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Coronavirus infection elicits an immune response characterized by marked temporal phases and highly dynamic regulatory patterns, with the

balance and subsequent disruption of cytokine signaling networks at its core. Through a diverse array of non-structural, structural, and accessory
proteins, the virus rewires host immunity by suppressing interferon production, blocking JAK-STAT signalling, and activating NF-kB and MAPK
pathways, thereby gaining a replicative advantage during the early stages of infection. A systematic delineation of the mechanisms underlying

cytokine-signaling dysregulation will refine the immunopathological framework of coronavirus infection and inform more precise therapeutic strategies.

INTRODUCTION

The family Coronaviridae, belonging to the order
Nidovirales, comprises enveloped, single-stranded
positive-sense RNA viruses and represents one of the RNA
virus groups with the largest genomes. According to the
latest report of the International Committee on Taxonomy
of Viruses (ICTV, 2023), this family contains a single
subfamily, Orthocoronavirinae, which is further divided
into four genera: a-, -, y-, and §-coronaviruses. The first
two predominantly infect mammals and include all known
human coronaviruses, whereas y- and 6-coronaviruses
mainly circulate in avian hosts [1].

Coronaviruses can cause a spectrum of acute
respiratory infections, including upper respiratory tract
illness, bronchitis, and pneumonia, and may also trigger
gastrointestinal manifestations such as reduced appetite,
nausea, vomiting, and diarrhoea [2]. In addition, emerging
evidence indicates that coronaviruses are associated
with a range of central nervous system disorders,
including neuroinvasive infections, acute disseminated
encephalomyelitis, and multiple sclerosis [3].

The host immune response serves as both a protective
barrier and a source of tissue injury during viral infection.
Throughout coronavirus infection, the virus and host
immune system engage in a complex and dynamic

interplay: on the one hand, interferon pathways and pro-
inflammatory signaling are activated to establish antiviral
defense; on the other, multiple viral proteins target and
disrupt the homeostatic regulation of host cytokine
networks. Immune-signaling imbalance during the early
infection phase and the progression to severe disease
represents a critical determinant of clinical outcomes.
By blocking the JAK-STAT pathway, suppressing NF-
kB activation, or aberrantly activating MAPK signaling,
coronaviruses impair the proper integration of cytokine
responses—simultaneously weakening antiviral defenses
and amplifying inflammatory cascades—ultimately
facilitating immune evasion and precipitating systemic
cytokine storm.

This review aims to systematically delineate the
dynamicregulation and dysregulation of cytokine signaling
networks during coronavirus infection. By integrating
perspectives on the immunomodulatory functions of viral
proteins, the crosstalk among core immune signaling
pathways, the amplification routes of inflammatory
responses, and the pivotal stages of immune paralysis and
tissue repair, it constructs a comprehensive framework
of virus-host immune interactions. Such a framework
provides a mechanistic foundation for understanding
the pathogenesis of severe disease and supports the
development of targeted immunotherapeutic strategies.
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VIRAL PROTEIN-MEDIATED REWIRING OF HOST
SIGNALING NETWORKS

Coronaviruses are enveloped, positive-sense RNA
viruses with genomes of approximately 30 kb. The
5’-proximal two-thirds of the genome contain ORFla/1b,
which are translated into the large polyproteins ppla/
pplab and subsequently cleaved into non-structural
proteins NSP1-16. The 3'-terminal one-third encodes
the structural proteins S, E, M, and N, along with a set of
accessory proteins whose composition varies across viral
subgenera [4].

Non-structural Proteins

Non-Structural Proteins (NSPs), encoded by the
viral ORFlab region and generated through proteolytic
processing, primarily participate in viral replication-
transcription and immune evasion, and several serve
as key antiviral drug targets. All coronaviruses encode
NSP1-16, though NSP1 may be absent or truncated
in some avian y- and &-coronaviruses. NSP1 occludes
the ribosomal mRNA entry channel to suppress host
translation and prioritize viral protein synthesis. NSP3
contains a papain-like protease domain responsible for
autoprocessing, deubiquitination, and broad immune
antagonism [5]. NSP4 and NSP6 act in concert with NSP3
to induce the formation of double-membrane vesicles that
serve as replication platforms. NSP5, the main protease,
executes extensive polyprotein cleavage and constitutes
a key target for antiviral drug development [6]. NSP7,
NSP8, and NSP12 assemble into the polymerase complex
that carries out viral RNA synthesis [7]. NSP13 possesses
helicase and NTPase activities that advance the replication
fork and support the viral replication-transcription
process [8]. NSP14 combines exonuclease and
methyltransferase activities to provide proofreading and
RNA capping, thereby maintaining genomic stability [9].
NSP15 employs its endoribonuclease activity to degrade
immunogenic double-stranded RNA, thereby reducing
its visibility to host immune sensors [10]. NSP16 forms
a 2'-0-methyltransferase complex with NSP10 to modify
the viral RNA cap and evade recognition by IFIT proteins.
Together, these components assemble the viral replication
factory and reprogram host metabolic pathways [4].

