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Abstract

Development of new treatment strategies is crucial for patients with Nasopharyngeal 
Carcinoma (NPC). NPC is one of the top ten cancers highly prevalent in Hong Kong 
with more than 800 new cases reported annually. The epidemiologic evidence implies 
that Epstein-Barr virus (EBV) infection, environmental factors and genetic factors play 
roles in the tumorigenesis of NPC. Conventional treatment of NPC is mainly based 
on chemo-radiotherapy. However, the treatment outcomes in patients with advanced 
stage of NPC are unsatisfactory. Photodynamic therapy (PDT) is an FDA approved 
cancer regime in the USA, European Union, Japan and China and could be one of 
novel strategies in PDT development for NPC patients. It employs a combination of 
light-activated photosensitiser visible light and molecular oxygen to selectively destroy 
the biological targets. In-depth investigation for selected PSs mediated PDT on NPC 
cells is still underway.

OVERVIEW OF NASOPHARYNGEAL CARCINOMA 
(NPC)

Nasopharyngeal carcinoma (NPC) is endemic in Asia. It is 
one of the top ten cancers highly prevalent in Hong Kong with 
more than 800 new cases reported annually (Hong Kong Cancer 
Registry 2013) [1,2]. The overall incidence is 6.5/100,000 person-
years in southeastern Asia. However, in some cities such as Sihui 
city in the Guangdong and Hong Kong, the incidence rate sharply 
increase to 30.94/100,000 person-years and 12.2/100,000 
person-years, respectively [3,4].

Nasopharyngeal Carcinoma Cells (NPC) encompasses any 
squamous cell carcinoma arising in the epithelial lining of the 
nasopharynx, a tubular space situated at the base of the skull. 
It is characterized by poor or undifferentiated carcinoma with 
increased radio- and chemosensitivity, and a greater tendency 
for distance metastasis [5,6]. 

Aetiology

The aetiology of NPC is complex. The epidemiologic evidence 
implies that Epstein - Barr virus (EBV) infection, environmental 
factors and genetic factors play roles in the tumorigenesis of 
NPC. EBV is listed as one of the major carcinogens and is strongly 
associated with NPC tumorigenesis. People with family history 
of NPC will have a 4 to 10 fold excess risk of NPC development 
[7,8]. Medical conditions in the ear, nose or throat have also 

been proposed as risk factors for NPC [9,10]. Others non-viral 
environmental risk factors including salted and pickled foods, 
alcohol consumption, hearable product use and tobacco smoking. 

The first report revealed the correlation between salted fish 
intakes and NPC development was published by Ho at 1972 [11]. 
A follow-up study with 2041 cases from Hong Kong was carried 
out by Ho to further illustrate the correlation between salted fish 
and NPC [12]. The N-nitrosamine contained in salt-preserved 
fish and vegetable might be the source of carcinogens that act 
on nasopharynx. Salted fish is a traditional favorite item in the 
Cantonese diet and that could explain why the incidence rate of 
NPC is particularly high among Cantonese. 

Alcohol consumption is correlated with NPC risk and is in a 
complex manner. Recent meta-analysis indicated high volume 
of alcohol intake with significant increase in NPC risk while low 
volume of alcohol intake will result as beneficial effect [13,14].

Tobacco smoking is well documented as a risk factor for 
NPC. The pattern of association between tobacco smoking and 
NPC risk depends on the tobacco dose. The longer and greater 
cigarette smoking habit people have, the higher the risk n NPC. 
Current smoker with a history of more than 60 pack-years have 
the highest risk. People with a lifetime exposure of more than 30 
pack-years still have a 2 fold higher chances in NPC risk [15,16].

Herbal product includes herbal medicine, herbal tea and soups 
containing herbal ingredients. Studies have proposed that the use 
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of herbal medicine could be associated with NPC development 
through re-activation of Epstein-Barr virus [17,18]. However, 
limited evidence was found for the association between herbal 
tea/soups containing herbal ingredients and NPC development. 
Report even suggested that slow cooked soups with herbal 
ingredients and herbal tea could decrease risk in associated with 
NPC development, although result is not statistically significant 
[19]. 

