OSciMedCentral

Research Article

PCR/ESI-TOF-MS Based Method for Detecting Polymorphisms of mtDNA in Chinese Han Population and Testing of a Special Maternity Case

Li Li*, Yan Liu, Yuan Lin and Zhenmin Zhao

Shanghai Key Laboratory of Forensic Science, Institute of Forensic Sciences, China

Abstract

Base compositions of 12 amplicons in HV1 derived from primers covering coordinates15924-16428 and base compositions of 12 amplicons in HV2 derived from primers covering coordinates 31-576 were determined using ESI-TOF-MS based PLEX-ID system. Eight segments in HV1 and ten segments in HV2 were found to be polymorphic. Highly polymorphic information was available in the regions of 16124-16250 and 138-340. After the assay was applied to a special maternity duo case, the false mother was excluded as the biological mother despite the fact that they shared at least an allele at 46 autosomal STR loci.

INTRODUCTION

Due to maternal inheritance, mitochondrial DNA (mtDNA) is valuable for testing of special kinship, e.g. relationships between maternal individuals, half-sibling sisters, aunt-nephew, maternal uncle-nephew and grandmother-granddaughter. In addition, mtDNA can be used for detection of problematic samples such as old and degraded bones, teeth and hair shafts. Identification of the remains of Russia's last Tsar Nicholas II is a typical case about mtDNA application [1].

In forensic laboratories, mtDNA detection was routinely performed by Sanger sequencing, but the technique was only for analysis of part of mtDNA hypervariable regions (16024-16365 in HV1 and 73-340 in HV2). If the technology of higher resolving power can be used, more information about mtDNA in wider range will be gathered.

In this study, multiplex PCR amplification followed by electrospray Ionisation time-of-flight mass spectrometry (ESI-TOF MS) was used to detect the polymorphisms of mtDNA by characterizing the base compositions of HV1 and HV2, nucleotide positions 15924-16428 [Figure 1] and 31-576 [Figure 2] [2], respectively. This assay allows for maximum discrimination of the hypervariable segments of mtDNA without targeting specific nucleotide positions.

Annals of Forensic Research and Analysis

*Corresponding author

Li Li, Shanghai Key Laboratory of Forensic Science, Institute of Forensic Sciences, Ministry of Justice, China, Shanghai 200063, Email: anneinchina@163.com

Submitted: 06 March 2015

Accepted: 07 July 2015 Published: 09 July 2015

Copyright

© 2015 Li et al.

OPEN ACCESS

Keywords

- mtDNA
 ESI-TOE-MS
- PLEX-ID
- Forensic genetics

MATERIALS AND METHODS

Sample collection

Blood samples were collected from twelve unrelated Chinese Han individuals with informed consent.

DNA extraction and quantification

Genomic DNA was extracted from blood samples using QIAamp Mini Blood kit (Qiagen, German) and quantified using the Quantifiler Human DNA Quantification kit (Life Technologies, USA) and then the DNA concentration was adjusted to 10ng/µL.

mtDNA amplification and detection

American Abbott company provided technical service for the mtDNA analysis [3,4]. Primer sequences were reported by Hall TA et al in 2009 [5]. Firstly, 8 triplex PCR systems were used to amplify 12 segments of mtDNA HV1 coordinates 15924-16428 and 12 segments of HV2 coordinates 31-576 (the adjacent segments overlap 2-22 bp, shown in [Figure 3]. Then the PCR products were separated by ESI-TOF MS and the base compositions of HV1 and HV2 regions were determined by IBIS Track software (Abbott, USA) on the PLEX-ID platform.

During the test, known sample which had been sequenced was used as positive control. PCR amplifications and clean-up were conducted in Mastercycler (Eppendorf, German) on 96-well

Cite this article: Li L, Liu Y, Lin Y, Zhao Z (2015) PCR/ESI-TOF-MS Based Method for Detecting Polymorphisms of mtDNA in Chinese Han Population and Testing of a Special Maternity Case. Ann Forensic Res Anal 2(2): 1018.

