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Abstract

Background and Aim: Ischemic heart disease, marked by decreased blood flow to the heart muscle, is a global health concern with notable morbidity 
and mortality rates. Investigating novel strategies like machine learning for risk assessment, specifically among intensive care unit (ICU) admitted ischemic stroke 
patients, holds the potential for better outcomes. This study develops a machine learning framework to predict the 2-year risk of ischemic heart disease in ICU-
admitted ischemic stroke patients, enhancing long-term prognostic accuracy.

Methods: Our study encompassed a cohort of 2,068 ischemic stroke patients admitted to the ICU from the period 2001 to 2012.We applied both a 
holdout strategy and a 10-fold cross-validation method during model development. Stepwise logistic regression was used to select predictors. We adopted 
two machine learning models such as random forest and XGBoost model for our prediction.

Results: Among the 2,068 patients, 446 had IHD during a 2-year ICU follow-up, while 1,622 did not. Baseline findings revealed that the majority of IHD 
patients were male (64%), with a median age of 72 years. Both XGBoost and random forest models exhibited the same discriminative power, boasting an 
AUROC of 93%. Notably, the top five variables in our model were platelet count, potassium levels, age, troponin T, and magnesium levels.

Conclusions: The comparative analysis highlights the superior performance of the random forest model in terms of sensitivity, specificity and accuracy, 
underlining its potential clinical utility for identifying high-risk patients and guiding interventions to mitigate IHD risk.

INTRODUCTION 

Ischemic heart disease (IHD), also commonly referred to as 
coronary artery disease (CAD) or coronary heart disease (CHD), 
is a cardiovascular condition characterized by reduced blood 
flow to the heart muscle due to the narrowing or blockage of 
coronary arteries. These arteries supply the heart with oxygen 
and nutrients necessary for its proper functioning [1]. The 
underlying cause of IHD is atherosclerosis, a gradual buildup 
of fatty deposits or plaques within the coronary arteries. These 
plaques can restrict blood flow, leading to a reduced oxygen 
supply to the heart muscle. This insufficiency can result in 
chest pain, known as angina pectoris, or potentially cause a 
heart attack (myocardial infarction) when a coronary artery 

is completely blocked [2]. Ischemic heart disease is a leading 
cause of morbidity and mortality worldwide [3], responsible for 
a significant number of heart attacks and other cardiovascular 
events [4]. Common risk factors for IHD include high blood 
pressure, high cholesterol levels, smoking, diabetes, obesity, 
and a sedentary lifestyle. Diagnosis and management typically 
involve lifestyle modifications, medication, and, in some cases, 
surgical interventions like angioplasty or coronary artery bypass 
grafting.

Over 70% of at-risk individuals exhibit multiple IHD risk 
factors, while only 2%-7% of the general populace remains 
devoid of these risks [6]. With escalating obesity, diabetes, and 
metabolic syndrome prevalence, coupled with population ageing, 
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the upward trajectory of IHD incidence is projected to persist [6]. 
Notably, the past two decades witnessed a steep rise in global 
ageing demographics [7]. The United Nations anticipates a rise 
in the population aged over 65 years from one in 11 in 2019 to 
one in six by 2050 [8]. Contemporary challenges, encompassing 
social connections, psychological strain, and insufficient sleep, 
contribute to IHD within the present generation [9]. Based on 
National Health and Nutrition Examination Survey (NHANES) 
data from 2003 to 2006, around 17.6 million Americans aged 20 
or above grappled with IHD, yielding a prevalence of 7.9 per cent 
(9.1 per cent in men and 7 percent in women). IHD constitutes 
over half of all cardiovascular incidents in individuals under 75. 
After the age of 40, the risk of developing coronary heart disease 
is 49% for men and 32% for women [10].

Despite endeavors to uncover novel IHD risk factors, 
established ones retain a significant role [11]. Notably, these 
encompass dyslipidemia (elevated low-density lipoprotein 
cholesterol, decreased high-density lipoprotein, and elevated 
fasting triglycerides), hypertension, smoking, diabetes, obesity, 
and physical inactivity. Major prospective epidemiological 
studies have consistently linked these factors to heightened risk 
[12]. The extensive integration of Electronic Medical Record 
(EMR) systems presents an opportunity for an ample reservoir 
of data that can be employed for research purposes, including 
the enhanced anticipation of clinical deterioration [13]. Diverse 
machine learning algorithms and models have showcased their 
efficacy in augmenting the real-time detection of conditions like 
hepatitis infections, heart failure, and other illnesses [12,13,15]. 
This study aims to advance a machine learning framework for 
predicting the long-term risk of ischemic heart disease (IHD) in 
patients admitted to the intensive care unit (ICU) with ischemic 
stroke. The focus is on developing a predictive model that 
considers the extended 2-year follow-up period, providing a more 
comprehensive understanding of the evolving cardiovascular 
risk landscape in this patient population