Role of epstein – barr virus (EBV) in NPC tumorigenesis

It is widely accepted that EBV infection plays a major role in 
the tumorigenesis of NPC. Epstein–Barr virus (EBV) is a herpes 
virus that infects over 90% of adult population. It is a successful 
virus which establishes a life-long persistent relationship 
with human B-cell and remains asymptomatic [20]. However, 
EBV is also known as the most potent transforming agent for 
human cells and is associated with a number of malignancies, 
including: Burkitt’s lymphoma, nasopharyngeal carcinoma, T 
cell lymphomas, Lung carcinoma and Gastric carcinoma [21-23]. 
The EBV has an envelope with viral glycoproteins and carries an 
approximately 172 kb double stranded DNA genome. The viral 
genome enters the infected cell nucleus and forms a circular 
episome. It is rare to observe viral replication in EBV-infected 
cells. On the other hand, EBV establishes a latent infection with 
a restricted set of latent gene being expressed, including two 
EBV-encoded nuclear RNAs (EBER1, EBER2), six EBV-encoded 
nuclear antigens (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, 
EBNA-LP), and three latent membrane proteins (LMP1, LMP2A, 
LMP2B). It is now identified at least three different latent viral 
gene expression patterns in EBV associated tumors, which is 
known as latency I, II and III. In latency I, only the EBERs and 
ENBA1 are expressed. In latency II, the EBERs, EBNA1, LMP1 
and LMP2 are expressed. And in latency III, all latent genes are 
expressed [21,24-28]. 

The association between EBV and NPC was first discovered 
from serological studies. EBV is consistently detected in 
NPC patients [29]. There are lines of evidences showing that 
EBV implicated in the molecular abnormalities leading to 
pathogenesis of NPC. In NPC, EBV replicates and hides in cells 
followed by type II latency infection cycle, with expression of a 
limited number of viral protein. The tumorigenic potential of EBV 
mainly related to a unique set of latent genes product, including 
the latent membrane proteins (LMP1, LMP2A and LMP2B) and 
EBV-determined nuclear antigens (EBNA1 and EBNA2). Among 
these, LMP1 is the principal oncogene involves in the process 
of EBV-associated oncogenesis of NPC (Figure 1) [30-33]. The 
tumorigenic potential of EBV has been proven both in vitro and in 
vivo. In vitro, EBV immortalizes primary primate B lymphocytes 
and epithelial cells [34], while in vivo, it induces B-cell lymphomas 
and enhances epithelial tumor cell growth in nude mice [35]. In 
human epithelial cells, LMP-1 alters many functional properties 
that are involved in tumor progression and invasions [26,33,36]. 

LMP1 is a 66kDa integral membrane protein consists of a 6 
transmembrane domains and a carboxyl-terminus containing 
3 signaling domains called C-terminal activating regions 1, 
2 and 3 (CTAR 1, CTAR 2 and CTAR 3). The short cytoplasmic 
N-terminal segment is responsible for membrane attachment 
and orientates LMP1 protein to the plasma membrane while 

the six transmembrane loops are involved in self aggregation 
and oligomerization. The three CTAR domains provide docking 
sites for signaling adaptor proteins. Among these, CTAR 1 and 
CTAR 2 are two of the distinct functional domains responsible 
for the possess of most of the LMP1 signaling activity via directly 
activate a number of signaling pathways including nuclear factor 
kappa B (NF-kB), mitogen-activated protein kinases (MAPK) and 
Janus Kinase/Signal Transducer and Activator of Transcription 
(JAK/STAT) pathway [33]. LMP1 induced signal pathways can 
be attributed to the inhibition of apoptosis; induction of cell 
immortality; promotion of cell proliferation and influence the cell 
invasion and metastasis (Figure 2) [25,37,38]. 