Accessory Proteins

ORF3a modulates lysosomal exocytosis and activates
the NLRP3 inflammasome [11]. ORF3b, a short accessory
protein of coronaviruses, inhibits the phosphorylation and
nuclear translocation of IRF3 in SARS-CoV by binding to
IRF3, thereby blocking the RIG-I/MAVS-TBK1-IRF3 axis
and markedly reducing IFN- promoter activity [12]. Its

sequence is highly variable, and extended ORF3b variants
identified in SARS-CoV-2 lineages exhibit stronger type I
interferon suppression [13]. ORF6 binds components of the
nuclear pore complex to block the nuclear entry of STAT1
and IRF3, thereby attenuating interferon signaling [14].
ORF8 associates with MHC-I and promotes its degradation,
diminishing antigen presentation [15]. Although accessory
proteins are not directly required for replication, they
profoundly shape immune evasion and pathogenicity.

Structural Proteins

Coronaviruses encode four essential structural proteins
with distinct functional roles. The spike (S) protein is a
trimeric class I membrane glycoprotein whose S1 subunit
contains the receptor-binding domain and whose S2
subunit includes the fusion peptide and transmembrane
region. Upon receptor engagement, host proteases cleave
S to trigger membrane fusion, making it a key determinant
of tissue tropism and transmissibility [16]. Studies further
indicate that the co-receptor NRP1 enhances S-mediated
attachment and entry efficiency [17]. The membrane (M)
protein, the most abundant structural component, is a
triple-pass transmembrane protein that governs virion
assembly and membrane curvature. Within the ERGIC,
it orchestrates the incorporation of S, E, and N proteins
to form mature virions [18]. The envelope (E) protein is
a small viroporin that modulates vesicular pH and viral
egress, and its ion-channel activity directly influences
host inflammatory responses and viral pathogenicity [19].
The nucleocapsid (N) protein binds viral RNA to form the
ribonucleoprotein complex, stabilizes the replication-
transcription machinery, supports subgenomic RNA
(sgRNA) synthesis, and interacts with host signaling
factors to suppress antiviral pathways [20].

OVERALL CHARACTERISTICS OF CYTOKINE
RESPONSES DURING CORONAVIRUS INFECTION

Following coronavirus infection, the host immune
system releases cytokines in a highly ordered, temporally
dynamic manner. This process can be broadly divided
into four phases: the antiviral interferon phase, the
hyperinflammatory phase, the immunoparalysis phase,
and the tissue-repair phase.

Antiviral Interferon Phase

Coronaviruses such as SARS-CoV, MERS-CoV, and
SARS-CoV-2 trigger a characteristic early innate immune
response in which viral RNA sensing rapidly induces type
[ and type III interferon production, establishing an [FN-
ISG-dominated antiviral state.

Type I interferons (IFN-o/f3), produced primarily by
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infected epithelial cells and dendritic cells, activate the
JAK-STAT pathway to drive the expression of interferon-
stimulated genes (ISGs), thereby restricting viral RNA
replication, protein translation, and virion assembly [21].
Type III interferons (IFN-A), mainly secreted by mucosal
epithelial cells, exert localized antiviral protection
confined to epithelial surfaces, reducing the risk of
systemic inflammation; during respiratory infection,
IFN-A is induced earlier than IFN-a/8 and exhibits a more
sustained effect [22]. Concurrently, pro-inflammatory
cytokines such as IL-6, IL-1B, and TNF-a are released
by infected epithelial cells and macrophages, initiating
acute-phase responses and promoting immune-cell
recruitment [23]. Chemokines including CCL2, CXCL10,
and CXCLO further recruit monocytes, NK cells, and T cells,
creating a tightly intertwined and cooperative antiviral-
inflammatory network [23].

