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INTRODUCTION
Allogeneic Hematopoetic Stem Cell Transplantation (HSCT) 

is the only curative option for many malignant and inherited 
hematologic and non-hematologic disorders.  The number 
of allogeneic HSCT performed has been steadily increasing 
worldwide. This growth can be mainly attributed to the increase 
in the number of eligible patients as the new less toxic non-
myeloablative and reduced intensity conditioning (RIC) regimens 
have allowed the transplantation of patients over the age of 50. 
In addition advances in graft versus host disease and infectious 
disease prophylaxis and treatment have continued to improve 
the outcomes.

Patient eligibility is mainly limited by donor availability. 
Ideally patients receive stem cells from a matched related 
(sibling) donor. But as there is only a 25% chance for a sibling 
to be HLA matched, there are only about 30% of patients who 
have a sibling matched donor. This number is expected to 
continue to drop as the average family size keeps going down. An 
alternative donor source is an unrelated HLA matched donor that 
can be identified through the National Marrow Donor Program. 
But even as the donor pool in the NMDP steadily expands 
and there are currently more than nine million donors in the 
registry, only a 60% of Caucasians and even as low as 10% of 
non-Northern Europeans (especially African American and other 
minorities) are able to find a Matched Unrelated Donor [1]. This 
discrepancy is due to more HLA variation in non-Europeans and 
to underrepresentation of ethnic minorities in the registry. The 
result is that approximately 5000 patients per year are in need 
for an alternative donor.

An alternative approach for patients without HLA-matched 
donors is the use of a mismatched/haploidentical donor.  
Haploidentical donors have one haplotype in common with 
the recipient, so they match in at least five out of ten HLA loci. 
These are most commonly relatives, such as parents, children or 
siblings. The advantages of this approach besides the possibility 
to identify a donor for almost all patients also include the 
avoidance of treatment delay and the higher motivation of the 
relative donor that facilitates research protocols [2]. 

The very first trials of haploidentical stem cell transplantation 
reported a very high incidence of graft rejection, Graft versus 

Host Disease (GVHD) and nonrelapse mortality (NRM) [3,4]. In 
order to improve these dismal outcomes strategies with both T 
cell depleted and T cell replete grafts have been employed [5-7]. 
As there is no single universally accepted way for performing 
a haploidentical transplantation, in the following paragraphs 
we will review the different strategies with a focus on the most 
recent advances.

Transplantation of a “mega-dose” T cell depleted 
Haploidentical Stem Cells

Transplantation of an ex vivo T cell depleted graft successfully 
avoided severe GVHD but was complicated by very high 
incidences of graft failure and relapse [8-10]. The Perugia group 
overcame the problem of graft failure by transplanting a “mega-
dose” of T cell depleted stem cells after a conditioning regimen 
of enhanced myeloablation and immunosuppression [11,12] but 
without post-transplantation GVHD prophylaxis.  This approach 
was based on experimental data that large dose of stem cells can 
overcomes MHC barriers in mice [13]. The leukemia free survival 
was acceptable especially for patients transplanted in remission 
and most importantly long term survivors had a high quality of 
life without GVHD and without the need for immunosuppression. 
A high incidence of infectious complications was observed 
attributed to delayed immune reconstitution after a T cell 
depleted graft.

The Acute Leukemia Working Party (ALWP) of the European 
Blood and Marrow Transplant (EBMT) Group analyzed 173 
adults with acute myeloid leukemia (AML) and 93 with acute 
lymphoblastic leukemia (ALL) who received a “mega-dose” T 
cell–depleted peripheral blood cell haploidentical HSCT [14] 
and reached the conclusion that haploidentical HSCT using this 
approach “can be an alternative option for the treatment of 
high-risk acute leukemia patients in remission, lacking a human 
leukocyte antigen-matched donor”.  Similarly to the previously 
published studies by the Perugia group the “mega-dose” of T cell 
depleted stem cells was associated with a high engraftment rate 
and minimal GVHD but the transplantation related mortality was 
high (36-66% at two years depending on disease status) and 
mainly due to infections and interstitial pneumonitis. Similar 
results have been published by other groups [15] and in pediatric 
patients [16-18]. 
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CD3/CD19 depleted stem cells

Based on the rationale that avoidance of Anti Thymocyte 
Globulin (ATG) and Total Body Irradiation (TBI) will reduce 
NRM and that CD3/CD19 depletion of stem cells will leave 
tumor reactive natural killer and dendritic cells intact and 
facilitate the Graft versus Leukemia (GVL) effect, several groups 
in the US and Europe have conducted clinical trials with a RIC 
regimen followed by transplantation of a haploidentical CD3/C19 
depleted graft [19-21]. The results appear to be very promising 
(especially in patients transplanted in remission) with reduced 
infectious complications and a higher GVL effect compared to the 
myeloablative  T cell depleted regimen.