EBV associated intracellular signaling pathways

Modulation of intracellular signaling pathways by EBV LMP1 
is one of the elemental factors controlling the biological behaviors 
of NPC. These signaling pathways are critical for various cell 
functions, including cell survival, cell growth, cell differentiation 
and metastasis [39]. Research on molecular signaling pathways 
reveal the role of different signaling proteins to tumorigenesis of 
NPC and could provide opportunity in the development of novel 
diagnostic, prognostic and therapeutic markers. Alternation of 
signaling proteins by EBV in NPC includes the mitogen-activated 
protein kinase (MAPK) pathway and the epidermal growth factor 
receptors (EGFRs) pathway [40-42].

MAPK signaling pathways induced in the cell death 
mechanism

The MAPK pathway is a chain of proteins in cells which 
communicates a signal from cell surface receptor to the nucleus 
by phosphorylation and has been proved to be very important 
in cancer development. The signals are transmitted by a cascade 
of kinases, including the extracellular signal-related kinase 
(ERK), p38 and c-Jun N-terminal kinase (JNK) and they plays an 
important role in regulating cellular responses to a multitude of 
environmental stimuli. JNKs are known as the stress-activated 
protein kinases and their normal function is in response to 
growth stimuli, cellular transformation and tumor metastasis 
[43,44]. Interestingly, JNK activity is consistently up-regulated 
in NPC via LMP1-dependent route [38,45]. LMP1 inducted JNK 
activity may be regarded asa growth advantage to NPC due to the 
versatile nature of this important signaling pathway. Constitutive 
activation of JNK in NPC increased p53 phosphorylation via 

Figure 1 Mechanisms of Epstein-Barr virus (EBV) latent proteins in 
nasopharyngeal carcinoma (NPC) development.Stimulatory effect.
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phosphorylation of methyl transferase, result as reduction in 
E-cadherin gene expression and leading to cell cycle deregulation 
[38,45,46]. Another possibility of JNK activation is that the pro-
apoptotic effect of prolonged JNK activation is overwhelmed 
by other proliferative signals present in NPC. p38 are known 
as stress activated protein kinases. Evidences indicate that 
p38 activity is essential for normal immune and inflammatory 
responses. However, they could also be strongly activated in vivo 
by environmental stresses. In response to stimuli, p38 protein has 
been shown to regulate a wide range of cellular functions, including 
the self-sufficiency of growth signals, unlimited replication of 
proteins, angiogenesis, tissue invasion and metastasis, regulation 
of the cell cycle, and protection against apoptosis [47]. Recent 
study reported that hypericin mediated PDT could induce p38 
expression, which counteracting the hypericin mediated PDT 
in HK-1/NPC cells [48]. It is not surprise that EBV induced 
ERK has been demonstrated in various carcinomas, such as 
hepatocellular carcinoma, renal cell carcinoma and NPC. ERKs 
activation could be triggered via LMP1-dependent route [49,50]. 
ERKs are constitutively expressed MAP kinases which regulate 
a diverse range of cellular functions, including cell growth and 
development. Phosphorylation of ERK is via the Ras/Mek/ERK 
cascade includes the activation of transcription factors, such as 
NF-kB. The normal function of ERK activation is in control of 
cell growth and differentiation via regulation of cellular levels 
of cyclin D1 and c-myc [51-55]. LMP1 induced ERK activation 
could also promotes cell motility and invasion by coordinating 
actin filament dynamics and focal adhesion turnover. Activated 
ERK proteins regulate the production and secretion of matrix 
metalloproteinase, resulting in extracellular matrix remodulation 
[56,57]. Studies also reported that the over-expression of the 
epidermal growth factor receptors (EGFRs) is associated with 
ERKs signal pathways activation [58,59]. 

The epidermal growth factor receptors (EGFRs) 
pathway

Over-expression of EGFRs in NPC is quite frequent and reports 
indicated that as high as 80% of NPC primary biopsies had the 
problem of EGFRs over-expression [60-62]. Interestingly, LMP-

1 promotes growth and proliferation via the up-regulation of 
epidermal growth factor receptor (EGFR) expression and increase 
the phosphorylation of EGFR [24]. Studies indicated that LMP1 
would stimulate the endocytosis of EGFR and translocation into 
the nucleus. Intra-nuclear EGFR serves as a transcription factor 
to promote the expression of cellular proliferation components 
while cytoplasmic EGFR binds to cyclin D1 and cyclin E proteins to 
accelerate G1/S transition [63-65]. Therefore, the signal pathway 
mediated by EGFR plays a vital role in the carcinogenesis of NPC 
and causes uncontrolled cell proliferation [62,66]. 

