, despite treatment with high temperatures or 
other means, the fungal damage to grain can only be suppressed, 
not eliminated [135]. The reason is that, on the one hand, 
microorganisms can be transmitted and infected to grain through 
various media such as air, dust, rodents, insects and mites, tools 
and so on [136]; on the other hand, microorganisms have a 
significant characteristic of fast growth and reproduction [137]. 
In the grain storage environment, the respiration of the grain 
itself and the activity of bacteria release large amounts of heat 
and moisture [138-140], which provide conditions for pests to 
survive; pests destroy intact grain kernels, making the starch 
of the corn kernel as well as other internal constituents more 
accessible to microorganisms, and also increasing the risk of 
microbial infection [4,15,16]. On the other hand, a variety of pests 

Table 1: Drying Kinetic Model.

Equation type or 
researcher Model Name Drying equation

Semi-Theoretical

Henderson [112]
Single diffusion 

model

exp( )RM a kτ= −

Jha P [113]
2

2 2

8 exp[ ]
4
π τ

π
−

=R
kM

L

Sharaf E [112]
Double 

diffusion model

1 1 2 2exp( ) exp( )RM a k a kτ τ= − + −

Sacilik k [114] 1 2exp( )τ= − +MR A k A

Midilli A [115] 1 2exp( )τ τ= − +nMR A k A

Karathanos [111] Triple diffusion 
model 1 1 2 2 3 3exp( ) exp( ) exp( )RM a k a k a kτ τ τ= − + − + −

Semi-empirical

Lewis [109] Lewis model

2

2

X XD
xτ

∂ ∂
=

∂ ∂

Page [110] Page model exp( )n
RM kτ= −

Overhults [112] Modified Page 
Model

exp ( )n
RM kτ = − 

Wang [112] Modified Page 
Model

exp( )n
RM a kτ= −

Empirical

Thompson [112] 2ln (ln )R Ra M b Mτ = +

Wang [112] 21RM a bτ τ= + +

Table 2: Common storage pests.

Name Category Susceptible Products
Flour mite Sarcoptiformes; Acaridae Cereals, cereal products

Pulse weevil
Coleoptera; Bruchidae

Many pulses including kidney 
bean

Pulse beetle Many pulses
Dried fruit beetle Dried fruits, groundnut

Rice moth Coleoptera; Nitidulidae Rice, maize, soybean
Rusty grain beetle Lepidoptera; Galleridae Maize, wheat
Flat grain beetle

Coleoptera; 
Laemophloeidae

Maize
Tropical warehouse 

moth Rice, maize, mung bean

Long-headed flour 
beetle Lepidoptera; Phycitidae Maize

Merchant grain beetle Coleoptera; 
Tenebrionidae Oilseeds, groundnut

Saw-toothed grain 
beetle Coleoptera; Silvanidae

All cereals, pulses, spices

Indian meal moth Rice, wheat, maize
Australian wheat borer Lepidoptera; Phycitidae Paddy, rice, maize, sorghum

Granary weevil Coleoptera; Bostrichidae Rice, wheat, maize
Rice weevil

Coleoptera; 
Curculionidae

Rice, maize, wheat
Maize weevil Maize, also other cereals

Angoumois grain moth Paddy, wheat, maize
Red flour beetle Lepidoptera; Gelechiidae All cereals, starch, pulses

Confused flour beetle Coleoptera; 
Tenebrionidae

Flour, wheat, maize
Khapra beetle All cereals
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themselves carry microorganisms [141,142] and act as carriers 
to transport them to the site of infection [143]. Bio fragmentation 
of grain particles in storage silos is essentially caused by the 
interaction and interaction of various organisms for survival 
activities in an unfavorable storage environment.