METHODS

Study population

We performed a retrospective analysis utilizing the Medical 
Information Mart for Intensive Care (MIMIC III) V.1.4 repositories. 
MIMIC III is an openly accessible database containing de-identified 
information on 46,520 patients and 58,976 admissions at the 
Beth Israel Deaconess Medical Center, Boston, USA, spanning 
from June 1, 2001, to October 31, 2012. This dataset encompasses 
comprehensive details, including demographic information, 
admission notes, International Classification of Diseases-9th 
revision (ICD-9) diagnoses, laboratory test results, medication 
records, procedural data, fluid balance records, discharge 
summaries, bedside vital sign measurements, caregiver’s notes, 
radiology reports, and survival information [16].

Our study encompassed a cohort of 2,068 ischemic stroke 
patients admitted to the ICU from the period 2001 to 2012. 

Out of this cohort, 446 had ischemic heart disease (IHD) as 

dictated by established medical records and 1,622 patients were 
identified who did had IHD during the extended 2-year follow-up 
period.

Outcome Assessment

The primary focus of this study was to assess the occurrence 
of ischemic heart disease (IHD) as the primary outcome within 
a 2-year follow-up period for ICU-admitted ischemic stroke 
patients. The classification of patients as positive or negative 
cases was determined based on specific criteria:

Positive Cases: Patients were classified as positive cases if 
they met one or more of the following predefined criteria within 
the 2-year follow-up period; Presence of clinically confirmed 
and documented myocardial infarction events within the 2-year 
follow-up. Hospitalization specifically for angina pectoris within 
the 2-year follow-up, with documented clinical evidence of 
ischemic heart disease-related symptoms and confirmation by 
attending physicians.

Negative Cases: Patients were classified as negative cases if 
they did not meet any of the specific criteria outlined for positive 
cases within the 2-year follow-up period.

Feature extraction

To construct our model, we incorporated parameters 
derived from the initial admission assessments. Every parameter 
considered in our analysis was acquired through an exhaustive 
review of patient medical records archived in the MIMIC III 
database. The dataset encompassed structured data components 
pivotal for prognostication, comprising laboratory findings, 
demographic attributes and other viral information. Initially, we 
extracted 64 features from the MIMIC III structured dataset.

Feature selection

Out of the 64 features extracted, we excluded variables with 
missing rates exceeding 30%, which could potentially pose 
challenges in terms of acquisition. Subsequently, we employed 
insights from literature reviews to identify additional features 
based on their reported significance and we have 36 variables. 
While adopting established clinical expertise for feature selection 
is a prevalent approach, it may inadvertently introduce biases. 
Consequently, a stepwise logistic regression model was used 
to select features. In stepwise regression [17], a statistical 
technique is used to select the most relevant predictors for a 
binary logistic regression model. It’s a systematic approach that 
aims to improve the model’s accuracy and interpretability by 
automatically including or excluding predictors based on their 
statistical significance. 

The selection criterion for including or excluding predictors 
was based on statistical AIC (Akaike Information Criterion) [18]. 
These criteria help ensure that only predictors with meaningful 
contributions to the model’s predictive power are retained. 
Stepwise logistic regression can help simplify complex models, 
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reduce over fitting, and improve model interpretability by 
identifying the most important predictors. 

Data preprocessing

Before employing machine learning algorithms, we adopted 
an imputation technique [19] to handle missing values and data 
points beyond predefined physiological ranges. This method 
involves inferring missing data by replacing them with the 
mean or median value of a variable based on its distribution’s 
normality. This strategy ensures the preservation of all data 
points, preventing information loss that might result from 
removing entire rows with missing values.

Post-preprocessing and ahead of model development, we 
leveraged the Synthetic Minority Over-sampling Technique 
(SMOTE) [20]. SMOTE is a specialized method used to handle 
missing data in datasets with imbalanced classes, unlike traditional 
imputation methods that focus on filling in missing values, SMOTE 
imputation targets the imbalance between classes by creating 
synthetic samples for the minority class. In imbalanced datasets, 
one class (the minority class) has significantly fewer samples than 
the other class (the majority class). This can lead to biased model 
outcomes. SMOTE generates synthetic samples for the minority 
class by interpolating existing samples. It identifies a data point 
from the minority class and finds its k-nearest neighbors. Then, 
it creates new samples by combining the features of the selected 
data point and its neighbors. These synthetic samples act as 
effective countermeasures against class imbalance. They provide 
the model with additional training examples for the minority 
class, enabling it to learn and generalize better.