Conventional treatment of NPC

Treatment selected for NPC patients were based on the AJCC 
classification system. The conventional treatment for NPC is 
chemoradiotherapy because of high radio- and chemo sensitivity 
with a 5-years overall survival of 70-80% for stage I and II NPC. 
However, the treatment outcomes in patients with stage II NPC 
become less favor that with stage I NPC because of the distance 
recurrence. The treatment outcomes for loco regionally advanced 
NPC even worse, with a significant drop of 5-years overall survival 
to from 80% to ~ 55% and 30% respectively for stage III and 
IV NPC. Local recurrence, distant recurrence and development 
of multi-drug resistance properties are the most common 
cause of treatment failure [40,67,68]. The distance control was 
unsatisfactory with a 2-year distant metastasis rates ranged from 
10 to 15% and a 4-years distant metastasis rates up to 32%. 
Complications always resulted after chemo radiotherapy, such 
as hearing impairment, endocrinological dysfunctions, temporal 
lobe necrosis, cranial neuropathy, haemorrhage, and bone 
necrosis. Complications developed are depending on the tumor 
volume, local treatment and radiotherapy fractionation schedule. 
Besides, survivors of NPC always have impaired quality of life 
(QOL), which is increasingly emphasized in selecting appropriate 
therapeutic approaches, for NPC patients [69,70]. Unfortunately 
majority of NPC patients were diagnosed with locally advanced 
stages as it is difficult to detect early because of its complex 
anatomical location [39,64].Thus development of new treatment 
strategies is crucial for patients with NPC.

Drug resistance mechanisms in NPC

Multidrug resistance is the major obstacle to chemotherapy 
in tumor patients. The term multidrug resistance (MDR) refers to 
the ability of cancer cells being developed to cross resists with a 
range of antitumor drugs which are structurally and functionally 
unrelated. Development of MDR may be intrinsically prior to 
treatment or acquired during treatment [71]. The phenomenon 
of MDR could be achieved by the following mechanisms, including 
increase drug efflux from the cells via the adenosine triphosphate 
(ATP) binding cassette transporters (ABC), inactivation of drugs 
via detoxifying enzymes, and defective apoptotic pathways 
[72,73]. Recent studies illustrated the importance of ABC 
membrane transporters as one of the leading mechanisms of 
MDR in tumor cells [74,75]. The advances studies in molecular 
basis elucidating the phenomenon of MDR with cell lines indicate 
the expression of plasma membrane glycoproteins, including 
P-glycoprotein (P-gp/ABCB1), multidrug resistance associated 
protein 1 (MRP-1/ABCC1) and breast cancer resistance 
protein (BCRP/ABCG2). Among these, P-gp is the best studied 
mechanisms of MDR phenotype [76,77].

Figure 2 Signal transduction pathways regulated by the viral protein LMP1 
[46].
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OVERVIEW OF PHOTODYNAMIC THERAPY (PDT)
Development of novel treatment strategies is crucial for 

patients with Nasopharyngeal Carcinoma in view of the drug 
resistance properties and complications developed after 
conventional treatment.

Photodynamic therapy (PDT) is an evolving cancer treatment 
regimen with approved for use in USA, EU, Canada, Russia and 
Japan [78-80]. PDT uses a combination of photosensitising agents 
(PS), visible light and molecular oxygen to selectively destroy the 
biological target. None of these is individually toxic, but together 
they initiate photo-destruction to biological target. 

PDT function depends on the tumor localizing photosensitizer, 
which absorbs photon to produce photo-toxin such as singlet 
oxygen (1O2) and reactive oxygen species (ROS). Photosensitizers 
could be localized in varies cellular organelles including cell 
membrane, mitochondria, endoplasmic reticulum and Golgi 
apparatus, nucleus and  lysosome [81,82]. ROS can then oxidize 
many biological molecules, such as protein, lipids and nucleic 
acids and lead to in vivo and in vitro tumor cell disruption through 
apoptosis, necrosis and autophagy [83,84]. The antitumor effects 
of PDT derive from 3 mechanisms; including direct cytotoxicity 
effects on tumor cells, destruction of tumor associated 
vasculature, and induction of inflammatory reaction against 
tumor cells [78,81,85-89]. 

