
Central JSM Gastroenterology and Hepatology

Cite this article: Cho NE, Gurung P, Saito T (2014) Emerging Critical roles of Vitamin in Regulation of Hepatitis C Virus Infection. JSM Gastroenterol Hepatol 
2(3): 1021.

*Corresponding author
Takeshi Saito, Department of Medicine, Division 
of Gastrointestinal and Liver Diseases, University of 
Southern California, Keck School of Medicine, 2011 
Zonal Avenue, HMR801A, Los Angeles, California 
90033, USA, Tel: 323-442-2260; Fax: 323-442-5425; Email: 

 

Submitted: 10 January 2014

Accepted: 27 January 2014

Published: 06 June 2014

Copyright
© 2014 Saito et al.

 OPEN ACCESS 

Keywords
•	Hepatitis C Virus (HCV)
•	Vitamin
•	Antiviral Innate Immunity
•	Viral Hepatitis 

Review Article

Emerging Critical roles of  
Vitamin in Regulation of  
Hepatitis C Virus Infection
Noell E Cho, Purnima Gurung and Takeshi Saito*
Department of Medicine, Division of Gastrointestinal and Liver Diseases, University of 
Southern California, USA

Abstract

Hepatitis C Virus (HCV) infection is one of the leading causes of end stage liver 
disease, such as decompensated cirrhosis and liver cancer. The host immune response 
during acute infection fails to eradicate HCV in a majority of cases; therefore over 
200 million people worldwide are chronically infected. Although recent advances in 
antiviral drug therapies demonstrate compelling success rates, our history in the fight 
against human pathogenic viruses implies that antiviral drugs have never contributed 
to the elimination of pathogens from the world. Thus, a continued effort to better 
understand HCV virology is desperately required until the establishment of a definitive 
vaccine. Because virus replication relies on host cell machinery, dietary nutrients 
that modulate cellular homeostasis are presumed to have great influence on viral 
replication, pathogenesis, and antiviral therapy response. Vitamins, for example, are 
organic compounds required for the host homeostasis as vital nutrients. In addition to its 
classic roles, the non-canonical effects of vitamins have received remarkable attention 
in the field of immunology, cancer cell biology, and metabolic diseases. Of these 
compounds, vitamin A, B12, and D have been implicated as a determinant for variety 
of viral infectious diseases. Thus, this mini-review summarizes our current knowledge on 
how these critical nutrients modulate the disease course of HCV infection. 

ABBREVIATIONS
IFN: Interferon; ADH: Alcohol Dehydrogenase; ALDH: 

Aldehyde Dehydrogenase; DAAs: Direct Antiviral Agents; IRES: 
Internal Ribosome Entry Site

INTRODUCTION
Chronic liver disease is the 12th leading cause of death in the 

United States, of which HCV infection accounts for one-third of 
those cases [1]. HCV is a blood born pathogen, thus transmitted 
by exposure to infectious blood and body fluids. In the US, the 
current predominant mode of transmission is through Injection 
Drug Use (IDU) or in-house tattoo with contaminated needles. In 
contrast, the incidence of ‘blood products’ mediated transmission 
has significantly declined after implementation of screening with 
nucleic acid detection assay [2]. Currently, over 5 million people 
(1.5% of population) in the US are chronically infected. Of those, 
a significant proportion advance to end-stage liver diseases; 
therefore, a significant threat to public health [3]. The most 
effective medical intervention to prevent the onset of advanced 
liver disease is antiviral therapy early in the chronic infection. The 
antiviral treatment for HCV currently transitions from Pegylated 
interferon (IFN)+Ribavirin to a regimen containing direct antiviral 
agents (DAAs). IFN based treatment does not offer satisfactory 

sustained virological response (SVR) and also associated with 
sever toxicity [4]. Recent advances in development of DAAs 
against HCV demonstrate compelling success rates, anticipating 
that IFN free regimens will become available in the near future. 
However, it has been shown that IFN free DAA therapy provokes 
the generation of drug resistant mutations [5]. In contrast, drugs 
that target host factors necessary for viral replication are much 
more attractive because such compounds offer high barriers to 
viral evolution of drug resistance. Therefore DAAs combination 
with tolerable host factor targeting drugs will be the most 
promising and intuitive paradigm for viral control. Moreover, 
lessons from our history of the fight against viral infectious 
diseases indicate that antiviral drugs have not contributed to 
the elimination of pathogens from the world. Taken all together, 
further understanding of HCV virology, host factors exploited for 
viral replication, and host response to infection is critical for our 
ultimate goal to establish a global vaccine program. 