⊘SciMedCentral

15901 AAACTAATAC ACCAGTCTTG TAAACCGGAG ATGAAAACCT TTTTCCAAGG ACAAATCAGA 15961 GAAAAAGTCT TTAACTCCAC CATTAGCACC CAAAGCTAAG ATTCTAATTT AAACTATTCT 16021 CTGTTCTTTC ATGGGGAAGC AGATTTGGGT ACCACCCAAG TATTGACTCA CCCATCAACA 16081 ACCGCTATGT ATTTCGTACA TTACTGCCAG CCACCATGAA TATTGTACGG TACCATAAAT 16141 ACTTGACCAC CTGTAGTACA TAAAAACCCA ATCCACATCA AAACCCCCTC CCCATGCTTA 16201 CAAGCAAGTA CAGCAATCAA CCCTCAACTA TCACACATCA ACTGCAACTC CAAAGCCACC 16261 CCTCACCCAC TAGGATACCA ACAAACCTAC CCACCCTTAA CAGTACATAG TACATAAGC 16321 CATTTACCGT ACATAGCACA TTACAGTCAA ATCCCTTCTC GTCCCCATGG ATGACCCCCC 16381 TCAGATAGGG GTCCCTTGAC CACCATCCTC CGTGAAATCA ATATCCCG</u>CA CAAGAGTGCT

Figure 1 Revised Cambridge Reference Sequence of HV1 portion of the mtDNA control region (nucleotide positions 15924-16428 were underlined).

1 GATCACAGGT CTATCACCCT ATTAACCACT CACGGGAGCT CTCCATGCAT TTGGTATTTT 61 CGTCTGGGGG GTATGCACGC GATAGCATTG CGAGACGCTG GAGCCGGAGC ACCCTATGTC 121 GCAGTATCTG TCTTTGATTC CTGCCTCATC CTATTATTTA TCGCACCTAC GTTCAATATT 181 ACAGGCGAAC ATACTTACTA AAGTGTGTTA ATTAATTAAT GCTTGTAGGA CATAATAATA 241 ACAATTGAAT GTCTGCACAG CCACTTTCCA CACAGACATC ATAACAAAAA ATTTCCACCA 301 AACCCCCCCT CCCCCGCTTC TGGCCACAGC ACTTAAACAC ATCTCTGCCA AACCCCAAAA 361 ACAAAGAACC CTAACACCAG CCTAACCAGA TTTCAAATTT TATCTTTTGG CGGTATGCAC 421 TTTTAACAGT CACCCCCCAA CTAACACATT ATTTTCCCCT CCCACTCCCA TACTACTAAT 481 CTCATCAATA CAACCCCCGC CCATCCTACC CAGCACACAC ACACCGCTGC TAACCCCCATA 541 CCCCGAACCA ACCAAACCCC AAAGACACCC CCCACAGTTT ATGTAGCTTA CCTCCTCAAA

Figure 2 Revised Cambridge Reference Sequence of HV2 portion of the mtDNA control region (nucleotide positions 31-576 were underlined).

16254 .. 16305, 15924 .. 15985, 178 .. 267 16283 .. 16344, 234 .. 313, 15963 .. 16017 16342 .. 16381, 16015 .. 16051, 263 .. 340 16048 .. 16098, 16377 .. 16428, 289 .. 367 16182 .. 16250 , 355 . .401 , 31 .. 76 16078 .. 16129 , 389 . .437 , 41 .. 114 103 .. 162 . 16124 .. 16201 . 493 .. 576 431 .. 501 , 16157 .. 16201 , 138 .. 217

⁽M) and the boy (B) shared at least an allele at each of the 46

⊘SciMedCentral

autosomal STRs detected, but she was adamant that she had not given birth to the child. In order to define the facts, mtDNA and SNP detection was followed.