The FDA approved therapeutic modality for several 
malignant diseases, including skin cancer, bladder cancer and 
head and neck cancer [81]. It is clinically used when the patients 
unable or failed to chemotherapy and radiotherapy. A number of 
components contribute to the efficiency of PDT, including type 
and dose of PSs used, drug incubation time, light dose and tumor 
oxygen concentration. Since PDT has limited damage to normal 
human cells, optimization of these components becomes one of 
the major goals of clinical settings to establish maximum efficacy 
for PDT application [78,90,91]. 

Antitumor mechanisms of PDT

The treatment of PDT consists of the three basic factors: i) 
Photosensitizers, ii) illumination, iii) presents of molecular 
oxygen. PSs that is administered topically, locally or systemically 
will be localized and accumulated into tumour cells. The 
localization of PSs in various organelles depends on types of 
PSs and they should have some selectivity for tumour cells. The 
selectivity could also be achieved through directed light delivery 
with specific system such as laser with optical fibres [92]. After 
an incubation period, allowing the tissue to absorb the PSs, 
equilibrium will be reached in order to obtain the maximum 
drug uptake different between normal cells and tumor cells. The 
lesion is then exposed to light of appropriate wavelength (usually 
red visible light with 620 – 690nm), causing photoactivation of 
photosensitizer and, resulting in formation of ROS in the presence 
of oxygen [93]. Among these, the processes of light absorption 
by the photosensitizers and energy transfer are the two most 
important factors. The mechanism of photosensitizer activation 
to induce cell death is illustrated in Figure (3) [82, 94].

Fluorescent photon will emits when photosensitizer decay 
from excited singlet state to ground state. Excited singled-state 

oxygen (1O2) will be produced when the energy exchange from 
the photosensitizer triple state to ground state oxygen (3O2) [82]. 

In general, the photosensitizer molecules will be excited from 
singlet ground state (S0) to a higher energy state (S1) by photon 
from the light source (such as laser, quartz-halogen lamp or LED 
light) with specific wavelength. The molecules at the excited state 
are in nanosecond range and are usually unstable, which may 
easily decay to a lower energy state (T1) by internal conversion 
and vibrational relaxation. Some molecules may further return 
to the ground state S0 through fluorescence emission, but some 
will pass to the triplet excited state. Molecules in the triplet 
excited state can decay back to S0 state through the fluorescence 
emission of phosphorescence by two process known as the 
electron transfer process (type I reaction) or the energy transfer 
process with molecular oxygen (type II reaction). At type I 
mechanism, T1 stage molecule may generates a free radical 
species and will further react with environmental oxygen to form 
oxidized products. At type II mechanism, T1 stage molecule may 
generate singled oxygen. It is believed that the singled oxygen 
is the key agent of cellular damage, result as biological damage 
of the proteins, lipids and various cellular constituents and thus 
the type II mechanism is predominant over the type I mechanism 
[82,85,95]. However, the lifetime of singlet oxygen is very short 
(in the micro- to millisecond range) that limits its diffusion in 
cells. Thus the photodynamic damage is closely related with 
the properties and intracellular location of the photosensitizers 
[78,96,97].

The antitumor effects of PDT derive from 3 mechanisms; 
including direct cytotoxicity effects on tumour cells, destruction 
of tumor associated vasculature, and induction of inflammatory 
reaction against tumor cells [78,81,85-89]

Direct cytotoxicity effects on tumor cells

The search to define the molecular target of PDT is one of the 
key questions in PDT mechanistic research. This question is closely 
related to the intracellular localization of PSs as ROS have a short 
half-life.ROS will only interacts with intracellular structures close 
to their site of generation. The type of photodamage triggered by 
PDT thus depends on the subcellular localization of PS within the 

Figure 3 Energy level diagram for photosensitizer activation, Figure showing 
the singled ground state (So), excited singled state (S1), and excited tripled state 
(T1). 
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cell. Recent research has elucidated many pathways lead to cells 
destruction, including apoptosis, necrosis and autophargy [98]. 

