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INTRODUCTION
It has been documented that immunosurveillance plays 

an important role in cancer development in both human and 
animals [1,2]. Cancer immunosurveillance is the function of 
immune system in recognizing and reacting against aberrant 
cancer cells in the body. Thus, the interactions between cancer 
cells and immune cells play a pivotal role in cancer development. 
In cancer patients, however, tumors grow, suggesting that anti-
tumor immune responses are either not sufficiently vigorous to 
eliminate cancer cells or the anti-tumor immunity is suppressed. 

Recent clinical trials have demonstrated that adoptive 
cell transfer therapy (ACT) with anti-tumor lymphocytes can 
cause cancer regression in approximately 70% of patients with 
metastatic melanoma [3,4]. Therefore, in vitro manipulation of 
anti-tumor immunity may be used in the effective treatment of 
cancer patients. In this review, the development and prospects of 
ACT for cancer are discussed. Cancer immunotherapy has been 
noted as one of six Areas to Watch in 2013 [5], and it is expected 
that ACT with anti-tumor lymphocytes will be extensively used in 
cancer treatment in the near future. 

LYMPHOKINE-ACTIVATED KILLER (LAK) CELLS
LAK cells are the activated peripheral blood mononuclear 

cells (PBMC) from cancer patient and normal donors after in 
vitro stimulation by interleukin-2 (IL-2) for 4-6 days [6]. They 
are derived from natural killer (NK) and T cells in PBMC. LAK 

cells have anti-tumor activity in vitro against various cancer 
cells. In 1984, it was demonstrated that LAK cells in combination 
with IL-2 were very effective in eradicating tumors in mice 
with established pulmonary sarcoma metastases [7]. In 1985, 
Rosenberg et al. used LAK cells for ACT in clinical trials for 
patients with metastatic cancer [8]. After ACT with LAK cells, 
the reduction of tumor burdens was achieved in approximately 
50% of the 25 treated patients and one patient had a complete 
tumor regression [8]. However, the response in cancer patients 
was sustained only for a short period of time [9]. The anti-
tumor activity of LAK cells is maintained by IL-2, and thus high-
dose of IL-2 (2.8×105-3.32×106U/kg) is required for ACT of 
LAK cells in cancer treatment. Moreover, IL-2 induced serious 
side effects such as capillary leak syndrome (CLS) or vascular 
leakage syndrome (VLS) [10,11]. Further studies showed that 
LAK cells did not prove effective in the treatment of metastatic 
melanoma and renal cancer patients [12]. In addition, clinical 
trials discovered that IL-2 administration alone could induce 
tumor regression in 20% of patients with metastatic melanoma 
and renal cancer [12]. Therefore, ACT with LAK cells is currently 
not used in cancer treatment. 

CYTOKINE-INDUCED KILLER (CIK) CELLS
CIK cells are also activated PBMC after in vitro stimulation by 

multiple factors including interferon-γ (IFN-γ), IL-1α, IL-2 and 
anti-CD3 antibody for 7-14 days [13]. They are mainly CD3+CD56+ 

cells, i. e. NK cell-like T cells. Similar to LAK cells, CIK cells can kill 
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varieties of tumor cells in vitro and in vivo mouse models [13,14]. 
Nowadays, autologous CIK cells have been extensively used in 
treatment of cancer patients in China although the effectiveness 
and mechanisms of ACT with CIK cells are still uncertain [15-18]. 