Model development

This study employed the random forest model and extreme 
gradient boosting model (XGBoost) model. The selection of 
the random forest (RF) algorithm was driven by its prevalent 
use in clinical decision systems and its notable performance 
in classification tasks [21]. This algorithm employs diverse 
training processes on datasets to combine weak predictors 
into robust ones. Within the classifier employing an ensemble 
bagging (bootstrap aggregation) and random variable selection 
techniques, resulting in uncorrelated, low-bias trees [22-24].

The development of models was executed utilizing the Scikit-
learn implementation (Python) [25] to yield predictions through 
the averaging of probability scores across the ensemble’s trees, in 
contrast to a single-class voting approach per tree. The choice of 
input variables randomly selected at each split was determined 
as the square root of the total feature count, while the default 
setting was retained for the number of trees within the forest. 
Variable importance was gauged by evaluating the decrement in 
predictive performance upon omission from the model.

Chen and Guestrin [26] originally introduced the Extreme 
Gradient the sequential modelling of XGBoost, each decision 
tree builds on the outcomes of preceding iterations, culminating 
in a potent predictor [27]. The XGBoost algorithm assembles 

multiple decision trees to create the ultimate model. Notably, 
XGBoost substantially enhances and fine-tunes the Gradient 
Boosting Decision Tree method. Moreover, XGBoost consistently 
outperforms a standalone decision tree algorithm in terms of 
accuracy. Wang, Deng, and Wang [28], along with Zhao, Zheng, 
and Li [29], have demonstrated XGBoost’s superiority over 
various machine learning algorithms, including support vector 
machine (SVM), decision trees (DT), and gradient boosting 
decision trees.

Of classification trees, was chosen for its merits. Each tree 
within the ensemble is fully grown and constructed via 

Model optimization 

To enhance generalization and minimize over fitting risks, 
we adopted a combination of holdout and cross-validation 
techniques. Our study dataset was divided into two segments: an 
80% training set and a 20% test set. Within the training set, we 
conducted a 10-fold cross-validation process to facilitate feature 
extraction, selection, and model generation. Subsequently, we 
assessed model performance using the independent test set.

The model optimization, in our study, involves several key 
steps to ensure that our machine learning models are both 
effective and reliable.

Data Splitting: The first step is to divide our dataset into two 
main portions: a training set and a test set. We allocated 80% of 
our data for training and the remaining 20% for testing.

Cross-Validation: Within the training set, we applied a 10-
fold cross-validation process. Cross-validation helps in utilizing 
training data more efficiently. Here’s how it works [30]:

-     The training set is divided into 10 equal parts or “folds.”

-  The model is trained and evaluated 10 times. In each 
iteration, one fold is used for validation, and the remaining 
nine folds are used for training.

-    This process is repeated 10 times, ensuring that each fold 
gets a chance to be the validation set.

-    The results from these 10 iterations are usually averaged 
to provide a more robust estimate of model performance.

The goal of this approach is to optimize our models for 
predictive accuracy while guarding against over fitting, where 
a model performs well on the training data but poorly on new 
data. By using both cross-validation and an independent test set, 
we’re taking steps to ensure our models are robust and reliable 
when applied to real-world scenarios. This rigorous process is 
particularly important in healthcare applications, where model 
accuracy and generalization are critical.

Model evaluation

Model evaluation and validation constitute essential phases 
in the machine learning lifecycle, ensuring the reliability and 
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applicability of developed algorithms. Model evaluation involves 
assessing a model’s performance using various metrics, such as 
accuracy, precision, recall, F1 score, and AUC-ROC, to gauge its 
predictive capabilities. It enables us to understand how well the 
model generalizes to new and unseen data. 

To evaluate the models’ practical predictive capabilities 
within real-world scenarios, we employed various metrics, 
including sensitivity, specificity, accuracy, and the area under 
the curve (AUC). These metrics were computed using the test 
set, offering insights into the models’ reliability and suitability 
for actual applications [31]. This meticulous evaluation approach 
ensured that our models were robust and ready for real-world 
deployment.