Necrosis

The first type of cell death mechanism is known as necrosis, 
a quick form of degeneration affecting extensive cell populations. 
Typical characteristic of necrosis including cell swelling, 
destruction of organelle and distripution of the plasma membrane, 
leading to the release of intracellular contents and inflammation. 
Necrosis has been identified as accidental cell death which 
caused by physical or chemical damage. Decomposition of cells in 
necrosis is principally mediated by proteolytic activity [87]. 

Apoptosis

Different from necrosis, apoptosis is identified in a single 
cells surrounded by healthy neighours. It has been reffered 
as programmed cell death and is an ATP-requiring process 
morphologically characterized by nucleus condensation, 
fragmentation of DNA, cell shinkage, bledding of the plasma 
membrane and formation of multiple membrane-enclosed 
spherical vesicles known as apoptotic bodies. Apoptotic bodies 
are then scavenged by phagocytes in vivo and inflammation is 
prevented. As reffered as programmed cell death, apoptosis 
is controlled by transcriptional activation of specific genes, 
include the activation of endonucleases and caspases, and DNA 
degradation into fragments [95,99,100]. Caspases consists of a 
group of enzymes known as the cysteine dependent aspartate-
specific proteases. The apoptotic caspases could be activated by 
two pathways, called extrinsic pathway and intrinsic pathway. 
Extrinsic pathway is triggered by binding of death ligands to their 
corresponding receptors while intrinsic pathway is triggered 
by the mitochondria. The role of the intrinsic pathway in PDT 
has been documented as mitochondria is one of the molecular 
target for most of the PSs. Release of cytochrome c followed by 
destruction of mitochondria after PDT is observed and apoptotic 
caspase being activated, result as PDT mediated apoptosis [101, 
102]. 

Autophagy

The third type of cell death mechanism is knwon as autophagic 
cell death. Autophagy is reffered to catabolic process initiated 
in eukaryotic cells. The purpose of autophagy is to remove 
damaged organelles by forming autophagosomes and recycling 
of cytoplasmic components. This is a survival mechanism 
allowing the maintainacne of cell function. However, constitutive 
activation of autophagy can promote cell death as a result of 
excessive self destruction of cellular organelles. Autophagy 
is characteristized by a series of cellular changes, started as 
formation of autophagosomes, a double membrane structure 
which surrounded the cytoplasmic components or organelles. 
The autophagosomes will eventually fused with the lysosomes. 
Enzymes stored in lysosomes will digest the cytoplasmic 
materials and useful materials will be recycled [103]. Recent 
studies reveal that PDT may induce the formation of autophagy 
through photogenerated ROS. Formation of autophagy may aim 
as to remove the oxidatively damaged organelles or due to the 
accumulation of AMP by destruction of the mitochondria after 
PDT [83,104].

Antitumor mechanisms

The generation of knowledge concerning cell biology and 
signal transduction pathways is one of the principal areas of 
mechanistic research in field of PDT. The alternation of signal 
transduction proteins induced by PDT includes tyrosine kinase 
expression, transcritpion factors and cytokines.

Tyrosine kinase expression

Signal transduction cascades are important networks for 
cells to receive external stimuli and response to the stimuli in 
an appropriate manner. The mitogen activated protein kinase 
(MAPK) signal pathways paly an important role in eurkaryotic 
cells and modulate many cellulat events including i) regulation 
of cell cycle, ii) regulation of embryoic development, iii) cell 
movement, iv) cell differetiation, and v) apoptosis [105,106]. 
The MAPK signal pathways consist of ”three kinase modules” 
including the extracellular signal regulated kinases (ERK1/2), 
the c-Jun N-terminal kinase (JNK) and the p38 kinases. The role of 
JNK, ERK1/2 and p38 kinases in cell survival after PDT has been 
studied. There were studies indicating the decrease in ERK’s 
expression after PDT treatment and is related with PDT induced 
cell death. Inhibition of ERK expression has been found after 
PDT and is in relation to a significantly decrease in cell survival. 
p38 kinases was found to act as stabilizer for cyclooxygenase 
2 enzyme. Decrease in the p38 expression could contributes to 
tumor growth and sensitizes cancer cells to apoptosis [48,107, 
108]. The epidermal growth factor receptor (EGFR) is another 
tyrosin kinase involved in the initiation and progression of 
various cancers and is related to cell proliferation, angiogenesis, 
invasion, and metastasis [109,110]. Many studies found that PDT 
could induce complete loss of EGFR on different cell models and 
so induce anti-poliferative response [111-113].