This phase is characterized by delayed interferon
induction alongside gradually rising inflammatory
mediators: low early IFN-I/III levels permit rapid viral
replication, whereas subsequent interferon upregulation
suppresses viral expansion; incomplete viral control,
however, may transition the response into an IL-6- and
CXCL10-dominated inflammatory-amplification stage. The
objective of this phase is to limit viral replication, set the
inflammatory threshold, and coordinate the initiation of
adaptive immunity.

Hyperinflammatory Phase

The hyperinflammatory phase represents the
transition from antiviral defense to immune-mediated
injury during coronavirus infection. This stage is marked
by waning interferon-mediated antiviral activity and
persistent amplification of inflammatory signaling. Its core
mechanism involves prolonged innate immune activation
with failure of negative-feedback control, leading
monocytes, macrophages, and neutrophils to continuously
release pro-inflammatory cytokines that drive tissue
damage and coagulopathy. During this period, immune
activity no longer centers on viral clearance but instead
becomes dominated by escalating inflammatory cascades
[24].

In the early phase, viral suppression of IFN-I and IFN-III
pathways weakens the IFN-ISG axis, prompting excessive
compensatory activation of NF-kB, JAK-STAT, and NLRP3
inflammasome signaling in the host [25]. Persistent
recognition of residual viral RNA or damage-associated
molecular patterns (DAMPs) by pattern-recognition
receptors activates IRF3 and NF-xB, inducing high-
level secretion of IL-6, IL-1, TNF-a, CXCL10, and other

mediators that fuel the cytokine storm [25]. Continued
cytokine stimulation sets up a self-reinforcing positive-
feedbackloop, sustaining and escalating inflammation. The
outcomes of this phase—tissue injury, immunothrombosis,
and multiorgan dysfunction—reflect a pathological shift
from antiviral immunity to immune-driven damage.

Immunoparalysis and Tissue-Repair Phase

Following the hyperinflammatory phase, the hostenters
a period of downregulated defense capacity and effector-
cell exhaustion—referred to as the immunoparalysis
phase. During this stage, monocytes and macrophages
exhibit reduced expression of HLA-DR and costimulatory
molecules, leading to impaired antigen presentation [26].
T cells, subjected to persistent antigen exposure and an
inflammatory milieu, upregulate inhibitory receptors such
as PD-1 and TIM-3 and undergo functional exhaustion [27].
Elevated IL-10 and TGF-f further suppress inflammatory
signaling and dampen effector-cell activation. As a result,
the host becomes prone to secondary infections, and both
antiviral activity and tissue-repair efficiency decline [26].

The subsequent repair phase represents an active
processinwhich theimmune systemresolvesinflammation
and restores tissue integrity. This stage is characterized
by the production of specialized pro-resolving mediators
(SPMs)—including resolvins, protectins, and maresins—
and the polarization of inflammatory M1 macrophages
toward reparative M2 phenotypes. These processes
promote apoptotic-cell clearance and facilitate the
restoration of vascular and epithelial barriers [28].

MAJOR CYTOKINE SIGNALING PATHWAYS AND
THEIR DYSREGULATION IN CORONAVIRUS
INFECTION

The JAK-STAT Pathway

The JAK-STAT pathway serves as a central regulatory
hub of immune homeostasis, rapidly linking extracellular
cytokine signals to intracellular transcriptional programs
that coordinate antimicrobial defense, tissue repair, and
metabolic balance. Upon ligand engagement with class 11
cytokine receptors, members of the JAK family become
activated, phosphorylating tyrosine residues on receptor
tails and recruiting STAT proteins, which dimerize upon
phosphorylation and translocate into the nucleus to
regulate target genes [29]. STAT dimers bind GAS or
ISRE elements to drive the expression of inflammatory
mediators, antiviral effectors, and growth-related genes
[30]. Negative regulators—including SOCS proteins, PIAS
proteins, and tyrosine phosphatases—constitute feedback
systems that constrain signal amplitude and duration
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[31,32]. Through JAK-STAT activation, interferons induce
ISG expression and establish a broad antiviral state; IFN-y-
STAT1 activation enhances macrophage microbicidal
activity, antigen presentation, and class I MHC expression.