Statistical analysis

Continuous variables in each group are depicted as median 
(interquartile range IQR), and categorical variables are presented 
as absolute values and percentage n (%). Categorical data was 
analyzed using the Chi-square test, while continuous data was 
assessed using a two-sample t-test. Non-normally distributed 
data was expressed as median (IQR) and logarithmically 
transformed to approximate a normal distribution for t-tests. 
A significance level of p < 0.05 was deemed acceptable for all 
analyses. Statistical computations were carried out using R 
software version 4.3.0 (2023-04-21).

RESULTS 

Basic Characteristics

Table 1 presents the baseline characteristics of the entire 
subject cohort. Our study comprised a total of 2,068 patients 

admitted to the intensive care unit (ICU) due to ischemic stroke, 
with an average age of 68.19 years (standard deviation 13.9), of 
which 1,117 were male (54%).

From our analysis, patients diagnosed with IHD tended to be 
older (median age IHD 72 years and No IHD 70 years), displaying 
a notable statistical difference (P < 0.05). Conversely, a significant 
difference was found between male and female patients (P < 
0.05) (Figure 1). 

Among the total ischemic stroke admissions in ICU, 446 (22%) 
patients experienced the development of ischemic heart disease 
(IHD). For those patients who experienced the development of 
ischemic heart disease (IHD), the median time from the onset of 
stroke to the occurrence of IHD was 3 days, with an interquartile 
range spanning from 1 to 4 days. As outlined in Table 1, patients 
without IHD exhibited elevated levels of platelet count, red blood 
cells (RBC), and white blood cells (WBC) in comparison to those 
with IHD. We observed significant variations across several 
variables, including age, platelet count, HbA1c, potassium, 
magnesium, phosphate, low-density lipoprotein (LDL), and 
troponinT (P < 0.05). Notably, the median values of certain 
laboratory parameters, such as LDL, alkaline phosphatase (ALP), 
albumin, and HbA1c, were consistent between both groups.

This comprehensive analysis provides insights into the 
contrasting characteristics and clinical markers between patients 
with and without IHD in the context of ischemic stroke.

Evaluation of Secondary Outcomes

In addition to the primary assessment, we investigated 
clinical outcomes, encompassing both the duration of hospital 
stay and mortality rates, within the two patient groups (Table 2).

Hyper parameters of the Models 

Hyper parameters, in machine learning, are tunable 
settings or configurations that can be manually defined before 
initiating model training. These hyper parameters retain their 
predetermined values throughout the training process. 

In our analysis, we carefully optimized select hyper 
parameters for each algorithm, while allowing the remaining 
parameters to retain their default values. Notably, for the 
XGBoost model, we set the learning rate at 0.1, established a 
maximum depth of 7, and selected 300 estimators. Conversely, 
in the case of the random forest model, the mtry parameter 
remained at its default, while we set the number of estimators to 
200. Additionally, we configured the minimum samples required 
to split a node at 2, and the minimum samples required to form 
a leaf node at 1.

Table 1: Baseline characteristics of IHD and no IHD patients in the emergency 
department

Variables IHD (n=446) No IHD (n= 
1,622) P value 

Age (yrs.), median (IQR) 72 (64 – 78) 70 (58 – 79) 0.001*
Gender (Male) n (%) 286 (64) 831 (52) 0.001*
Platelet count (K/uL) 213 (164 – 260) 236 (183 – 304) <0.001*

RBC (m/uL) 3.54 (3.26 – 3.91) 3.66 (3.30 – 4.11) 0.001*
WBC (K/uL) 10.05 (8.13 – 12.5) 10.85 (8.30 – 12.7) 0.795
HbA1c (%) 5.90 (5.39 – 5.90) 5.90 (5.84. – 6.00) 0.012*

Albumin (g/dL) 3.30 (3.20 – 3.50) 3.30 (2.66 – 3.47) 0.092
ALP (IU/L) 79.0 (65.7 – 86.4) 79.0 (70.7 – 92.0) 0.129

Potassium (mEq/L) 4.13 (3.93 – 4.33) 4.00 (3.81 – 4.22) 0.001*
Calcium (mg/dL) 8.60 (8.33 – 8.92) 8.60 (8.26 – 8.90) 0.066

Magnesium (mEq/L) 2.08 (1.96 – 2.23) 2.02 (1.90 – 2.16) 0.003*
Phosphate (mg/dL) 3.40 (3.09 – 3.88) 3.33 (2.92 – 3.70) 0.025*