Post-transplant T cell infusion

Adoptive immunotherapy with post-transplant infusion of 
pathogen specific T cells has been attempted as a way to reduce 
the infectious complications associated with haploidentical 
HSCT. Several groups have created T cell populations in vitro 
with specificity against adenovirus [22], EBV [23] (or both [24]), 
CMV [25] and Aspergillus [26].  Infusion of these cells has been 
shown to be safe, effective and not cause GVHD [27] but as 
this technique has not found wider application yet as it is time 
consuming, expensive and requires expert skills and specialized 
facilities [28]. 

Another promising technique is the infusion of donor T cells 
that have been genetically modified in order to express a suicide 
gene. The suicide gene can be turned on by the administration 
of a medication in case the patient develops GVHD. In clinical 
trials infusion of these cells accelerated immune reconstitution 
both directly and indirectly by driving the recovery of thymic 
activity and the few cases of GVHD were very rapidly and 
effectively controlled by turning on the suicide gene [29-31]. As 
with the previous technique, technical limitations make a wider 
application difficult.

Depletion of donor alloreactive T cells

Donor anti-host alloreactive T cells can be activated in vitro 
in a mixed lymphocyte reaction with donor-derived PBMCs and 
then depleted with the use an antibody targeting activated T cells 
such as an immunotoxin that reacts with CD25.  The allodepleted 
T cell product can be safely infused to the donor and may 
improve T cell recovery as was demonstrated in two trials from 
Europe [32,33]. Photodepletion of host-reactive T cells is another 
selective method of allodepletion currently under study [34,35]. 

Unmanipulated T cell replete haploidentical trans-
plants

A group from China has published on performing 
unmanipulated haploidentidentical HSCT with the use of intense 
GVHD prophylaxis and a graft that was composed of GSCF primed 
harvested marrow and collected peripheral stem cells. In their 
experience the outcomes with this procedure were comparable 
to HLA-identical sibling transplantation [36,37]. The same group 
published the results of a prospective trial in patients with 
intermediate or high risk Acute Myeloid Leukemia (AML) in first 
complete remission (CR1) that showed a clear superiority in 
terms of Overall and Disease Free Survival of the unmanipulated 

haploidentical HSCT over chemotherapy [38]. A group from 
Europe also showed that transplantation of unmanipulated GCSF 
primed bone marrow following either a myeloablative or even a 
RIC conditioning regimen is feasible with vigorous pre- and post-
transplant GVHD prophylaxis [39].

Another group from China has reported on the infusion 
of haploidentical GCSF mobilized peripheral blood stem 
cells following not a preparative regimen but conventional 
chemotherapy [40,41]. Their patients had an impressively 
high leukemia free and overall survival at six years (84.4% 
and 89.5% respectively for patients with low or intermediated 
risk AML in CR1), no patient developed GVHD and nobody 
engrafted [40]. For elderly patients with AML they showed in a 
prospective randomized study that their approach was superior 
to conventional chemotherapy [41]. Presumably the resulting 
transient microchimerism was just enough for a GVL effect but 
not sufficient to induce GVHD, although there are still many 
unanswered questions [42].

T cell replete haploidentical HSCT with Post 
transplantantion High Dose Cyclophosphamide

Donor and host alloreactive T cells can be depleted in vivo 
with the post transplantation administration of high dose 
cyclophopshamide (PTCy) [43]. PTCy needs to be administered 
within a very short window after the stem cell infusion. 
Hematoopetic stem cells are relatively spared by the toxic effects 
of high dose cyclophosphamide thanks to the high expression 
of aldehyde dehydrogenase [44]. The Hopkins and the Seattle 
groups have pioneered the use of high dose Cyclophosphamide 
(50 mg/kg on days +3 and +4) following a reduced intensity 
regimen (Cyclophosphamide 14.5 mg/kg/day i.v. on days −6 
and −5, fludarabine 30 mg/m2/day i.v. on days −6 to −2, and 200 
cGy of TBI on day −1) and haploidentical donor marrow infusion 
[45]. Among 210 patients treated at Hopkins 87% had sustained 
engraftment and the cumulative incidences of grades II-IV acute 
GVHD and chronic GVHD were 27% and 13%, respectively. Five-
year cumulative incidence of non-relapse mortality was 18%, 
relapse 55%, and overall survival 35% [46].  The relatively low 
observed infectious mortality suggests that memory T cells are 
spared by PTCy [6].