CORN BREAKAGE HARM

Changing the Stacking Characteristics

Corn is a typical bulk agricultural material. It participates in 
commercial trade, processing and storage on the scale of grain 
pile. When corn grains are broken, the appearance of broken 
grains will change the physical properties (unit weight, porosity, 
angle of repose) of corn grain pile [144-148]. The unit weight 
value is the reference basis for calculating the pressure exerted 
on the wall of the silo or bulk silo by the corn stored in the silo. 
The angle of repose is a basic parameter to determine the flow 
characteristics of corn storage and processing, which affects the 
layout of hoppers, pipes, covered silos, ventilation process and 
the design of air flow distribution [146]. Porosity will affect the 
heat and mass transfer rate during aeration and drying. The 
appearance of broken kernels will reduce the porosity of corn and 
increase the angle of repose. The increase of angle of repose will 
increase the rolling friction coefficient of corn kernels, directly 
affect the feeding rate, and change the stacking characteristics of 
corn kernels, which is directly related to the storage quality of 
corn kernels and the pressure distribution at the bottom of the 
warehouse [149]. In addition, broken grains will fill the grain gap, 
resulting in an increase in bulk density [144], the stress borne 
by the warehouse wall from the grain pile is increased, which 
increases the storage risk. Similarly, the decrease of porosity 
will lead to the change of grain bulk density [150], In turn, it 
will cause changes in the pressure distribution at the bottom of 
the grain pile, and increase the stress value of corn grains at the 
bottom [151], the possibility of crushing grains at the bottom will 
also increase. In storage, the change of grain storage environment 
is affected by temperature, humidity, self pressure and other 
factors [11,12].

Accelerate Segregation

Corn is a non-homogeneous aggregation of grain kernels, 
and the different collision forces, gravity and air resistance 
between broken and intact kernels during binning can cause 
the redistribution of corn grain pile components, resulting in 
the formation of segregation phenomena [152]. The segregation 
phenomenon leads to redistribution of intact and broken kernels 
in the spatial location, which biases the aggregation of large and 
small kernels, respectively, within the corn [153]. The aggregation 
of broken kernels will lead to uneven airflow in the bulk grain 
pile, and corn in low airflow locations will not be cooled or dried, 
resulting in high moisture and temperature in some areas, making 
it more susceptible to pests and molds. On the other hand, the 
segregation phenomenon also reduces the porosity of the grain 
pile and affects the ventilation effect [154,155]. A large number 
of studies on grain segregation phenomenon have been carried 

out at home and abroad, and some scholars have investigated 
the occurrence mechanism of segregation phenomenon during 
binning from the perspective of kinetics [156]. Broken corn 
kernels are captured by the larger pores between the kernels 
in the process of sliding along the surface of the grain pile, so 
that the concentration of broken kernels near the vicinity of the 
unloading opening directly underneath is higher, while the larger 
intact kernels slide farther away, and the final result is that the 
broken corn kernels are concentrated in the center area, while 
the intact corn kernels are distributed in the surrounding area. 
As the drop height increases, the more severe the phenomenon 
of automatic grading of grain kernels becomes [157]. It has also 
been found that when corn falls through the discharge opening, 
collision occurs, and after the impact of large and small kernels, the 
initial horizontal velocity obtained by the large mass corn kernel 
and the small mass corn kernel are different, which produces 
segregation phenomenon [158]. Different mechanisms of particle 
grading during grain bin entry have been investigated, including 
agglomeration, airflow, chipping, rebound, displacement, 
embedding, fluidization, impact, penetration, push-off, rolling, 
sieving, sliding, and trajectory [159-164]. However, according 
to this review, although researchers have derived general laws 
of seed segregation through experimentation and analysis, there 
are fewer specific models that can predictably describe the 
segregation behavior.

Downgrade

Corn trade is an important part of international agricultural 
trade, and the trade value of corn is measured by the grades 
assigned by countries. Corn kernels are friable compared to other 
grain kernels [55], and broken corn kernels are an unfavorable 
factor for grade classification in corn trade. Different countries 
have different definitions for the brokenness of corn kernels, 
as shown in (Table 3), and the definition of brokenness of corn 
kernels in China is the percentage of kernels that are less than 
four-fifths of the average length of intact corn kernels in the 
kernel specimen. In China’s corn quality standards, the rate 
of broken kernels is taken as one of the important factors for 
grade classification, and corn is divided into five grades, in which 
the first-grade to the fifth-grade corn has to satisfy the rate of 
damage kernels, respectively less than or equal to 4%, 6%, 8%, 
10%, and 15%. The United States in the corn grading standards 
set five levels, the same, broken rate is also regarded as an 
important index of corn grading, first to fifth grade corn were 
required to damaged grain rate shall not be higher than 3%, 5%, 
7%, 10%, 15%, broken grain rate shall not exceed 3%, 5%, 7%, 
10%, 15%. The Canadian Grain Commission divides corn into five 
grades, and the rate of damaged grains in these five grades must 
not exceed 3%, 5%, 7%, 10%, 15%, and the rate of broken grains 
must not exceed 2%, 3%, 5%, 7%, and 12%, respectively.