RESULTS AND DISCUSSION

Techniques for mtDNA detection

Various technologies for mtDNA detection have been reported, such as Sanger sequencing, high-resolution melt (HRM) profiling, denaturing high-performance liquid chromatography (DHPLC), exo-DNA polymerase and RFLP analysis, single strand conformation polymorphism (SSCP) analysis, denaturing gradient Gel electrophoresis assay, pyrosequencing, SNapShot and nextgeneration sequencing. For example, detection of mitochondrial heteroplasmy in cerebrospinal fluid using DHPLC was reported by Conley in 2003 [6]; Quantitation of heteroplasmy in mitochondrial DNA mutations by primer extension using Vent(R) (exo-) DNA polymerase and RFLP analysis was reported by Jacobi in 2001 [7]. In 1997 Nollau found that SSCP analysis could be used for detecting heteroplasmic mtDNA if the level of heteroplasmy was above 10% [8]; In 2000 Tully confirmed that the sensitivity of denaturing gradient Gel electrophoresis assay was about 1% [9]. It was worth mentioning that above techniques were only for detection of part of mtDNA hypervariable regions (16024-16365 in HV1 and 73-340 in HV2) because of the limitation of discrimination power.

In this work we applied ESI-TOF-MS assay on the PLEX-ID platform and more discriminating information than that from Sanger sequencing was obtained. ESI-TOF-MS assay for HV1 and HV2 were designed to read bases 15924-16428 and 31-576 respectively, while the Sanger sequencing for HV1 and HV2 were designed to read bases 16024-16365 and 73-340, which means that ESI-TOF-MS assay spans regions larger than Sanger sequencing. Although the PLEX-ID platform for analyzing of mtDNA is now no longer available, the comparative analysis of the ESI-TOF-MS technology and the traditional fluorescence-based capillary electrophoresis for typing of amplicons has demonstrated the potential advantages of the mass-spectrometric technique [10].

Polymorphism of mtDNA HV1

8 out of 12 segments of HV1 (15924-16428) showed SNP and/ or poly-C length polymorphisms [Table 1]. It could be seen that

Table 1: Polymorphisms of mtDNA HV1.							
Primer	Amplicon	Base composition	Frequency	Primer	Amplicon	Base composition	Frequency
2901	15924-15985	A24 G10 C14 T14	0.0833	2893	16182-16250	A23 G5 C30 T10	0.0588
		A25 G9 C14 T14	0.9167			A23 G5 C31 T10	0.0588
2925	15963-16017	A22 G4 C13 T16	1.0000			A23 G5 C32 T10	0.0588
2899	16015-16051	A7 G10 C5 T15	1.0000			A23 G5 C33 T10	0.0588
2898	16048-16098	A15 G7 C16 T13	1.0000			A24 G5 C26 T14	0.0588
2897	16078-16129	A15 G8 C13 T16	0.0833			A24 G5 C27 T13	0.5296
		A15 G8 C14 T15	0.7500			A24 G5 C28 T12	0.0588
		A16 G7 C14 T15	0.1667			A24 G5 C28 T13	0.0588
2896	16124-16201	A26 G7 C29 T15	0.0588			A24 G5 C29 T13	0.0588
		A26 G7 C30 T15	0.0588	2892	16254-16305	A18 G4 C21 T9	0.1667
		A26 G7 C31 T15	0.0588			A18 G4 C22 T8	0.2500
		A26 G7 C32 T15	0.0588			A18 G4 C23 T7	0.2500
		A26 G8 C27 T17	0.1177			A18 G4 C24 T6	0.2500
		A27 G7 C27 T17	0.3531			A19 G3 C23 T7	0.0833
		A27 G7 C28 T16	0.0588	2891	16283-16344	A24 G5 C18 T15	0.0833
		A28 G6 C27 T17	0.0588			A24 G5 C19 T14	0.1667
		A28 G6 C28 T16	0.0588			A24 G5 C20 T13	0.3334
		A28 G6 C29 T16	0.0588			A24 G5 C21 T12	0.0833
		A28 G6 C30 T16	0.0588	2891	16283-16344	A25 G4 C17 T16	0.0833
2895	16157-16201	A16 G1 C20 T7	0.0555			A25 G4 C18 T15	0.2500
		A16 G1 C21 T7	0.0555	2890	16342-16381	A8 G5 C17 T10	0.7500
		A16 G1 C22 T7	0.0555			A8 G5 C18 T9	0.2500
		A16 G1 C23 T7	0.0555	2889	16377-16428	A12 G9 C20 T11	1.0000
		A16 G2 C18 T9	0.0555				
		A16 G2 C19 T8	0.0555				
		A17 G1 C19 T7	0.0555				
		A17 G1 C19 T8	0.3892				
		A17 G1 C20 T7	0.1113				
		A17 G1 C21 T7	0.0555				
		A17 G1 C22 T7	0.0555				

⊘SciMedCentral_

16124-16250 in HV1 was high informative for forensic purpose.