Coronaviruses suppress the JAK-STAT pathway
through multiple converging mechanisms to gain a
replicative advantage during early infection. They delay
interferon induction, weaken JAK-STAT activation, and
deploy individual viral proteins to directly disrupt signal
transduction [33,34].

In SARS-CoV-2, ORF6 binds the interferon-inducible
Nup98-Rael complex and sequesters it away from the
nuclearpore,therebyblockingnucleocytoplasmictransport
and preventing STAT1/STAT2 nuclear entry [14-29].
ORF7a inhibits ISGF3 nuclear translocation and selectively
suppresses IFN-a-induced STAT2 phosphorylation; it also
interacts with HNRNPA2B1 to dampen IFN-triggered JAK-
STAT signaling [35]. NSP1 binds the ribosome to induce
host-mRNA translation shutoff, reducing the protein
levels of key signaling factors such as TYK2 and STAT2
and broadly impairing IFN-induced JAK-STAT responses
[36]. PLpro suppresses host translation and ISG induction,
preventing the onset of an antiviral state [34]. Recent
studies show that NSP14 downregulates or degrades
IFNAR1, thereby blocking IFN-a/B-mediated JAK-STAT
activation and downstream ISG expression [37].

The spike protein (S) activates the angiotensin I type 1
receptor (AT1R) cascade, which stimulates MAPK signaling
and activates NF-kB and AP-1/c-Fos, leading to IL-6
upregulation and STAT3-driven inflammation that creates
a microenvironment favorable for viral replication [38].
Additional evidence indicates that S protein can compete
with STAT2 for IRF9 binding, preventing assembly of the
classical ISGF3 (STAT1-STAT2-IRF9) complex and thereby
blocking ISG transcription [39]. The N protein suppresses
STAT1/STAT2 phosphorylation and nuclear translocation,
further reducing ISG induction [40]. The E protein
modulates ER stress, inflammation, and virion assembly,
exerting indirect effects on JAK-STAT signaling [34]. The
M protein interacts with MDAS5, TRAF3, TBK1, and IKKE,
promoting K48-linked ubiquitination and degradation
of TBK1, thereby inhibiting IRF3 activation and IFN-f
production [41] [Figure 1]. Together, these mechanisms
delay interferon responses, block STAT nuclear entry, and
reconfigure host transcriptional and metabolic programs,
enabling the virus to complete several replication cycles
before host defenses are fully engaged.

NF-kB Pathway

The canonical NF-kB signaling pathway is activated

by receptors such as BCR, TCR, TLRs, IL-1R, and TNFR.
Upstream stimulation activates the CBM complex or the
TAK1-TAB module, which subsequently phosphorylates
and activates the IKK complex. Activated IKK promotes
the degradation of the inhibitor IkBa, thereby releasing
the NF-kB p50/RelA heterodimer [42,43]. NF-kB then
translocates into the nucleus, binds kB elements, and
induces transcription of inflammatory genes such as
TNF and IL-6, ultimately initiating JAK-STAT and MAPK
cascades as well as inflammasome activation, thus driving
inflammatory and acute-phase responses [42-44].

The coronavirus S protein can be sensed by TLR2 or
TLR4,leading to NF-«kB activation and increased expression
of TNF, IL-6, pro-IL-1B, and various chemokines [45].
For example, SARS-CoV-1 and SARS-CoV-2 S proteins are
recognized by TLR2 and activate NF-xB signaling [45],
whereas PDCoV S protein activates NF-kB via TLR4 [46].
The E protein, one of the most conserved inflammatory
activators across the coronavirus family, induces Ca%*
efflux and ER stress, thereby activating NF-kB signaling
and upregulating inflammatory mediators. In SARS-CoV-1,
the E protein forms Ca?* channels in the ERGIC membrane,
promoting Ca?* release, NLRP3 inflammasome activation,
and IL-1f maturation; viruses lacking E protein fail to
effectively activate NF-xB [47,48].

SARS-CoV-2 N protein can inhibit the TAK1-TAB2/3
complex and thereby block NF-kB activation [49]. ORF3a
interacts with IKKB/NEMO to enhance NF-xB activation
[50] [Figure 2]. Structural and biochemical evidence
further shows that SARS-CoV-2 3CLpro cleaves NEMO, an
essential subunit of IKK, thereby disrupting the assembly
of NF-kB and interferon signaling complexes. This activity
contributes to immune evasion and is implicated in
endothelial and neurological damage associated with
infection [51]. PLpro removes K63-linked ubiquitin and
[SGylation (ISG15) from key adaptor proteins in the
RLR and TLR pathways, broadly suppressing IFN and
NF-xB signaling initiation. However, NF-kB can still be
maintained through alternative routes, resulting in an
imbalanced state characterized by high inflammation but
low interferon responses [52-54].

