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Liver is a vital organ in the body responsible for detoxification, 
protein synthesis and metabolism. Pathologically, the liver is 
involved in many metabolic and monogenic diseases [1]. The 
intrinsic anatomic properties of liver make it a preferred target 
for gene therapy of liver originated or monogenic diseases. 
Although none of the currently available methods of gene 
delivery is optimal for liver gene therapy, the concerted effort 
from researchers has provided a wide range of choices for gene 
transfer to the liver [2-4]. The objective of this mini-review is to 
provide a brief summary for various methods developed thus 
far that are applicable to liver gene therapy (Table 1). Major 
advantages and disadvantages of each method are also provided 
for practical consideration

Virus-based gene-delivery system

Virus-based gene delivery system represents a group of 
artificially made, replication deficient viruses [5]. The most 
commonly used ones are adeno-associated viral vectors [6], 
lentiviral vectors [7], and adenoviral vectors [8]. Viral vectors 
under the development include foamy viral vectors [9], herpes 
simplex viral vectors [10], and oncoretroviral vectors [11]. Viral 
vector-mediated gene delivery to liver can be achieved via the 
hepatic artery [12,13], portal vein [14,15], or bile duct [14] or by 
direct injection to the liver [14]. Recent progress in a pilot phase-
II trial revealed that the hepatic arterial injection of recombinant 
adenovirus p53 is safe and effective in unresectable hepatocellular 
carcinoma [15]. Adeno-associated virus 8 prefers hepatocytes 
[17] and has been used for liver-targeted gene therapy intended 
for treatment of the citrullinemia [18], hemophilia [19], alpha 
1-antitrypsin deficiency [20] and viral hepatitis [21] diseases. 
Viral vectors are highly effective in gene delivery and have been 
used in approximately 67% clinical trials [22]. Viral vector based 
carcinogenesis and immunogenicity represent currently the 
major hurdle for viral vector-mediated gene therapy.  

Nonviral gene-delivery system

Compared to viral vectors that employ their natural ability 
to transfer gene into cells, nonviral gene delivery systems use 
a physical force or cellular function of endocytosis to facilitate 
gene transfer to target cells. They are divided into two categories 
including nonviral vector-mediated gene delivery and physical 
methods. 

Nonviral vectors are synthetic or natural compounds that are 
capable of forming complexes with plasmid DNA or gene coding 
fragments and facilitating intracellular gene transfer. Materials 
including lipids [23], polymers [23], proteins [24], and peptides 
[25] have been shown to be effective for gene delivery. Nonviral 
vectors have been evaluated for gene therapy of varieties of 
liver diseases including hepatic fibrosis, viral hepatitis, and liver 
cancer [26]. Taking advantage of membrane receptors on hepatic 
stellate cells, liver-targeted gene delivery for hepatic fibrosis has 
been attempted using mannose 6-phosphate/insulin-like growth 
factor-II receptor [27], integrins [28], high-affinity membrane 
receptor for retinol-binding protein [29], and galactosyl receptor 
[30] as the targets. Target specific gene delivery is a most 
desirable feature of any gene delivery systems. Clinically, 24% of 
gene therapy clinical trials have been conducted using nonviral 
vectors [22]. The major challenge for nonviral vector-mediated 
gene delivery is its relatively low efficiency. 

Physical methods of gene delivery employ a physical force 
to overcome the membrane barrier of a cell. Compared to 
viral and nonviral vector-mediated gene delivery, physical 
approaches do not involve any substances that could be cytotoxic 
or immunogenic. Physical methods employed for gene delivery 
include needle injection, gene gun, electroporation, sonoporation, 
and hydrodynamic gene delivery [2]. Among these methods, 
hydrodynamic gene delivery has been the most efficient method 
for gene delivery to the liver, especially in small animals. This 
method has been used for functional analysis of therapeutic 
genes and regulatory elements in rodents since its establishment 
in 1999 [31,32]. Efforts have been made in developing a 
clinically applicable procedure for hydrodynamic gene delivery 
to the liver. For instance, Kamimura et al. examined a catheter 
insertion technique to hepatic lobular vein, which is a clinically 
well-established method, for site-specific, safe, and efficient gene 
delivery in large animals [33-35]. In combination with computer 
programming, engineering, and imaging technology, it is highly 
possible that an effective, simple, and safe hydrodynamic gene 
delivery to selected site of the liver will be achieved in near 
future. The remaining challenge for hydrodynamic gene delivery 
for gene therapy of liver diseases is to conduct safety and 
efficacy assessment in nonhuman primates to fine-tune different 
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parameters in order to ensure clinical success in gene therapy for 
various liver diseases. 

PERSPECTIVES
Despite the progress made in developing various methods 

for effective gene delivery, gene therapy for treatment of liver 
diseases remains in its infancy. This is primarily due to the fact 
that many of the liver diseases progress into a fibrotic stage 
with significant change of liver parenchyma, vasculature, and 
sinusoids. Consequently, efficient gene delivery by various 
highly effective methods established using health liver in animals 
cannot be achieved, resulting in insufficient production of gene 
product and failure to achieve a successful cure. Evidently, future 
studies need to take into the consideration of disease status 
when optimizing a method of gene delivery. There is no doubt, 
however, gene therapy will become one of the most effective 
treatments for liver diseases that are not curable with currently 
available modalities. 
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Method Functional Component Advantages Disadvantage

Viral Vectors 

Oncoretrovirus RNA High efficiency Random integration, low titer

Lentivirus RNA High efficiency, sustained gene expression Random integration, low titer

Foamy virus RNA High efficiency, sustained gene expression Random integration, low titer

Adenovirus Double stranded DNA High efficiency, sustained gene expression, 
infect non-dividing cells Host innate immune response

Adeno-associated 
virus Single stranded DNA No pathogenic, sustained gene expression, 

infect to non-dividing cells
Integration may occur, small capacity of 
transgene, low titer

Herpes simplex 
virus Double stranded DNA No integration, sustained gene expression Low transduction efficiency

Nonviral Vectors

Lipids Cationic lipids High efficiency in vitro, ease to prepare Low efficiency in vivo, acute immune response

Polymers Cationic polymers Highly effective in vitro, ease to prepare Toxic to cells, acute immune response

Proteins Natural or chemically modified proteins in 
cationic nature

Highly effective in vitro, less toxic, can be 
target specific Low activity in vivo

Peptides Lysine or arginine residues in peptides Highly effective in vitro, less toxic, can be 
target specific Low activity in vivo

Physical Methods

Needle injection Mechanic force Simple Low efficiency, expression limited to needle track

Gene gun Pressure Good efficiency Limited to target area, need surgical procedure 
for internal organ

Electroporation Electric pulse High efficiency Tissue damage, limited target area, need surgical 
procedure for internal organ

Sonoporation Ultrasound Site specific Low efficiency, tissue damage

Hydrodynamic 
delivery Hydrodynamic pressure Simple, high efficiency, site specific Need catheter insertion technique in large 

animals 

Table 1: Features of Liver-directed Gene Delivery Systems.
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