Transcritpion factors

Transcription factors are proteins which bind to the enhancer 
regions of genes to initate gene expression. Transcription factors 
which couple with receptor-generated signals act as intracellular 
messengers to activate various gene expression. Nuclear factor 
kappa B (NF-kB) is present in the cytoplasm and its activation 
typically initiate a specific signal trasnduction cascades, which 
regulates many cellular genes including a number of cytokines 
and growth factors. Activation of NF-kB upon photosensitization 
has been shown to either promote or inhibit apoptosis depends 
on the cell types [114-116]. In general, a number of PDT studies 
have shown that promotor regions of many genes, such as NF-
kB, p53, B-cell lymphoma 2 (Bcl-2) and Interleukin 8 (IL-8) could 
be activated after PDT treatment and is related to both induction 
and prevention of apoptosis [117,118]. 

Historical and clinical applications of photodynamic 
therapy 

Treating disease with photosensitizing drugs is an old idea 
that the first attempts can dates back to ancient Egypt, India 
and Greece [119]. However, the term Photodynamic was coined 
by Jesionek and von Tappeiner in 1904 when they reported 
experiments on cancer treatment with photo sensitizers. R. L. 
Lipson and S. Schwartz opened the door to the current research of 
PDT in 1960. They observed that injection of crude preparations 
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of hematoporphyrin led to characteristic red fluorescence 
accumulate in neoplastic lesions during surgery. Afterward, a 
mixture that Schwartz obtained from treating hematoporphyrin 
with acetic acid and sulfuric acid was used by Lipson for tumor 
detection. The mixture is now known as the hematoporphyrin 
derivative (HpD). The expanding use of PDT in clinical applications 
is based on the pioneering work of Thomas J. Dougherty (USA) 
in the 1970s with the derivative of hematoporphyrin (HpD). In 
1980’s, a purified product of HpD named Photofrin, which has a 
wide range of proven curative effect, was approved by the US FDA 
as the first photosensitizer for PDT clinical application in cancers, 
such as skin, oral, bladder cancer and gynecological cancer. Since 
then, PDT has gained increasing interest in both therapeutic and 
diagnostic aspect [86,88,120,121]. 

Photosensitizers: As one of the critical element for PDT, 
there are a large number of photo sensitizers being tested in vivo 
and in vitro in PDT experiments. The prerequisites of an ideal 
photosensitizer including: chemical purity, low dark toxicity, 
high quantum yield of singlet oxygen, selective accumulation in 
tumor cells, short time interval between drug administration and 
maximal accumulation within target cells, rapid clearance from 
the body, and being activated by longer wavelength with better 
tissue penetration [122]. Hematoporphyrin derivative (HpD) 
was the first FDA approval photosensitizer for clinical PDT with 
high response rate and promising result were obtained. It was 
developed in the 1970s and early 1980s and is now known as the 
1st generation photo sensitizers. The major drawback of HpD is 
the cutaneous photosensitivity and this drives the development 
of the next generation of photo sensitizers. A number of 2nd 
generation photo sensitizers of different chemical families were 
synthesized in the late 1980s to offer potential advantages over 
the 1st generation photo sensitizers, including higher chemical 
purity, better tumor selectivity and faster clearance [123,124]. 
These 2nd generation photo sensitizers include prophyrin 
precursors (5-aminolevulinic acid), chlorines (chlorine e6); 
meta-tetrahydroxy-phenyl chlorine (m-THPC), etc. 

