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INTRODUCTION
The p53 protein, coded by the TP53 gene, is a classic tumor 

suppressor protein related to cancer [1] and a series of other 
diseases such as endometriosis [2], atherosclerosis [3], and 
infertility [4]. It regulates cell cycle progression and protects 
DNA against several types of damage [5]. TP53 is located in the 
locus at 17p13.1 and comprises highly conserved 11 exons. The 
protein has 393 amino acids and presents structural homology 
between among species, as it can be confirmed by sequence 
alignment performed by BLAST (https://www.ncbi.nlm.nih.
gov). Amino acid sequence alignment of human p53 and Castor 
canadensis, for example, shows 81% of identity (Figure 1). The 

wild-type p53 has a tetrameric molecular structure [6] as shown 
in Figure 2A.

The p53 protein is recruited when DNA undergoes exogenous 
or endogenous damage caused by a great variety of agents such as 
reactive oxygen species [7], hypoxia [8-10], nutrient [11-13] and 
micronutrient deprivation [14,15] and DNA replication stress 
[16]. Damaged DNA induces overexpression of p53 [14,17] and 
consequently it interacts with other proteins in order to trigger 
pathways related to repair [18], apoptosis [19] or cell cycle arrest 
[19,20]. The p53 protein structure (Figure 2B) is intrinsically 
related to its function. The conserved DNA binding motif of p53 
ranges from amino acid residues 95 to 288 and encompasses 
approximately 66% of the entire protein. Mutations at this region 
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are rather common and may increase cancer and other diseases 
susceptibility considerably [21].

Mutations in TP53 gene are generally of the missense type 
and lead to a reduced or total loss of p53 functions [22,23], 
altering its ability to bind to other proteins and fulfill its function. 
It has been suggested that TP53 mutations and consequently p53 
protein structure anomalies drive tumor related inflammation 
and affect immunological aspects of several types of cancer 
onset. Impairment of p53 within tumor environment correlates 
to immunosuppression and immune evasion of cells with mitotic 
dysfunctions [24-26]. The p53 pathway in tumorous cells is 
highly dynamic and might be related to an immunological design 
to alleviate immunosuppression or immunosenescence besides 
improving antitumor immunity aspects.

DNA damage and genomic instability are closely related top53 
dysfunction and the immunological response of tumorigenesis 

[27]. It is well known that inflammation influences the onset 
of cancer [28], thus p53 could play immunological roles in 
tumorigenesis through immune response. Irregular protein-
protein interactions of p53 may interfere with the immune 
scenery within tumor environment leading to inflammation [29]. 

Tumor suppression mediated by p53 takes place by 
autonomous or non-cell autonomous mechanisms. The former 
features p53 normal DNA damage response towards repair, 
apoptosis or growth arrest while the latter is related to the 
advancement of inflammation [30]. Tumorous cells formation 
and cancer progression along with metastases are driven by 
molecular and cellular components present in within tumor 
environment [31]. Immunological components of cancerous 
cell environment comprise extracellular matrix, cytokines, 
chemokines and immunosuppressive constituents that guarantee 
a landscape of inflammation in order protect cancer from immune 
surveillance and elimination [32-34].

Figure 1 The Homo sapiens and Castor Canadensis p53 amino acid sequence alignment performed by NCBI BLAST. The protein p53 is highly 
conserved across species. The query sequence corresponds to H. sapiens p53 and the subject sequence, in red, corresponds to the C. Canadensis p53. 
The dots in the graphic indicate identical amino acids at the same position within both sequences.

Figure 2 The H. sapiens p53 protein 3-D structure. 
A) The p53 protein is a tetrameric molecular structure. Each color in the figure represents an identical monomer that undergoes tetramerization in 
order to assemble the p53 whole structure. The figure shows the region of the protein that interacts with DNA. 
B) The surface of the p53 protein. The 3-D structures of p53 were retrieved from the PDB (protein data bank) and the images were constructed 
using the PyMol program.a
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It has been reported an increased elevated p53 activity in 
several tissues of patients affected by autoimmune diseases, 
which are governed by inflammation processes. The most 
common are rheumatoid arthritis [35], ulcerative inflammatory 
bowel diseases, Crohn’s disease [36] and Sjögren’s disease 
[37]. The protein p53 levels are considerably altered in those 
inflammatory diseases, which is an indication of its relation to 
inflammatory stress [38].