Polymorphism of mtDNA HV2

10 out of 12 segments of HV2 (31-576) showed SNP and/or poly-C length polymorphisms [Table 2]. It was found that 138-340 in HV2 was high polymorphic.

Case application

The assay was applied to the special duo case in which the false mother could not be excluded as the biological mother because they shared at least an allele at 46 STR loci. To reach accurate conclusion, mtDNA detection was carried out as supplement to autosomal STR loci. mtDNA profiles clearly excluded the mother

Primer	Amplicon	Base composition	Frequency	Primer	Amplicon	Base composition	Frequency
2902	31-76	A5 G16 C10 T15	0.9167	2907	263-340	A25 G6 C34 T14	0.3125
		A5 G16 C11 T15	0.0833			A25 G6 C35 T14	0.1875
2903	41-114	A12 G25 C19 T18	0.9167			A25 G6 C36 T14	0.3125
		A12 G25 C20 T18	0.0833			A26 G5 C34 T14	0.0625
2904	103-162	A10 G10 C17 T23	0.2143			A26 G5 C35 T14	0.0625
		A10 G10 C18 T22	0.3571			A26 G5 C36 T14	0.0625
		A10 G10 C19 T21	0.3571	2923	289-367	A27 G6 C35 T12	0.3750
		A11 G10 C18 T21	0.0715			A27 G6 C36 T12	0.2500
2905	138-217	A23 G9 C17 T31	0.0667			A27 G6 C37 T12	0.3750
		A23 G9 C18 T30	0.3333	2910	355-401	A21 G3 C14 T9	1.0000
		A23 G9 C19 T29	0.3333	2916	389-437	A11 G7 C12 T19	1.0000
		A23 G9 C20 T28	0.0667	2912	431-501	A20 G1 C34 T16	0.6154
		A24 G8 C19 T29	0.1333			A20 G1 C35 T15	0.3846
		A24 G9 C19 T28	0.0667	2913	493-576	A26 G6 C45 T5	0.4615
2906	178-267	A31 G15 C14 T29	0.0769			A27 G6 C46 T5	0.3078
		A31 G15 C15 T28	0.2308			A27 G6 C49 T5	0.0769
		A32 G15 C14 T29	0.3847			A27 G6 C50 T5	0.0769
		A32 G15 C15 T28	0.1538			A28 G6 C47 T5	0.0769
		A33 G14 C14 T29	0.0769				
		A33 G14 C16 T27	0.0769				
2908	234-313	A29 G6 C29 T16	0.1332				
		A29 G6 C31 T16	0.0667				
		A30 G6 C29 T16	0.2667				
		A30 G6 C30 T16	0.2667				
		A30 G6 C31 T16	0.2667				

Table 3: mtDNA differences between the detected mother and boy.								
mt DNA HV			mt DNA H	mt DNA HV				
Primer	Segment	Base composition	Primer	Segment	Base composition			
2896	1610216224	M:A45 G13 C41 T24	2908	204330	M:A42 G16 C38 T32			
		B:A44 G13 C43 T22 B:A44 G13 C44 T22 B:A44 G13 C45 T22 B:A44 G13 C45 T22			B:A42 G16 C39 T32 B:A42 G16 C40 T32			
2893	1615416268	M:A44 G7 C45 T19	2907	239363	M:A44 G10 C49 T23			
		B:A43 G7 C48 T16 B:A43 G7 C49 T16 B:A43 G7 C50 T16 B:A43 G7 C51 T16			B:A43 G11 C50 T23 B:A43 G11 C51 T23			
2892	1623116338	M:A40 G9 C39 T20	2923	262390	M:A47 G10 C53 T20			
		B:A41 G8 C40 T19			B:A47 G10 C54 T20 B:A47 G10 C55 T20			
2891	1625616366	M:A38 G8 C40 T25	2913	464603	M:A43 G10 C62 T23			