Host responses, including innate and adaptive immunity, 
are the major factors in restricting HCV. Moreover, numerous 
additional factors also have influence over the lifecycle of HCV. 
Because virus replication completely relies on host cellular 
machinery, cellular response to nutrients and change in metabolic 
status are expected to alter viral replication efficiency. Emerging 
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evidences indicate that an ordinary nutrient such as vitamins, 
have significant influence on HCV lifecycle [6]. Vitamins are 
organic compounds that exhibit critical biological activity and are 
thus required for host cellular homeostasis. With the exception of 
Vitamin D, the host is incapable to synthesize vitamins, therefore 
exclusively relying on dietary sources. The classic role of vitamins 
has been known as the following: Vitamin A for vision, B for 
energy production, C for wound healing, D for bone maintenance, 
E for its role as an antioxidant, and K for coagulation. In addition 
to these “historical/classic” properties, numerous non-canonical 
bioactivities of vitamins have received tremendous attention 
in recent years. This includes, but not limited to, the “anti-
infective” properties of Vitamin A [7]. Similarly, the protective 
effect of Vitamin D (cod liver oil) has been believed to have part 
in regulation of Mycobacterium Tuberculosis [8]. Thereafter, a 
number of epidemiological studies were conducted and provided 
evidences of the anti-infection effect of vitamin A in a broad 
spectrum of infectious diseases [9,10]. A mechanistic explanation 
for the antimicrobial effect of these vitamins has emerged in 
recent 10 years. For example, Retinoic Acid (active metabolite 
of Vitamin A) plays a role in differentiation/maturation of a 
broad spectrum of immune cells [11]. With regards to Vitamin D, 
recent studies have shown its critical roles in antigen presenting 
cells (APC), such as dendritic cells and macrophages. Of great 
interest, these innate immune cells induce the expression of 
Cytochrome P450 (CYP) 27B1 in response to IFN-γ. It has been 
known that CYP27B1 are highly expressed in renal tubular cells, 
wherein 25D receives additional hydroxylation to become an 
active metabolite. The IFN-γ mediated production of the active 
form of Vitamin D in DC and macrophage appeared to be critical 
for antigen presentation and T cell maturation. These immune-
modulatory functions of vitamins can be involved in regulation of 
a variety of pathogens including HCV. 

With regards to vitamin B12, non-immune-modulatory effects 
have been implicated in HCV regulation. In general, vitamin 
B12 is a critical co-factor for the energy production pathway, 
such as protein and fatty acid metabolism. Thus, its deficiency 
or impairment of associated metabolic pathway is expected to 
cause cellular dysfunction in a variety of cells and organs. Indeed, 
the importance of vitamin B12 has been well recognized in non-
alcoholic fatty liver disease (NAFLD) [12-15]. In addition to its 
roles in hepatic steatosis, the antiviral effect of Vitamin B12 has 
been reported in molecular virological and clinical studies. 

This review article discusses the critical roles of vitamin in 
regulation of HCV through the introduction of both emerging 
mechanistic studies and clinical observations.   

DISCUSSION AND CONCLUSION
Vitamin A

Vitamin A is essential in a broad range of physiological 
functions such as vision, growth, reproduction, hematopoietic 
cell differentiation, and immunity [16]. Since 1928, vitamin A has 
been recognized as an antiviral compound [7]. Accordingly, the 
protective effect of vitamin A has been shown in various human 
pathogenic viral infectious diseases. To date, many studies 
have demonstrated that vitamin A supplementation reduces 
severe morbidity and mortality of multiple viral infectious 
diseases including measles, herpes simplex virus, influenza 