CONCLUSION

This paper reviews the types of breakage, causes of breakage, 
factors affecting breakage, hazards of breakage, and models used 
to predict breakage that occur in the post-production process of 
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corn. Most of the research on corn post-production mitigation 
has dealt with losses due to corn kernel shattering, and a variety 
of factors contribute to the occurrence of shattering from the 
beginning of corn harvest. Mechanical harvesting is the link where 
most of the crushing occurs, and there are many related studies, 
especially on damage reduction by agricultural equipment; in the 
subsequent link, drying induces breakage, which is essentially due 
to the reduction of breakage sensitivity resulting in the kernels 
being more susceptible to breakage, and the breakage of corn 
kernels is more difficult to observe in this link, and the change of 
critical stress value of corn kernels is usually used for predicting 
the likelihood of breakage; the breakage of corn kernels during 
the warehousing link, which can be used for prediction; and the 
breakage of corn kernels during the storage link, which can be 
used for prediction. The breakage of corn kernels in the binning 
process can be attributed to collision and extrusion, which is 
easy to observe, and the mechanism of breakage is related to 
dynamics and kinematics, which is a more complicated factor to 
be considered in the related research. To summarize the different 
mechanisms of corn kernel breakage in each link, all of them are 
closely related to the moisture content. High moisture content 
of corn in the mechanical harvesting period will increase the 
breakage rate; low moisture content of corn in the drying period 
will make the corn kernel more brittle and reduce the sensitivity 
to breakage.

To solve the problem of corn kernel breakage, it is necessary 
to start from each link. Mechanical harvest breakage problem 
should focus on the two main factors leading to mechanical 
harvest breakage, on the one hand, to strengthen the professional 
quality training of operators, research and development of more 
simple operation, more powerful agricultural equipment; on 
the other hand, to reasonably formulate the harvesting plan, to 
ensure that the corn is in the harvest under the safe moisture 
content. The solution to the problem of drying-induced corn 

kernel breakage is more inclined to the use of new drying 
technology, reduce the drying time of corn kernels to reduce the 
possibility of damage to the internal structure of corn kernels, 
and at the same time to control the moisture content of corn 
kernels at an appropriate level to reduce the risk of over-drying 
and breakage of corn kernels. For the problem of broken corn 
in the warehouse, it is necessary to optimize the operation line 
of corn in the warehouse, reduce the number of equipment 
transfer, reduce the possibility of collision and extrusion of corn 
kernels and mechanical equipment; it is also necessary to carry 
out a reasonable operation of the warehouse, avoiding the empty 
warehouse into the grain, increasing the curvature of the corner 
of the skidding pipe, reasonable design of the unloading device, 
and comprehensively consider the difference in the height of the 
fall of corn kernels in different warehouses, and as far as possible 
reduce the horizontal initial velocity of the fall of the corn 
kernels. The initial horizontal speed of the falling corn kernels is 
minimized as much as possible. In the whole corn processing link, 
corn moisture content has been throughout, is to determine the 
corn in different parts of the processing can guarantee the quality 
of important factors, but also to determine whether the corn can 
meet the important parameters, make a proper detection of 
moisture content on the corn in all aspects of the quality of an 
important significance.
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Table 3: Breakage rate requirements for maize grading in three countries.

Country Grading parameters

U.S. Grade Number Heat-Damaged
Kernels (%) Damaged Kernels Total (%) Broken Corn and Foreign Material (%)

1 0.1 3.0 2.0
2 0.2 5.0 3.0
3 0.5 7.0 4.0
4 1.0 10.0 5.0
5 3.0 15.0 7.0

Canada Grade Number Density (g/l) Heat-Damaged
Kernels (%) Damaged Kernels Total (%) Broken Corn and Foreign Material (%)

1 688 0.1 3.0 2.0
2 666 0.2 5.0 3.0
3 644 0.5 7.0 5.0
4 622 1.0 10.0 7.0
5 580 3.0 15.0 12.0

China Grade Number Density (g/l) Mildew grain (%) Damaged Kernels Total (%)
1 720 2.0 4.0
2 690 6.0
3 660 8.0
4 630 10.0
5 600 15.0
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