⊘SciMedCentral

Table 3: mtDNA differences between the detected mother and boy.							
mt DNA HV			mt DNA H	mt DNA HV			
Primer Segment Base composition		Primer	Segment	Base composition			
		B:A37 G9 C41 T24			B:A44 G10 C63 T23		
2890	1631816402	M:A20 G14 C31 T20					
		B:A20 G14 C30 T21					

Table 4: SNP differences between the detected mother and boy.

SNP locus	Mother(M)	Boy(B)
rs 1109037	А	G
rs 214955	G	А
rs 7229946	G	А
rs 985492	С	Т
rs 9951171	G	А

as the biological parent because the two persons had clear differences at 9 of the 24 fragments [Table 3]. The conclusion was confirmed by additional typing of SNP [Table 4]. Later on, investigation confirmed that the putative mother was in fact the boy's paternal aunt. The mtDNA detection results meant that the mass spectrometry-based method for mitochondrial profiling could have promising prospects.

ACKNOWLEDGEMENTS

We would like to acknowledge Abbott company for providing the PLEX-ID platform and supplying the Forensic Mitochondria kits. We would also like to thank Dr. Steve Hofstadler and Dr. Tom Hall for their assistance with identifying the DNA samples on PLEX-ID.

REFERENCES

- 1. Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G, et al. Identification of the remains of the Romanov family by DNA analysis. Nat Genet. 1994; 6: 130-135.
- 2. Homosapiens mitochondrion, complete genome.

- 3. Howard R, Encheva V, Thomson J, Bache K, Chan YT, Cowen S, et al. Comparative analysis of human mitochondrial DNA from World War I bone samples by DNA sequencing and ESI-TOF mass spectrometry. Forensic Sci Int Genet. 2013; 7: 1-9
- Ivanov PL. A new approach to forensic medical typing of human mitochondrial DNA with the use of mass-spectrometric analysis of amplified fragments: PLEX-ID automated genetic analysis system. Sud Med Ekspert. 2010; 53: 46-51.
- Hall TA, Sannes-Lowery KA, McCurdy LD, Fisher C, Anderson T, Henthorne A, et al. Base composition profiling of human mitochondrial DNA using polymerase chain reaction and direct automatedelectrospray ionization mass spectrometry. Anal Chem. 2009; 81: 7515-7526.
- Conley YP, Brockway H, BeattyM, Kerr ME. Qualitative and quantitative detection of mitochondrial heteroplasmy in cerebrospinal fluid using denaturing high-performance liquid chromatography. Brain Res Proto. 2003; 12: 99-103.
- Jacobi F K, Meyer J, Pusch C M, Wissinger B. Quantitation of heteroplasmy in mitochondrial DNA mutations by primer extension using Vent(R)(exo-) DNA polymerase and RFLP analysis. Mutat Res. 2001; 478: 141-151.
- 8. Nollau P, Wagener C. Methods for detection of point mutations: performance and quality assessment. Clin chem. 1997; 43: 1114-1128.
- Tully L A, Parsons T J, Steighner R J, Holland MM, Marino MA, Prenger VL, et al. A sensitive denaturing gradient Gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet. 2000; 67: 432-443.
- Leonov SN, Zemskova EI, Timoshenko TV, Ivanov PL. The evaluation of the 287prospects for the application of mass-spectrometric analysis of the amplified 288 DNA fragments for the purpose of forensic medical expertise. Sud Med Ekspert. 2014; 57: 24–27.

Cite this article

Li L, Liu Y, Lin Y, Zhao Z (2015) PCR/ESI-TOF-MS Based Method for Detecting Polymorphisms of mtDNA in Chinese Han Population and Testing of a Special Maternity Case. Ann Forensic Res Anal 2(2): 1018.