Triglyceride (mg/dL) 119 (112 – 117) 114 (111 – 118) 0.194
LDL (mg/dL) 43.0 (41.0 – 48.3) 43 (41.0 – 44.0) 0.019*

Troponin T. (ng/dL) 0.15 (0.1 – 0.24) 0.1 (0.1 – 0.27) 0.001*
Total cholesterol (mg/dL) 160 (154 – 159) 156 (152 – 158) 0.508

IHD, Ischemic heart disease; WBC white blood cell, RBC, red blood cell; ALP, 
alkaline phosphate; HbA1c, Hemoglobin A1c; LDL, Low-density lipoprotein; mg/dl 
milligrams per deciliter; IU/L International units per litre; nanograms per deciliter 
(ng/dL); yrs. Years; K/uL thousand per microliter, m/uL million per microliter, % 
percentage, mEq/L milliequivalents per litre; * indicates the variable is statistically 
significant.

Table 2: Assessment of clinical outcomes

Variables IHD No IHD p-value
Length of Stay (days) 

median (IQR) 3 (2 - 5) 4 (1 - 6) 0.134

Mortality  n (%) 54 (12) 306 (18) 0.098

IHD, ischemic heart disease
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By strategically optimizing these hyper parameters, we 
aimed to strike a balance between model complexity and 
generalization. The chosen hyper parameters, based on careful 
consideration and empirical testing, significantly contribute to 
the models’ predictive prowess while maintaining the integrity 
of their individual algorithms. This deliberate approach enhances 
the models’ ability to effectively capture patterns and deliver 
accurate predictions.

Assessing Machine Learning Model Performance

The evaluation metrics proved instrumental in gauging 
the efficacy of our machine learning models. A comprehensive 
analysis is outlined in Table 3.

The XGBoost model demonstrated a commendable accuracy 
of 83%, signifying its proficiency in making correct predictions. 
Moreover, its sensitivity of 81% underscored the model’s capacity 
to correctly identify positive instances, while its specificity of 
86% highlighted its accuracy in recognizing negative instances. 
The impressive AUROC value of 93% reinforced the model’s 
effectiveness in discerning between classes, while the F1 score 
of 83% emphasized a balanced trade-off between precision and 
recall.

In parallel, the Random Forest (RF) model exhibited 
remarkable performance. With an accuracy of 86%, the RF model 
showcased its competence in accurate classification. Its sensitivity 
of 84% echoed its aptitude in capturing positive instances, while 
its specificity of 89% highlighted a robust ability to pinpoint 
negative instances. The AUROC value of 93% reiterated the 
model’s adeptness in discrimination, while the F1 score of 86% 
further underscored its precision-recall equilibrium.

Area Under the ROC Curve (AUROC) Analysis and 
Precision-Recall (PR) for the Models

The Receiver Operating Characteristic (ROC) curves 

provide valuable insights into the performance of our models 
in distinguishing between the two classes; IHD and No IHD. The 
AUROC, a crucial metric derived from these curves, quantifies 
how effectively the models separate the classes. Notably, both 
the XGBoost and random forest models achieved a remarkable 
AUROC of 93%. This robust AUROC underscores their high 
capacity to differentiate between IHD and No IHD cases.

The compelling AUROC values obtained from these models 
underscore their strong discriminatory power. This is visualized 
in Figure 2, where the ROC curves vividly illustrate the models’ 
ability to strike a balance between sensitivity and specificity. The 
convergence of these curves towards the top-left corner further 
accentuates the impressive discriminative performance achieved 
by both XGBoost and random forest.

The high AUROC values obtained across these models 
reinforce their efficacy in dealing with the complexity of IHD 
prediction. This analysis reaffirms their potential as valuable 
tools for identifying the presence of IHD, thereby contributing to 
enhanced clinical decision-making and patient care.

The Precision-Recall Curve is an essential tool for evaluating 
the performance of classification models, particularly in scenarios 
where class distribution is imbalanced. It visualizes the trade-off 
between precision (positive predictive value) and recall (true 
positive rate) as the decision threshold for class prediction varies.

Precision represents the ratio of correctly predicted positive 
instances to the total predicted positives. It’s a valuable metric 

Figure 1 Age and Gender characteristics of the study participants

Table 3: Model performance 

Models Accuracy Sensitivity Specificity AUROC PR Score F1 Score
XGBoost 0.83 0.81 0.86 0.93 0.91 0.83

RF 0.86 0.84 0.89 0.93 0.91 0.86

XGBoost extreme gradient boosting; RF random forest; AUROC area under the 
receiver operating characteristic; PR, precision-recall
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when false positives are a concern, as it measures the model’s 
accuracy in identifying true positives among the predicted 
positives.