MATERIALS AND METHODS
The 3-D structures used in the analysis are available in 

the PDB (protein databank; https://www.rcsb.org/) and the 
p53 monomer were modeled by the I-TASSER server [39]. We 
used KBDOCK in order to find protein domains and possible 
interaction between protein domains [40]. The protein docking 
was performed by ClusPro [41]. We used PyMol (https://pymol.
org) for the visualization of the interface of interaction and the 
visualization of hot spots and polymorphic residues. The hot 
spots in the proteins under study were identified by KFC2 [42]. 
The server offers an automated analysis of a protein complex 
interface. The server analyses the structural environment 

around amino acid residues and checks for already known hot 
spots environments determined experimentally. The hot spot 
prediction is based on characteristics regarding conformation 
specificity (K-FADE) and biochemical features such as 
hydrophobicity (K-CON. Finally, the polymorphic residues were 
identified through the dbSNP (data base of single nucleotide 
polymorphism; https://www.ncbi.nlm.nih.gov/SNP). 

RESULTS AND DISCUSSION

The protein p53 conserved domains

The TP53 gene codes for a protein with 3 conserved domains. 
The first domain is the p53 transactivation motif or activation 
domain number 1, which binds to proteins with regulatory 
functions in order to activate p53 protein transcription by 
inducing the transcription factors. It is a very short motif with a 
single amphipathic alpha helix that extends from residues 6 to 9 
[43]. The transactivation motif is formed by two complementary 
domains responsible for transcriptional activation. The major 
one is at residues 1 to 42 and the other at residues 55 to 75. This 
domain is especially related to regulation of apoptotic genes [44].

Figure 3 Hot spots prediction on the interface of interaction between p53 and MDM2. 
A) p53 monomer. The p53 structure features intrinsically disordered domains responsible for the promiscuity pattern of interaction presented by 
the protein. 
B) The MDM2 N-terminal domain. The structure features the prevalence of helical chains, which is directly linked to the regulatory role presented 
by MDM2.
C) The interface of interaction between p53 (blue) and MDM2 (pink). p53 is represented in blue and MDM2 in pink. The large interface of interaction 
between the proteins is represented in yellow. The red region represent hot spots predicted for the region of interaction and the one on p53 is the 
polymorphic hot spot residue related to disease susceptibility.

https://www.rcsb.org/
https://pymol.org
https://pymol.org
https://www.ncbi.nlm.nih.gov/SNP


Central
Bringing Excellence in Open Access





Freitas e Silva (2018)
Email: smallbinho@hotmail.com 

J Immunol Clin Res 5(1): 1048 (2018) 4/8

Figure 4 Hot spots prediction on the interface of interaction between p53 and CREBBP.
A) The CREBBPbromodomain. 
B) The interface of interaction between p53 (blue) and CREBBPbromodomain (purple). The interface of interaction between the proteins is 
represented in yellow. Polymorphic hot spot residues are in the red regions and for this interaction, specifically, they are deep in within helices in 
the interaction interface.

Figure 5 Hot spots prediction on the interface of interaction between p53 and SIRT1.
A) The SIRT1 conformational structure. 
B) The interface of interaction between p53 (blue) and SIRT1 (purple). The interface of interaction between the proteins is represented in yellow. 
Polymorphic hot spot residues are seen red.

The p53 tetramerization motif is related to the protein 
oligomerization, which is essential for its DNA binding properties 
and consequently tumor suppression function [45]. It extends 
from residues 325 to 356. Oligomerization of p53 also plays 
important roles regarding its binding to other proteins belonging 
to DNA repair pathways, p53 turnover and post-translational 
modifications. The p53 DNA-binding domain attaches to 
damaged DNA and along with other proteins form a complex 
that stabilizes the DNA-protein complex (Figure 2A) [46]. The 
DNA binding motif is zinc dependent and rich in the amino acid 
arginine. It is the larger part of the protein and mutations, such as 
polymorphisms, are prone to disrupt p53 function and increase 
susceptibility to diseases [47]. 