Due to the lack of tumor antigen specificities of CIK cells and 
strong capability of antigen presentation of dendritic cells (DC), 
DC-CIK cells were recently developed for ACT for cancer. Usually, 
DCs from peripheral blood samples were pulsed by tumor 
antigens, tumor lysate or antigen-loaded viral vectors and then 
co-cultured with CIK cells to grow DC-CIK cells. Compared with 
CIK cells alone, DC-CIK cells have increased proliferation ability, 
cytokine secretion and anti-tumor activity [19,20]. Therefore, it is 
believed that DC-CIK cells are more effective than CIK cells alone 
in ACT for cancer patients. A clinical trial showed that ACT with 
tumor lysate-pulsed DC-CIK cells could significantly increase 
overall survival rates than no treatment control in renal cancer 
carcinoma patients; however, there was no difference between 
ACT with DC-CIK cells and IFN-α administration (P > 0.05) [21]. 
Thus, the efficacy of ACT with DC-CIK cells in cancer treatment 
remains to be determined. 

TUMOR-INFILTRATING LYMPHOCYTES (TILS) 
It has been documented that TILs could be easily generated 

from metastatic melanoma patients [22,23]. After expansion, 
TILs have anti-tumor activity against autologous tumor cells and 
other cancer cells [22,23]. Clinical trials have demonstrated that 
ACT with anti-tumor TILs can induce tumor regression in 49-
72% of the treated patients with metastatic melanoma [3,24], 
suggesting that ACT with anti-tumor TILs is an effective method 
in cancer treatment. 

Our studies discovered that the persistence of multiple 
anti-tumor T cell clones was responsible for tumor regression 
in metastatic melanoma patients after ACT of anti-tumor TILs 
[25,26]. We subsequently demonstrated that the telomere length 
of transferred lymphocytes was associated with T cell persistence 
and clinical response in patients with metastatic melanoma after 
ACT [27,28], suggesting that less-proliferated young TILs would 
be more effective for ACT [29,30]. Thus, telomere length may be 
used as a marker to select TILs for ACT in order to improve the 
efficacy of ACT with anti-tumor TILs for cancer patients. 

GENETICALLY ENGINEERED LYMPHOCYTES
As mentioned above, ACT of anti-tumor TILs is an effective 

method for patients with metastatic melanoma. Anti-tumor 
tumor-infiltrated lymphocytes, however, may not be generated 
from all cancer patients. Thus, genetically-engineered T 
lymphocytes with anti-tumor activity are pursued for ACT for 
cancer [31]. Usually, viral vectors carrying genes coding T-cell 
receptor genes specific to tumor antigens or chimeric antigen 
receptors (CARs) are genetically introduced into PBMC or tumor-
infiltrating lymphocytes [30,32,33]. Such genetically-engineered 
T lymphocytes have high avidity and tumor reactivity [34], 
which may be used for ACT in cancer treatment. For instance, 
genetically-engineered T lymphocytes are highly reactive to 
MART-1 melanoma tumor antigen [35]. In addition, infusion of 
CD19-specific CAR-transduced mouse T cells alone could induce 
long-term B cell eradication in mouse model of B cell acute 

lymphoblastic leukemia (B-ALL) [36] and primary human pre-B-
cell acute lymphoblastic leukemia [33]. 

A clinical trial indicated that genetically-engineered T 
lymphocytes reactive to MART-1 for ACT might be effective 
in tumor regression in metastatic melanoma patients [4]. 
Genetically-engineered T lymphocytes reactive to NY-ESO-1 
also successfully induced tumor regression in both melanoma 
patients and nonmelanoma synovial cell sarcoma patients [37]. 
Furthermore, infusion of genetically-engineered T cells with 
CD19-specific CARs caused rapid tumor regression in patients 
with relapsed/refractory B-ALL [38] and advanced chronic 
lymphocytic leukemia (CLL) [39]. Thus, genetically-engineered 
T lymphocytes with anti-tumor reactivities may be used in ACT 
for cancer patients, from whom anti-tumor tumor-infiltrating 
lymphocytes cannot be generated for therapy. 