Recall, on the other hand, represents the ratio of correctly 
predicted positive instances to the total actual positives. It’s 
especially important when false negatives need to be minimized, 
as it measures the model’s ability to capture all actual positive 
instances. The Precision-Recall Curve showcases the model’s 
performance across different threshold values. A model with 

higher precision and recall values will exhibit a curve that 
approaches the top-right corner of the plot. 

The area under this curve (AUC-PR) quantifies the overall 
performance, with a higher value indicating a better balance 
between precision and recall. Precision-recall curves are 
particularly valuable when dealing with imbalanced datasets, 
where negative instances significantly outweigh the positives. In 
such cases, accuracy alone might not provide a complete picture 
of the model’s efficacy. By focusing on precision and recall, the 
Precision-Recall Curve offers a nuanced understanding of a 
model’s ability to accurately classify positive instances while 
minimizing false positives and false negatives.

Variable Importance

We assessed feature importance using a random forest 
model. Random forest assesses feature importance by leveraging 
the concept of “Gini importance” or “mean decrease impurity” 
[22]. During the training process, each decision tree in the forest 
evaluates the importance of individual features by measuring 
how much they contribute to reducing impurity in the data. 

The process involves comparing the impurity of the target 
variable before and after splitting a feature. Features that result 
in significant impurity reduction when used for splitting are 
considered important. The more often a feature is used for splitting 
across all trees in the forest and the more impurity it decreases, 
the higher its Gini importance score [24]. By aggregating these 
individual Gini importance scores across all trees in the forest, 
random forest generates a comprehensive assessment of feature 
importance. This allows practitioners to identify which features 
play a crucial role in making accurate predictions. This approach 
is particularly valuable for feature selection, aiding in model 

Figure 2 The receiver operating characteristic and Precision-Recall curves of the algorithms.

Table 4: Multivariate analysis of factors for IHD

Variables Adjusted OR 95% Confidence 
Interval P value 

Age (yrs.) 1.02 1.01 - 1.03 <0.001*
Gender (Male) n (%) 1.70 1.22 - 2.95 <0.001*
Platelet count (K/uL) 0.99 0.99 - 0.99 <0.001*

RBC (m/uL) 0.65 0.59 - 0.85 <0.001*
WBC (K/uL) 1.03 0.97 - 1.03 0.7960
HbA1c (%) 1.16 1.03 - 1.31 0.0160*

Albumin (g/dL) 1.26 0.96 - 1.64 0.0930
ALP (IU/L) 0.99 0.99 - 1.04 0.0890

Potassium (mEq/L) 1.93 1.37 - 2.73 < 0.001*
Calcium (mg/dL) 1.26 0.98 - 1.61 0.0670

Magnesium (mEq/L) 2.09 1.27 - 3.45 0.0040*
Phosphate (mg/dL) 1.20 1.02 - 1.41 0.0260*

Triglyceride (mg/dL) 0.99 0.99 - 1.06 0.1720
LDL (mg/dL) 0.98 0.97 - 1.00 0.0170*

Troponin T. (ng/dL) 1.40 1.19 - 1.65 <0.001*
Total cholesterol (mg/dL) 1.01 0.99 - 1.05 0.5100

IHD, Ischemic heart disease; O.R, odd ratio; WBC white blood cell, RBC, red blood cell; 
ALP, alkaline phosphate; HbA1c, Hemoglobin A1c; LDL, Low-density lipoprotein; 
mg/dl milligrams per deciliter; IU/L International units per litre; nanograms 
per deciliter (ng/dL); yrs. Years; K/uL thousand per microliter, m/uL million per 
microliter, % percentage, mEq/L milliequivalents per litre; * indicates the variable is 
statistically significant.
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simplification and avoiding overfitting while retaining the most 
relevant information for prediction tasks. The top 5 features in 
our model are platelet count, potassium, age, troponin T and 
magnesium (Figure 3). 

Multivariate Analysis of Factors for IHD 

The results from the logistic regression multivariate analysis, 
presented in Table 4, shed light on the factors correlated with an 
elevated risk of IHD. Notably, a range of variables including age, 
gender, WBC, HbA1c, albumin, potassium, calcium, phosphate, 
troponin T, and total cholestterol demonstrated a tendency for 
IHD risk to increase by a factor of 1 when they augmented by one 
unit (OR: 1.02, 1.70, 1.03, 1.16, 1.26, 1.93, 1.26, 1.20, 1.40, 1.01) 
respectively. Importantly, magnesium exhibited a unique pattern 
with a 2-fold increase in the risk of developing IHD (OR 2.09) for 
each unit increase. 