A virus, HIV, respiratory syncytial virus, and HPV [10,17-25]. 
A few mechanistic studies indicate that vitamin A enhances 
both innate and adaptive immunity, with its important role in 
immunoglobulin production, T cell differentiation/maturation, 
and cellular sensitivity to IFN [26,27]. These observations 
suggest that vitamin A regulates viral infectious diseases through 
its immune-modulating function. Of particular note, the patient 
population suffering from chronic liver diseases, such as HCV 
infection, also suffer from symptoms of vitamin A deficiency 
[28,29]. This is likely a consequence of HCV-mediated chronic 
inflammation that promotes trans-differentiation of hepatic 
stellate cells (HSCs) to myofibroblast. In healthy conditions, HSCs 
store up to 80% of total body vitamin A as a retinol and retinyl 
ester [30,31]. The trans-differentiation of HSC to myofibroblast 
like cells is associated with loss of vitamin A storage, resulting 
in lowering the degree of vitamin A contribution to antiviral 
immunity [32]. This could be an explanation for the poor success 
rate of IFN based antiviral therapy among cirrhotic patients, 
because therapeutic IFN exhibits an antiviral effect though 
its immune boosting property [28]. The immune-modulatory 
effect of vitamin A is believed to be mediated by its active 
metabolite, Retinoic Acid (RA) [18,26]. RA has been shown to 
govern more than 500 genes [33,34], of which include a number 
of immunity related genes [35]. In fact, a clinical observation 
demonstrated that RA potently suppressed serum HCV titer as 
well as the enhancement of IFN efficacy [36,37]. Because IFN 
exhibits its antiviral effect through the induction of interferon 
stimulated genes (ISGs), the aforementioned observations 
indicate the potential contribution of RA in the induction of 
ISGs. Lastly, it is important to recognize that RA production in 
the hepatocytes, where HCV replicates, utilize the ADH-ALDH 
pathway for the conversion of retinol to RA [38]. Because the 
ADH-ALDH pathway in hepatocytes is a major pathway for the 
alcohol metabolism, it is possible to speculate that vitamin A and 
EtOH metabolic competition can be an explanation for enhanced 
HCV pathogenesis among drinkers [39,40]. In summary, these 
lines of evidences imply the particular importance of vitamin A 
homeostasis in HCV regulation (Figure 1). 

Vitamin B12

Vitamin B12 is stored in high concentrations in the human 
liver and governs DNA synthesis and energy production 
through fatty acid metabolism, thus playing a critical role in the 
maintenance of cellular homeostasis [41]. Biochemically, vitamin 
B12 is a cofactor for methylmalonyl coenzyme A Mutase (MUT) 
and 5-Methyltetrahydrofolate-homocysteine Methyltransferase 
(MTR), playing a critical role in the production of succinyl-CoA 
and methionine respectively [41]. As a positive feedback, vitamin 
B12 increases the expression of MTR by enhancing Internal 
Ribosome Entry Site (IRES) dependent translation [42]. This 
mechanism is explained by vitamin B12 binding to IRES Trans-
Activating Factors (ITAFs) such as hnRNP I/polypyrimidine 
tract-binding protein and La autoantigen [42]. However, vitamin 
B12 has a negative effect on IRES-dependent translation of 
HCV protein in a concentration dependent manner [43,44]. 
Because HCV genome lacks 5´ terminal m7G (CAP), HCV viral 
protein translation is solely IRES dependent. Although, the exact 
molecular mechanism on why vitamin B12 exhibits opposite 
IRES-regulation between HCV and MTR remains elusive, these 
observations suggest vitamin B12 has specificity to the structure 
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Figure 1 Vitamin A regulation of HCV. Vitamin A enhances maturation and function of professional innate immune cells (Macrophage/DCs) such 
as migration and antigen presentation. Vitamin A also support T/B cell. In hepatocytes, ADH-ALDH pathway facilitates conversion of retinol to its 
active metabolite, retinoic acid (RA). RA governs ~500 gene expression, which contains numerous antiviral genes, namely interferon stimulated 
genes. 

of IRES. Indeed, vitamin B12 does not suppress other IRES-
dependent viruses such as Encephalomyocarditis Virus (EMCV) 
or Classical Swine Fever Virus (CSFV) [43-45]. More importantly, 
these in vitro based observations have been recently confirmed 
by several clinical observations, demonstrating that serum 
vitamin B12 concentration is correlated to HCV RNA titer and 
success rate of IFN based antiviral treatment [46]. In addition to 
its direct antiviral effect, it has been proposed that vitamin B12 
indirectly influences HCV pathogenesis through deregulation of 
lipid metabolism. Insufficient vitamin B12 leads to the impaired 
production of succinyl-CoA and methionine, resulting in the 
increased risk of hepatic steatosis. The formation of lipid droplets 
in hepatocytes offers a foundation for the HCV replication 
complex [47,48], thereby insufficient vitamin B12 status 
presumably enhances the HCV lifecycle through the formation of 
lipid droplets where the HCV replication complex is formed [49] 
(Figure 2).