Two domains are related to apoptosis, the activating domain 
number 2 and the proline-rich domain. The former span from 
residue 43 to 63 and the latter from residue 64 to 92. In addition, 
a nuclear localization signaling domain is located between 

residues 316 to 325. Finally, a C-terminal domain regulate 
the DNA binding feature of the activation domain 1, present at 
residues 356-393 [48].

Interactome of p53 and immunological response 
proteins

According to BioGRID database, Homo sapiens p53 interactome 
contains more than one thousand interactors. The large amount 
of proteins that interact with p53 shows how important it is for 
several biological processes. Some of the p53 protein partners 
are essential for the tumorigenesis suppression and maintenance 
of DNA homeostasis. Proteins such as MDM2 (proto-oncogene, E3 
ubiquitin protein ligase) [49], MDM4 (p53 regulator) [50], BRCA1 
(breast cancer 1, early onset)[51], TP53BP1 (tumor protein p53 
binding protein 1) [52] and PML (promyelocytic leucemia) [53] 
interact with p53 in order to maintain DNA integrity.

MDM2 is a negative regulator of p53. MDM2 inhibits 
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p53 transcription process by binding to the N-terminal 
transactivation domain and it also ubiquitinates p53 in order 
to maintain metabolic normal levels of the protein through a 
degradation pathway [54-57]. We propose an in silico model 
for the interaction of p53 and MDM2. Figure 3A shows the 
conformational structure of the p53 monomer and Figure 3B 
shows the N-terminal domain of MDM2, the latter comprises 119 
amino acid residues and is basically formed by helical shape and 
a few residues on a β-strand. It has been experimentally shown 
that this domain of MDM2 interacts with p53 [58]. Figure 3C 
shows the lowest binding free energy of the complex formed by 
p53 and MDM2. We found only two hot spots within the interface 
of interaction of the complex (Figure 3C) and one of those hot 
spots is highly polymorphic (Table 1). The substitution of the hot 
spot residue by a different amino acid may reduce the efficiency 
of the interaction and increase the susceptibility to cancer and 
other disease [59-61].

The protein MDM4 is related to apoptosis pathways [62], 
it also negatively regulates p53 activity by binding to the 
transactivation domain and suppressing its function. It has been 
shown that p53 interacts with BRCA1 and mutated versions of 
those proteins may impair their interaction leading to genomic 
instability [51]. TP53BP1 is frequently down-regulated in 
patients with breast cancer. The protein is related to DNA double 
strand damage repair through homologous recombination [63].

It has been experimentally shown that p53 interacts with 
immunological response-related proteins [64]. CREBBP (cAMP 
response element binding protein) is virtually expressed in all 

tissues, participates in the transcriptional activation of several 
transcription factors [65]. CREBBP is a well-known protein that 
either activates or inhibits several cellular pathways such growth, 
differentiation, immune response, apoptosis and cell cycle arrest 
[66]. Interaction of p53 and CREBBP has been shown to play a 
role in DNA damage response [67-70], where CREBBP regulates 
p53 transactivation [68]. Figure 4A shows the conformational 
structure of CREBBP bromodomain, which if formed by 116 
amino acid residues. More than 65% of the structure is found in 
helical form and this shape is related to the ability of the protein 
bind to partners. The interface of interaction between CREBBP 
and p53 is large and five hot spot residues were predicted for this 
region of interaction (Figure 4B). Interestingly, all of those hot 
spots residues are polymorphic (Table 1) and mutations on them 
increase the likelihood of cancer onset and immune deregulation 
of cells microenvironment [71-73], except on the Leu 93, which is 
normally a synonymous mutation.