Conversely, platelet count, RBC, ALP, triglycerides, and LDL 
exhibited a significant protective effect, as their odds ratios (OR) 
were less than 1, indicating a reduced risk of IHD associated with 
these factors.

These findings underscore the nuanced interplay of various 
factors in IHD risk. Notably, changes in magnesium levels 
contribute to a significantly heightened risk. Conversely, the 
protective effects demonstrated by variables like platelet count, 
RBC, ALP, and lipid-related factors point to potentially modifiable 
elements that could be explored for preventive strategies in 
managing IHD risk.

DISCUSSION

Ischemic heart disease (IHD) poses a significant concern for 
patients admitted to critical care units due to ischemic stroke. 
The interplay between these two conditions introduces complex 
challenges. Ischemic stroke patients often share risk factors with 
IHD, such as hypertension, diabetes, and hyperlipidemia. The 
stress of stroke coupled with critical care interventions heightens 
cardiovascular strain. This underscores the need to explore the 
distinct risk profile and temporal dynamics of IHD in ischemic 
stroke patients during critical care and a subsequent 2-year 
monitoring phase. This investigation lays the foundation for 
targeted interventions to mitigate these risks and uplift patient 
outcomes.

Our study’s key revelations are as follows: (1) The prediction 
system attains an impressive AUC of 0.93 in forecasting IHD risk 
among ischemic stroke patients using 16 clinical and demographic 
variables collected upon admission. (2) Platelet count, potassium, 
age, troponin T, and magnesium emerge as the top indicators 
linked to IHD risk among ICU-admitted stroke patients. (3) While 
both XGBoost and random forest exhibit similar AUROC curve 
performance, the latter excels in all other metrics. This finding 
suggests that, practically, the random forest model holds promise 
in predicting the risk of IHD among critically admitted ischemic 
stroke patients in the ICU. These insights illuminate a pathway 
for more effective clinical decisions and interventions, potentially 
transforming patient care in this intricate medical landscape.

Figure 3 Feature importance contributed to the Random Forest model. WBC, white blood cell; RBC, red blood cell; ALP, alkaline phosphate; 
HbA1c, Hemoglobin A1c; LDL, Low density lipoprotein.
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Remarkably, our analysis sheds light on a set of variables that 
exhibit a consistent trend towards elevating the risk of stroke. 
This propensity is notably observed across a diverse spectrum of 
parameters, encompassing age, gender, WBC count, HbA1c levels, 
albumin levels, potassium levels, calcium levels, phosphate levels, 
troponin T levels, and total cholesterol levels. It is intriguing to 
note that, for each of these variables, an increase of one unit is 
associated with a parallel increase in IHD risk, denoted by odds 
ratios of 1.02, 1.70, 1.03, 1.16, 1.26, 1.93, 1.26, 1.20, 1.40, and 
1.01, respectively. 

The incremental relationship between these variables and 
IHD risk could offer valuable insights into the multifaceted 
interplay between physiological markers and the propensity 
for IHD. This nuanced understanding of variable impacts could 
significantly inform risk assessment models, thereby enabling 
more accurate prediction and proactive management of stroke 
risk in diverse clinical scenarios. 

Earlier epidemiological investigations have effectively 
highlighted a substantial link between ischemic heart disease 
(IHD) and gender [32]. Earlier epidemiological investigations 
have effectively highlighted a substantial link between 
ischemic heart disease (IHD) and gender [31]. Building upon 
these antecedent revelations, the present study undertook a 
comprehensive evaluation of the interplay between gender 
and IHD. Notably, our findings reinforce the prevailing pattern, 
demonstrating that most individuals affected by IHD were male. 
This extends the scope of previous research and offers deeper 
insights into gender distribution within the IHD landscape. 

Age, an incontrovertible risk factor, assumes a pivotal role in 
shaping susceptibility to IHD. The intricate connection between 
old age and IHD hinges on several factors. Firstly, cumulative 
exposure to traditional risk factors, including hypertension, 
hyperlipidemia, and diabetes, during a prolonged lifespan 
escalates the likelihood of developing atherosclerotic plaques, 
hallmark triggers of IHD. The risk of IHD increases with age, the 
incidence doubling with each decade after the age of 45 years and 
over 70% of all IHDs occur above the age of 65 [33].