MAPK Pathway

The mitogen-activated protein kinase (MAPK) pathway
is a central intracellular signaling cascade that conveys
extracellular cues to the nucleus in eukaryotic cells. Its
core functions include the fine-tuned regulation of gene
expression, cell proliferation, differentiation, apoptosis,
and inflammatory responses. MAPK signaling operates
through a canonical tiered kinase cascade and consists
of three major branches: ERK1/2, JNK, and p38. These
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branches exhibit extensive cooperative and antagonistic
interactions and are frequently co-activated during
complex conditions such as viral infection.

The ERK1/2 pathway primarily responds to growth
factors and is initiated through the Raf-MEK-ERK
phosphorylation cascade, regulating cell proliferation and
differentiation. Activated ERK translocates into the nucleus
or acts on cytoplasmic substrates [55]. In contrast, the JNK
and p38 pathways constitute major stress-responsive
and immunoregulatory axes. JNK signaling is triggered by
oxidative stress, TNF, IL-1, and viral infection [56], driving
phosphorylation of transcription factors such as c-Jun and
ATF2 and contributing to apoptosis and pro-inflammatory
gene expression [57]. The p38 pathway is activated by
inflammatory cytokines (e.g., TNF, IL-1) and TLR-mediated
pathogen-recognition signals [58]. As a key regulatory
hub, p38 controls the transcription, translation, and mRNA
stability of inflammatory mediators such as TNF-a and
IL-6 and plays essential roles in immune responses, stress
tolerance, and programmed cell death [59].

Upon binding to ACEZ, the coronavirus S protein can
cross-activate the EGFR-RAF-MEK-ERK axis, inducing
ERK1/2 phosphorylation to enhance metabolic activity
and protein synthesis, thereby supplying energy and
biosynthetic capacity for viral replication while increasing
cellular secretion and survival [60,61]. Meanwhile, S
protein and other structural proteins such as E protein
are recognized by TLR2/MyD88, triggering p38 and JNK
activation and promoting AP-1- and NF-kB-mediated
transcription of pro-inflammatory genes, leading to
high-level production of IL-6, TNF-a, and IL-18 [45-62].
Reviews also report that the CoV M protein modulates the
TRAF-TAK1 complex, linking it to p38 and JNK activation
and inflammation [63,64].

The coronavirus E protein induces Ca®* efflux and
ER stress, thereby activating ASK1-MKK3/6-p38 and
ASK1-MKK4/7-]NK cascades [65]. SARS-CoV N protein
has been shown to induce apoptosis through JNK and
p38 pathways [64]. Recent studies indicate that SARS-
CoV-2 Nspl4 significantly enhances AP-1 reporter
activity [66]. Additional evidence suggests that accessory
proteins ORF3a and ORF7a activate p38 and JNK, linking
them to mitochondrial stress and enhanced apoptosis/
inflammation, and may amplify antiviral responses [67].
SARS-CoV ORF7a has also been reported to promote JNK1
phosphorylation and cooperate with NF-kB to induce IL-8
and CCL5 expression [68-71] [Figure 3].

Therapeutic Strategies Targeting Cytokine Signaling

Given the dynamic immune landscape in coronavirus

infection—characterized by a transition from antiviral
defense to excessive inflammation—current therapeutic
strategies emphasize temporally precise modulation of
cytokine signaling. Interferon (IFN)-based agents are
employed in the early phase to enhance innate antiviral
immunity, whereas anti-inflammatory biologics and
signaling-pathway inhibitors are implemented during
the middle and late stages to restrain pathological
inflammation.

