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One of the major breakthroughs in regeneration medicine is 
the generation of human induced pluripotent stem cells (iPSCs) 
from differentiated somatic cells by defined transcription 
factors [1,2], which leads to the exploration of cell therapy [3] 
and in vitro disease modeling [4]. This kind of reprogramming 
concept has extended into the field of transdifferentiation from 
one differentiated cell type into another through overexpression 
of lineage related transcription factors [5-12]. However, 
because of the little or no proliferation potential, the potential 
utilities of these transdifferentiated somatic cells are limited. 
Direct conversion of somatic cells to lineage-committed stem/
progenitor cells, such as neural stem/progenitor cells, would 
allow production of sufficient cells for downstream research or 
application and overcome the potential risk for tumor formation 
by iPSCs. Approaches for generating clinical-grade human 
somatic stem cells show great application values. 

In the neuroscience field, human neural stem/progenitor 
cells have been generated from fibroblasts by overexpressing 
neural transcription factors, or Yamanaka factors or similar 
cocktails of transcription factors [13,14]. Because of the use of 
integrating lentiviruses or retroviruses, which could disrupt 
endogenous gene expression and are associated with the risk for 
tumor formation due to potential spontaneous reactivation of the 
viral transgenes [15], it limits the potential application of these 
cells in the clinical environments. 

In order to avoid using integrating viruses, episomal vectors 
were applied to generate human induced neural stem cells. Pei 
and colleagues generated iNPs from human urine cells using 
oriP/EBNA episomal vectors [16]. They used a set of six factors 
that have been used for iPSC generation [17], and the iNPs were 
generated on Matrigel (a mixture of different coating materials). 
However, interestingly, it is stated in the report that the protocol 
does not apply to human dermal fibroblasts. Although the method 
of episomal vectors avoids using viruses, there still exists the 
possibility of genomic integration and consequentially potential 
mutation. 

Recently, we used Sendai viruses (SeV) carrying four 
Yamanaka factors to generate iNPs from human and monkey 
fibroblasts [18]. SeV is a RNA virus. To date, there is no report 
of pathogenicity associated with SeV in primates, and its safety 

could be further enhanced by the F-deficiency [19]. SeV-based 
vector has been used in clinical gene therapy for cystic fibrosis 
[20,21] and vaccine delivery [22]. Additionally, the temperature-
sensitive nature of the RNA virus [23] offers another safeguard 
step to ensure the removal of viral genomes. The SeV derived-
iNPs were generated and cultured in laminin-coated plates 
with a chemically defined medium. They exhibit characteristic 
morphology, gene expression patterns, growth rate, as well 
as predictable in vitro and in vivo differentiation potentials. 
Furthermore, the regional information of these iNPs was carefully 
examined. The stable expandable iNP lines carry a hindbrain 
identity and can differentiate into hindbrain neurons and, when 
caudalized, an enriched population of spinal cord motor neurons. 
Regional specific human iNPs are another effort towards clinical 
application. 

The ideal way to generate clinical-grade human iNPs may be 
using some non-virus, non-integration ways, such as artificial 
RNAs, in an animal-free and chemically defined environment. 
And the iNPs should be well characterized, especially the regional 
identities, because as for neurodegenerative diseases, usually 
they needed accurate region-targeted treatment. Furthermore, 
how to maintain the stability of the human iNPs is another 
important issue for the future industry production and clinical 
application.  
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