Current development of photosensitizer, also known as 
the 3rd generation of photosensitizers, amis at improve the 
drug delivery approached, such as biological modifications like 
antibody conjugate or liposome conjugate [87,92, 125-127].

Advantages and limitations of PDT

The board acceptance of PDT to tumor cells with repeatable 
administration without cumulative toxic effect makes PDT suitable 
as alternative cancer treatments. PDT has several advantages for 
cancer treatments including no life time limited to PSs, treatment 
can be repeated as often as needed, fast clearance (depends 
on the types of PSs), side effects are rare, minimize damage to 
normal tissues, and no known interaction exists between current 
chemo- and radiotherapy [78,79]. However, some drawbacks 
limited the application of PDT in clinical practices. The well 
known disadvantages are the prolonged photosensitivity, which 
could be fatal. In order to minimize this adverse effect, patients 
are advise to keep in dark for weeks until the PS is eliminated 
from the body. Other limitations includes limited choices of light 
sources (clinical window is between 600 to 800nm), variation 
of therapeutic effect according to PSs selected and tumor cell 
types, and the limitation in systemic treatment for widespread 
metastasis [91,127].

New perspectives of PDT in tumor therapy: There is 
increasing interest and research effort focused on developing 
new photo sensitizers, exploring PDT mechanisms at molecular 
level, and enhancing PDT efficacy with new drug delivery system. 
The Novel strategies in PDT including Two-Photon PDT, PDT 
molecular Beacons, Liposomes package and nanotechnology in 
PDT. Two-Photon PDT, different from the standard method, is 
to activate the photo sensitizers by short laser pulse with very 
high peak power instead of using continuous light. Because 
the photosensitizer is activated by two photons, each of the 
photon only contributes one half of the excitation energy and 
thus near-infrared light can be used to achieve deeper tissue 
penetration [128,129]. PDT molecular Beacons apply the 
concept of molecular beacons, which inactive photosensitizer 
by linking it to a quenching molecule. The photosensitizer 
will be activated until the linker is cleaved by a target specific 
enzyme. Alternatively, the linker may be an oligonucleotide and 
is opened by hybridization to complementary gene sequence, 
such as complementary mRNA [130,131]. To improve the cellular 
uptake of water soluble photosensitizer, liposomes with different 
modification and nanoparticles are applied. The advantage of 
liposomal photosensitizers and nanoparticles is good membrane 
penetration and can coat with multiple targeting molecules such 
as antibodies or peptides [126,132-137]. 

PDT for nasopharyngeal carcinoma: Alternative treatment 
is advisable to NPC as it is often inoperable because of its complex 
anatomical location [39, 64]. The development of improved 
therapeutic strategies, such as PDT and immunotherapy, shed light 
on the development of NPC treatment [48,100,138-141]. Yow’s 
group also demonstrated promising outcomes from a number 
of in vitro studies concerning the PDT effect using several PSs 
including hypericin, mTHPC, merocyanine 540, 5-ALA and hexyl-
ALA on NPC/HK1, NPC/CNE1 and NPC/CNE2 cells [100,142-
147]. Lai and his colleagues showed that PDT has an immuno-
enhancing effect in NPC patients by increasing natural killer cells 
and interleukin-2 (148). Another group from Hong Kong has 
illustrated similar outcomes by using other PSs curcumin and Zn-
BC-AMon NPC/CNE2 cells and NPC/HK1 cells respectively [149-
151]. Preliminary clinical studies using hematoporphyrin and 
temoporfin for the treatment of the local and recurrence of NPC 
after curative radiotherapy found encouraging result for residual 
or recurrent NPC restricted locally to the nasopharynx [152,153]. 

To conclude, PDT could induces apoptosis in NPC via 
alternation of mitogen-activated protein kinase, alternation 
of Epidermal growth factor receptor (EGFR) pathways, or 
alternation of Bcl-2 protein expression level [144,150,151, 154] 
. PDT could also modulate the inflammatory cytokine production 
and angiogenic factors production [155,156]. All these findings 
suggested that PDT should be one of the best choices over the 
conventional cancer therapies for NPC.
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