PROSPECTS IN ADOPTIVE CELL TRANSFER 
THERAPY

Thus far, there is no evidence available to confirm that ACT 
of CIK cells and DC-CIK cells is effective in cancer treatment. 
However, it may be effective when ACT of CIK cells and DC-
CIK cells is used together with conventional cancer treatment 
methods. For instance, ACT with CIK cells in combination 
with chemotherapy had potential benefits including longer 
progression-free survival and overall survival in patients with 
advanced gastric cancer and non-small-cell lung cancer as 
compared with chemotherapy alone [40,41]. The combination of 
high-dose chemotherapy with ACT of DC-CIK cells showed clinical 
benefits such as improved progression-free survival and overall 
survival in metastatic breast cancer patients [38]. ACT of DC-CIK 
cells in combination with chemotherapy also could significantly 
increase the 1- and 2-year overall survival rates in patients with 
advanced non-small-cell lung cancer [42]. Therefore, ACT of CIK 
cells and DC-CIK cells in combination with conventional cancer 
treatments such as chemotherapy may be used as effective 
treatment modalities for cancer patients. 

ACT of anti-tumor TILs has been shown to be effective in the 
treatment of patients with metastatic melanoma [3]. TILs can 
also be generated from patients with breast cancer [43], renal 
cancer [44], pancreatic cancer [45] and lung cancer [23]. These 
lymphocytes have anti-tumor activity against autologous tumor 
cells and other cancer cells [23,43,45]. Therefore, ACT using anti-
tumor TILs is a promising effective treatment for patients with 
breast cancer, renal cancer, etc. 

Genetically-engineered T lymphocytes with anti-tumor 
activity against MART-1 seem to be effective in ACT for metastatic 
melanoma patients [4]. It is possible that genetically-engineered 
T lymphocytes with anti-tumor activities against other tumor 
antigens may be effectively used in ACT for other forms of cancer 
[37]. It is desirable to establish a bank of genetically-engineered 
T lymphocytes with anti-tumor reactivities against all known 
tumor antigens. It will facilitate future applications of ACT as an 
effective treatment for cancer patients as long as specific tumor 
antigens are identified. For a similar reason, it is worthwhile to 
establish a bank of anti-tumor TILs from different cancer patients 
for future ACT in cancer treatment. 
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In vitro generation of anti-tumor TILs is critical for successful 
ACT in cancer treatment. The flexibility in manipulations of T 
cells in vitro would overcome tumor-induced T-cell anergy in 
vivo to generate optimal anti-tumor immunity. Anti-tumor TILs 
may used in the identification of antigens involved in tumor 
regression mediated by transferred anti-tumor lymphocytes 
[25,46]. Understanding of antigen specificities in anti-tumor TILs 
for ACT will have great implications in exploring the mechanism 
of tumor regression induced by transferred T cells and improving 
the efficacy of ACT in cancer treatment [25,47]. Furthermore, 
identification of antigen specificities in anti-tumor TILs would 
facilitate the generation of genetically-engineered T lymphocytes 
with anti-tumor activities against specific tumor antigens for 
ACT. 

CTLA-4 (cytotoxic T-lymphocyte antigen-4) interacting 
with its ligands (B7.1 and B7.2) down-regulates the immune 
system and thus antibodies that block the interaction between 
CTLA-4 and its ligands can increase immune responses. Recent 
studies have shown that monoclonal antibody therapy using 
anti-CTLA-4, PD-1 (programmed death-1) and CD137 (4-1BB) 
monoclonal antibodies can enhance immune responses, including 
anti-tumor immunity [48]. Clinical trials in metastatic melanoma 
patients demonstrated that antibody therapy with anti-CTLA-4 
antibodies (lpilimumab and tremelimumab) could induce 
melanoma regression and/or improve overall patient survival 
although serious side effects were found in 10-25% of patients 
[49-51]. NY-ESO-1 and gp100 vaccination in combination with 
anti-CTLA-4 antibody therapy increased the vaccine-primed 
antigen-specific T-cell response in metastatic melanoma patients 
[51,52]. Therefore, ACT in combination with antibody therapy 
may provide a promising strategy for improved ACT efficacy in 
cancer treatment. 
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