The protein p53 also interacts with SIRT1 (Sirtuin 1 - NAD-
dependent deacetylase sirtuin-1) [74]. SIRT1 epigenetically 
regulates p53 activity through deacetylation [75]. The relation of 
p53 and immunological response within tumor environment may 
relies on SIRT1 activities. SIRT1 inhibits NF-κB (nuclear factor 
kappa-light-chain-enhancer of activated B cells) expression 
through deacetylation [76] and the latter belongs to the most 
important transcriptional regulator group of genes that leads 
to inflammation. In addition, SIRT1 also takes part in activation 
of T helper cells, influencing autoimmune diseases onset and 
progression [77]. Figure 5A shows the 3-D structure of SIRT1, 

Table 1: Hot spots prediction and polymorphisms that are likely to take place within the interface of interaction.
Interface Residues Score A* Score B* Polymorphism
p53-MDM2
p53 Phe 212 1.93 0.35 Ile
MDM2 Lys 94 1.67 0.14 -
p53-CREBBP
p53 Leu 93 1.21 0.04 synonymous
p53 Phe 212 1.11 0.00 Ile
CREBBP Glu 1149 0.81 0.06 Gln
CREBBP Trp 1151 1.65 0.25 Arg, Cys
CREBBP Gln 1152 1.27 0.25 Gly, Hys
p53-SIRT1
p53 Tyr 163 0.94 0.34 Cys, Asn, Hys
p53 Gln 165 1.67 0.15 Nonsense
p53 Arg 248 1.06 0.08 Gln
p53 Arg 249 0.45 0.26 Lys, Thr, Met
p53 Arg 273 0.90 0.23 Cys, Ser, Arg
p53 Phe 328 0.76 0.00 Synonymous
p53 Met 332 1.22 0.33 -
p53 Met 340 1.32 0.32 -
SIRT1 Tyr 185 1.40 0.36 -
SIRT1 Phe 187 1.40 0.26 Synonymous
SIRT1 Gln 189 0.74 0.10 Arg
SIRT1 Gln 190 1.32 0.13 Synonymous
SIRT1 Met 193 1.27 0.23 Val, Thr, Ile
SIRT1 Ile 201 0.36 0.13 -
*Hot spot model based on structure characteristics.
**Hot spot model based on biochemical characteristics (intermolecular hydrogen bonds).
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comprised by 356 residues and highly variable N- and C- terminal 
domains. The interface of interaction between p53 and SIRT1 
(Figure 5B) has 14 hot spot amino acid residues and 10 residues 
are polymorphic, including one linked to a nonsense mutation 
(Table 1).

The protein TRAF6 (TNF receptor associated factor) 
activates signal transduction pathways for TNF (tumor necrosis 
factor) receptors as response to proinflammatory cytokines, 
interferon, interleukin and growth factors. TRAF6 interacts 
with p53 in mitochondria and interferes with its apoptosis and 
DNA damage response functions [78]. TRAF6 also regulates 
the p53translocation to mitochondria, thus participating in 
apoptosis processes through unrepaired DNA disruption. Down-
regulation of TRAF6 and poor levels of TRAF6-p53 interaction 
induces ubiquitination of p53 in the cytoplasm and consequently 
low levels of p53 in the face of DNA damage increases cancer and 
other diseases susceptibility [78].

CONCLUDING REMARKS
Computational methods have made important tools available 

and have increased our knowledge about the complex multiprotein 
world. The identification of molecular and biochemical features of 
the interaction interface in protein-protein interactions (PPI) has 
driven the development of new ways of diagnose and treatment 
of diseases such as cancer. Here, we analyzed the interface of 
interaction between p53 and thee binding proteins. We proposed 
hot spots that could interfere with the conformational structure 
of the complex, its function and the efficiency of interaction 
with their binding partners. We compared the hot spot residues 
with polymorphic residues from the dbSNP database. Several 
hot spots involved in the PPIs were polymorphic, which could 
disrupt the interaction between p53 and its protein partners, 
leading to a higher susceptibility to cancer. Future studies should 
be conducted in order to design small molecules that could 
modulate the interaction between p53 and MDM2, CREBBP and 
SIRT1 in order to efficiency in the interaction, avoid disturbances 
immunological microenvironment of cells and the maintenance 
of genomic stability.
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