Vitamin D

The liver plays a critical role in conversion of vitamin D2 and 
3 to 25(OH)D2 and 3 by utilizing 25-hydroxylase (CYP27A1) [50]. 
25(OH)D receives additional modification in renal tubular cells, 
wherein 1α-hydroxylase (CYP27B1) mediates the production of 
1,25(OH)D. 1,25(OH)D is the active form of vitamin D, which is 
expected to regulate up to 2800 genes through the activation of its 
nuclear receptor (VDR) [50,51]. In recent years, the non-canonical 
role of vitamin D has been rapidly emerged in addition to its classic 
roles in bone/calcium homeostasis. This includes, but not limited 
to, the vitamin D regulation of innate and adaptive immunity in 
response to a variety of infectious diseases [9,52]. One example of 
this is in cod liver oil, which contains high quantities of Vitamin D, 

and has been historically used to restrict Tuberculosis (TB) [8]. 
Follow-up molecular studies revealed that professional innate 
immune cells such as Dendritic Cells (DCs) and macrophages are 
equipped with CYP27B1, allowing these cell types to metabolize 
25(OH)D to 1,25(OH)D [52]. The production of active ligand in 
innate immune cells plays critical roles for its activation as well 
as mounting of T and B cell maturation, a likely explanation for 
the anti-TB effect of Vitamin D [26,52]. With regards to its role 
in HCV regulation, a screening for the identification of dietary 
nutrition that regulate HCV lifecycle discovered that Vitamin D2 
is one potent hit that suppressed HCV replication [6]. Following 
this observation, numbers of studies have provided clinical 
evidences that Vitamin D indeed plays a role in HCV disease 
outcomes. For example, genetic variants or polymorphisms of 
Vitamin D related molecules such as Vitamin D receptor, Vitamin 
D binding protein, and CYP27B appeared to be associated with 
HCV pathogenesis, replication, and therapeutic responses [53-
56]. Moreover, the serum Vitamin D level or supplementation 
significantly influenced HCV replication and IFN+RBV response 
in a pan-genotypic manner, although there was some controversy 
[57-60]. The exact molecular mechanisms of how Vitamin D 
regulates HCV infection have not been fully understood. One 
interesting observation demonstrated the specific anti-HCV effect 
of 25(OH)D3, but not other forms of vitamin D metabolites [61]. 
Because 25(OH)D3 is not a transcription active form of Vitamin 
D, this observation suggests an alternative anti-HCV mechanism 
independent of VDR mediated immune gene regulation. Indeed, 
the study demonstrated that the antiviral effect of 25(OH)D3 is 
due to the inhibition of virion assembly, however the mechanism 
of this phenomenon remains elusive [61]. Lastly, one study also 
showed modest up-regulation of ISGs in hepatoma cell lines 
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Figure 2 Vitamin B12 regulation of HCV. Significant amounts of Vitamin B12 are stored in hepatocytes. Vitamin B12 prevents steatosis (lipid 
accumulation) of the hepatocytes and also inhibits HCV polyprotein translation through inhibition of IRES.

Figure 3 Vitamin D regulation of HCV.  Hepatocytes metabolize vitamin D: 25D with CYP27A1 for the generation of 25(OH)D. In professional 
innate immune cells, CYP27B1 converts 25(OH)D into an active metabolite, 1, 25(OH)D. The active metabolite of vitamin D enhances both innate 
and adaptive immune cells.
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treated with Vitamin D [62]. Thus, despite the lack of in depth 
explanation of the antiviral effect of Vitamin D, numerous 
evidences collectively promise the importance of Vitamin D in 
HCV regulation (Figure 3).

CONCLUDING REMARKS
The cumulative understanding of non-canonical role of 

vitamins clearly illustrates how these critical nutrients modulate 
the outcome of HCV related liver diseases. Due to the maturation 
of antiviral drug development against HCV in recent years, it is 
expected that patients will receive highly tolerable but promising 
combinations of Direct Antiviral Agents (DAAs). However, our 
history of the fight against viral pathogens clearly indicates that 
there is no single disease eliminated by antimicrobial agents. 
Thus, continued research focus to understand comprehensive 
HCV virology and host regulation of pathogen is desperately 
required until the establishment of a highly effective global 
vaccination strategy.
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