As this approach is technically simple and cost-effective, it 
has been adopted by many other centers. A group from Atlanta 
compared their center’s outcomes of haploidentical HSCT using 
PTCy with those of conventional HLA-matched sibling donor 
(MRD) or HLA-matched unrelated donor (MUD) HSCT and 
reported that they were not inferior [47]. The same group has 
also showed that using a myeloablative preparative regimen 
and peripheral blood stem cells (PBSCs) as the graft source 
in conjunction with haploidentical HSCT and PCTy is safe and 
feasible [48].

The Blood and Marrow Transplant Clinical Trials Network 
(BMT-CTN) recently published the results of 2 parallel 
multicenter phase 2 trials (BMT-CTN 0603 and 0604) for patients 
with hematologic malignancies and no suitable related donor 
[49]. Reduced intensity conditioning (RIC) was used with either 
unrelated double umbilical cord blood (dUCB) or haploidentical 
HSCT with PTCY. The outcomes in terms of engraftment, GVHD, 
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NRM and RFS at one year were similar and comparable to 
those reported after matched unrelated donor transplantation. 
These results set the stage for BMT-CTN 1101, a multicenter 
randomized phase 3 trial of dUCB vs haplo.

Tolerance induction

The achievement of specific tolerance to host but not tumor 
or infectious alloantigens by selectively inactivating the indicated 
subsets of alloantigen-specific T-lymphocytes has been the 
goal of transplant immunology [50].  Our currently expanding 
understanding of the biochemical and molecular basis of T-cell 
tolerance provides great promise towards reaching this goal.

The two signal model of T cell activation dictates that for T 
cell activation to proceed two signals are required: one through 
the antigen specific T cell receptor (TCR) and the second though 
the non-antigen specific engagement of a costimulatory molecule 
by its counterpart on an antigen presenting cell [51]. Engagement 
of the TCR in the absence of costimulation leads to T cell anergy 
and to peripheral tolerance formation [52].  Regulatory T cells are 
believed to abrogate GVHD and enhance immune reconstitution 
without blocking the GVL effect [53,54].

A group from Harvard conducted a clinical trial where a 
haploidentical marrow was infused after in vitro co-culture with 
recipient cells in the presence of CTLA4Ig, which is an antibody 
that blocks the second costimulatory signal rendering the 
alloreactive T cells in the culture anergic [55].  95% of the treated 
patients engrafted, the GVHD rate was low and the immune 
reconstitution was rapid resulting in very few viral infections 
[56].  After the in vitro treatment the frequency of helper T 
cells that were reactive against the recipient fell by one to four 
orders of magnitude, whereas third party alloreactivity remained 
unaffected.

The Perugia group studied the infusion of haploidentical 
donor derived regulatory T cells (Tregs) followed by CD34+ 
cells and donor mature T cells in the setting of T cell depleted 
haploidentical HSCT [57]. Almost all patients engrafted, acute 
GVHD rate was low, there was no chronic GVHD, immune 
recovery was rapid and the GVL effect appeared preserved [58].

Rapamycin is an immunosuppressive medication that exerts 
its action through mTOR inhibition. mTOR inhibitors unlike 
calcineurin inhibitors (CNI) facilitate immunologic tolerance by 
inducing T cell anergy, promoting the expansion of regulatory T 
cells and inhibiting the maturation of dendritic cells [59,60]. In 
addition rapamycin has a direct antineoplastic effect that might 
be of clinical significance in the setting of HSCT [61].  The Milan 
group developed a CNI-free T cell replete haploidentical protocol 
with GVHD prophylaxis based on rapamycin, mycophenolate 
mofetil (MMF), ATG and rituximab [62]. Their purpose was to 
promote a rapid immune recovery with preferential accumulation 
of regulatory T cells. Their preliminary results look promising 
with most patients engrafting and acceptable rates of GVHD, NRM 
and relapse [63]. Furthermore they were able to demonstrate an 
early T-cell immune reconstitution characterized by the in-vivo 
expansion of Tregs.

CONCLUSION
 Haploidentical HSCT has evolved from a desperate “Hail 

Mary” attempt for patients with no other options to a reliable 
procedure with results comparable to those of HSCT with the 
use of a matched related or unrelated donor. Furthermore it is 
now in the forefront of exciting research in immunology with the 
promise to abrogate GVHD while strengthening GVL.
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