Interferon Therapy and Timing of Administration

Both type III IFN (IFN-A) and type I IFNs (IFN-a/f3)
exert antiviral effects by inducing ISG expression; however,
IFN-A receptors are restricted to epithelial barriers,
allowing potent local activity with fewer systemic adverse
effects [72]. The optimal therapeutic window is within the
first three days of symptom onset, during which a single
subcutaneous dose of PEG-IFN-A significantly reduces the
risk of hospitalization or prolonged emergency visits in
high-risk patients with mild to moderate disease. Its efficacy
extends across viral variants and combines antiviral
activity with anti-inflammatory potential [72]. Clinically,
IFN-A is prioritized for patients in the early symptomatic
phase without evidence of systemic inflammation, with
the greatest benefits observed in high-risk populations. It
should not be administered once oxygen support becomes
necessary or when CRP levels rise, indicating systemic
inflammation. Use of type I IFNs during the inflammatory
phase requires caution, and guideline recommendations
continue to evolve [73].

Anti-inflammatory Biologics and Signaling-Pathway
Inhibitors

During the intermediate phase of viral infection,
therapeutic strategies pivot toward anti-inflammatory
intervention, employing biologics and signaling-pathway
inhibitors to interrupt the cytokine-amplification
cascade. Glucocorticoids, particularly dexamethasone,
suppress NF-kB and AP-1 signaling and reduce IL-6 and
TNF production. They are first-line therapy for hypoxic
severe cases and significantly lower 28-day mortality,
whereas their use provides no benefit in non-hypoxic
patients [74]. IL-6R blockade disrupts the IL-6-JAK-
STAT3 inflammatory-amplification loop; in patients with
systemic inflammation requiring oxygen therapy, IL-6R
inhibitors combined with corticosteroids reduce both
mortality and progression to critical illness [75]. IL-1
receptor antagonism with anakinra inhibits the IL-1B-
driven NLRP3-NF-kB axis. When stratified using soluble
urokinase plasminogen activator receptor (suPAR) levels
26 ng/mlL, early initiation of anakinra reduces the risk of
respiratory failure and death [76].
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activity through the canonical p38/JNK/ERK pathways.

As a downstream convergence node for multiple pro-
inflammatory cytokines, the JAK-STAT pathway is an
attractive target for broad-spectrum immunomodulation.
Baricitinib, a JAK inhibitor, suppresses IL-6, IFN-y, GM-
CSF, and related signaling axes. In the ACTT-2 trial, its
combination with remdesivir shortened recovery time and
improved clinical status among hospitalized patients [77].

Rigorous safety monitoring is essential during
treatment. Key considerations include secondary
infections, hepatic injury, hematologic abnormalities,
thrombotic and cardiovascular events, and screening
for latent tuberculosis and hepatitis B reactivation [78].
According to WHO 2025, IDSA, and NICE guidelines,
corticosteroids constitute the foundation of therapy for
severe disease, upon which a single immunomodulatory

agent should be selected [73].
CONCLUSION AND PERSPECTIVES

During coronavirus infection, the JAK-STAT, NF-kB,
MAPK, and NLRP3 pathways constitute a continuous
immunological axis. Early in infection, interferon-
induced JAK-STAT signaling initiates antiviral defense
and suppresses viral replication. Upon recognition of
viral RNA, NF-kB and MAPK pathways are activated and
drive the production of pro-inflammatory cytokines such
as TNF-a and IL-6. IL-6 amplifies inflammation through
a JAK-STAT3-mediated positive-feedback loop, while

TNF-a concurrently activates NF-kB and MAPK to further
intensify inflammatory output. The precursor of IL-1f3
is generated through NF-kB signaling and processed to
its mature form via NLRP3 inflammasome activation,
triggering pyroptosis and additional cytokine release.
These four pathways are interconnected through IL-
6, TNF-a, and IL-1f as central nodes, linking antiviral
responses with inflammatory escalation. Together, they
illustrate the host’s dynamic transition from antiviral
containment to immune dysregulation and delineate
a unified model of signal transduction, inflammatory
regulation, and tissue injury.

Despite progress, current research still lacks precise
mapping of how specific structural domains of S and N
proteins remodel innate-immune “dose-timing-spatial”
effects across viral variants and host cell types, leaving a
gap between molecular sites and phenotypic outcomes
[79]. Immunomodulatory therapies are often administered
based on empirical staging, with few validated quantitative
biomarker thresholds [80]. The therapeutic window for
early innate-immune enhancers such as IFN-2, as well as
their optimal sequencing with small-molecule antivirals
and later anti-inflammatory agents, remains insufficiently
defined due to limited prospective evidence [81]. Precision
modulation of cytokine signaling is expected to become a
major direction in future therapeutic strategies against
coronavirus-associated diseases.
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