Numerous preceding investigations have consistently 
highlighted the relationship between cholesterol levels and 
the risk of ischemic heart disease (IHD), portraying a gradual 
correlation [34]. Only a limited number of studies have delved 
into the comprehensive IHD risks linked to specific total 
cholesterol categories, particularly those encompassing values 
below 180 mg/dL. This gap in information might be attributed 
to the scarcity of individuals with TC levels below 180 mg/dL 
within European-origin populations [35].

In a study by Green et al., it was observed that elderly users 
of diuretics faced an elevated risk of stroke when their serum 
potassium levels were low [36]. Similarly, Smith et al. discovered 
a connection between low serum potassium levels and both 
ischemic and hemorrhagic stroke in patients receiving treatment 

for hypertension and IHD[37]. A recent meta-analysis dedicated 
to exploring the link between potassium intake and stroke risk 
unveiled noteworthy insights. The study revealed an inverse 
relationship between potassium intake and the risk of IHD 
[38,39]. 

A heightened total white blood cell (WBC) count emerges 
as a notable risk factor in the realm of atherosclerotic vascular 
disease. The involvement of WBC-derived macrophages and 
other phagocytes in precipitating vascular injury and fostering 
the advancement of atherosclerosis is widely acknowledged [40]. 
The evidence gleaned from numerous prospective investigations 
underscores a direct and autonomous correlation between WBC 
count and the incidence or mortality of IHD in stroke patients 
[41,42].

Increased levels of troponin T are observed across various 
acute and chronic cardiac conditions, including acute myocardial 
infarction (AMI), cardiac arrhythmias, and ischemic heart 
disease (IHD) [43]. Moreover, troponin T has demonstrated 
its robustness as a marker for both cardiovascular-related and 
overall mortality. This applies to the general population field [43] 
and individuals with established IHD [32].

Clinical utility

The clinical utility of our model assessing ischemic heart 
disease (IHD) risk in ischemic stroke patients is multifaceted and 
can significantly enhance patient care. Here are some of the key 
clinical benefits:

1. Personalized Risk Assessment - Our model offers a 
personalized evaluation of IHD risk for ischemic stroke patients. 
This tailored risk assessment empowers healthcare providers to 
make informed decisions that are specifically relevant to each 
patient’s unique medical profile, optimizing interventions and 
treatment plans. 

2. Early Intervention - By accurately predicting IHD risk, the 
model enables early intervention strategies. High-risk patients 
can be identified promptly, allowing for targeted interventions 
such as lifestyle modifications, medication adjustments, and 
close monitoring. This can potentially prevent or mitigate the 
development of IHD.

3. Long-Term Management - The model’s risk assessment 
extends beyond immediate clinical decisions. It can guide long-
term management strategies, helping healthcare providers 
and patients collaboratively plan for ongoing monitoring, risk 
reduction, and disease management.

4. Research and Guidelines - The insights derived from 
the model contribute to the body of medical knowledge. The 
data can be analyzed to identify trends, validate existing 
hypotheses, or even lead to the formulation of new research 
questions. Additionally, the model’s outcomes could influence 
the development of clinical guidelines for managing IHD risk in 
stroke patients.
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LIMITATIONS

Several noteworthy limitations warrant attention in this study. 
Firstly, the retrospective nature of our system’s development 
introduces the possibility of bias. Thus, prospective validation 
is imperative to establish its predictive prowess. Secondly, the 
reliance on data solely from a single centre for both system 
development and evaluation underscores the necessity for 
additional validation with local datasets before its applicability 
to diverse healthcare institutions. Such expansion can bolster the 
robustness of our findings and instil greater confidence in the 
system’s efficacy and generalizability. Finally, B-type natriuretic 
peptide (BNP) and the N-terminal fragment (NT-proBNP) are 
among the established biomarkers in the diagnosis of IHD, the 
present study did not include them because the missing values in 
them are high. Though including these features can increase the 
model performance.

CONCLUSION

Utilizing retrospective data, we have effectively crafted both 
a random forest and an XGBoost model by harnessing the content 
of MIMIC III. This innovative machine learning framework holds 
the potential to predict the likelihood of ischemic heart disease 
(IHD) development within a 2-year follow-up after ICU admission 
in ischemic stroke patients. Although both models exhibited 
comparable discriminatory power, the random forest model 
notably outperformed the XGBoost model across various metrics. 
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