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Abstract

The oocyte maturation includes nuclear maturation and cytoplasmic maturation 
before fertilization. Moreover, the oocyte nucleus, the cytoplasm and other cell 
organelles occur changes, zona pellucida (ZP) synchronously undergoes biochemical 
and structural modifications in the final maturation phase of oocyte prior to fertilization 
(ZP maturation). It is reported that ZP modifications, such as glycosylation, sialylation, 
sulfation, glucosaminylation, fucosylation and galactosylation of glycoproteins, 
have been implicated in various events during fertilization. N-glycosylation of ZP 
glycoproteins during the meiotic maturation played a critical role in ZP acquiring the 
capacity to accept sperm in porcine cumulus oocyte complexes (COCs). In addition, 
the time course of sialylation is correlated with the induction of germinal vesicle 
breakdown (GVBD) during oocyte maturation. The sialylation of ZP glycoproteins 
during oocytes maturation is responsible for sperm-ZP interactions. Moreover, Sulfation 
in ZP glycoproteins during oocyte maturation is critically important in regulating the 
fundamental steps of sperm-ZP interactions. Although there is a correlation between 
the cumulus cells during meiotic maturation of porcine oocytes and N-glycosylation of 
ZP glycoproteins, the cumulus cells are not essential in sialylation and sulfation of ZP 
glycoproteins that responsible for sperm-ZP interactions. 

INTRODUCTION 
Although the techniques for IVF have proceeded very rapidly 

during the past decade, polyspermic penetration still remains a 
persistent obstacle to porcine IVF systems. Despite of that the 
embryo production by IVF had been developed successfully in 
many other species, their developmental potential is very low in 
pigs [1-5]. The poor developmental competence might be caused 
by the lack of cytoplasmic maturation in in vitro matured porcine 
oocytes, even though they undergo normal nuclear maturation 
[3,5-7]. 

Recently, it would be known that oocyte maturation is 
mediated by not only nuclear and cytoplasmic maturation 
but also zona pellucida (ZP) maturation. The ZP, a transparent 
envelope surrounding the plasma membrane of mammalian 
oocyte, is a highly glycosylated extracellular matrix. The porcine 
ZP is composed of three glycoprotein families, ZP1, ZP3α and 

ZP3β [8,9]. ZP1 is split into two smaller molecules, ZP2 and ZP4, 
under reducing conditions [10]. The ZP3 families have been 
shown to comprise approximately 60% of the total glycoprotein 
content [8]. The ability of sperm to bind ZP has been detected 
in ZP glycoproteins, and it is generally accepted that this activity 
is ascribed to the carbohydrate moieties in ZP glycoproteins 
[11-15]. ZP glycoproteins are considered to have multiple 
sperm-binding sites, because it has been shown in mice that 
ZPC glycoprotein binds to the plasma membrane of acrosome-
intact sperm and induces the acrosome reaction (AR), while ZPA 
glycoprotein binds to acrosome-reacted sperm [16].

The early events of mammalian fertilization involve the 
initial binding of acrosome-intact sperm to ZP glycoproteins. The 
sperm-ZP binding induces AR, after which the acrosome-reacted 
sperm binds transiently to ZP before penetrating the zona matrix. 
Presumably, the sperm penetration through ZP is facilitated 
by hydrolytic enzymes released from the sperm acrosome. 
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Following penetration into perivitelline space, the sperm fuses 
with oolemma and activates the egg, triggering the ZP block to 
polyspermy. Although these cellular events are well described 
in many species, their underlying molecular mechanisms are 
less well understood [17]. In rodents, the initial sperm-ZP 
recognition is mediated by the binding of sperm surface β1,4-
galactosyltransferase (GalTase) to terminal GlcNAc residues 
on ZP3 [18-20]. Moreover, Huang et al. [21], reported that the 
initial sperm-ZP recognition was severely affected by fucose. The 
preincubation of hamster sperm with GlcNAc had an inhibitory 
effect on the sperm-ZP attachment [22]. The participation of 
terminal GlcNAc residues on ZP in human sperm function has 
been studied with results of the sperm-ZP binding and the AR 
induction [23-25]. In short, GalNAc residues of ZP glycoproteins 
play pivotal roles in the sperm-ZP interactions during fertilization 
of the mammalian species [26]. 

It is generally accepted that the specific interaction between 
sperm and ZP is a carbohydrate mediated event in different species 
including human [11,12,27-30]. Due to a critical involvement of 
carbohydrate in the sperm-ZP interactions, a detailed description 
of the carbohydrate composition in ZP is necessary.

CASE STUDY
The increase in terminal GlcNAc residues in ZP glycoprotein 

through new N-glycosylation during the first 24 h of meiotic 
maturation played a critical role in ZP acquiring the capacity 
to accept sperm in porcine COCs [31]. There is a correlation 
between the cumulus cells during meiotic maturation of porcine 
oocytes and N-glycosylation of ZP glycoproteins responsible for 
sperm-ZP interactions [32]. The first 36 h of N-glycosylation of 
GlcNAc residues in ZP during IVM was indispensible for sperm-
ZP interactions of porcine denuded oocytes (DOs). Since the 
longer culture period in the absence of N-glycosylation inhibitor 
after the onset of IVM culture periods was needed to obtain the 
sperm penetration at the same levels of untreated oocytes in DOs 
rather than COCs. The cumulus cells are partly involved in ZP 
glycosylation during oocyte maturation [31].

The time course of the sialylation in ZP glycoproteins is 
correlated with the induction of germinal vesicle breakdown 
(GVBD) during oocyte maturation, and the cumulus cells during 
oocyte maturation are not essential in the sialylation of ZP 
glycoproteins responsible for sperm-ZP interactions [33].

Moreover, the sulfation of ZP glycoproteins during meiotic 
maturation plays an important role in sperm-ZP interactions [33]. 
As indicated by 2D gel electrophoresis, the increase of acidity was 
consistent with the sulfation of ZP glycoproteins during oocyte 
maturation, and the ZP acidification was prevented in the oocytes 
treated with NaClO3. The blocking of ZP sulfation by NaClO3 
treatment during IVM in COCs and DOs markedly abolished the 
incidence of polyspermy with no inhibitory effect on penetration, 
however the number of sperm bound to ZPs and the rate of 
AR-inducing sperm were decreased, and the time course of ZP 
sulfation was related to the induction of GVBD, irrespective of the 
presence of cumulus cells. These results support the hypothesis 
that sulfation in ZP glycoproteins during oocyte maturation 
is critically important in regulating the fundamental steps of 
sperm-ZP interactions.

DISCUSSION
Porcine IVF is remarkably low normal fertilization rates, 

resulting from a high rate of polyspermy. This high polyspermic 
rate that exceeds more than 50% remains to be solved [34-37]. 
Polyspermic penetration in vitro was not due to delayed or 
incomplete cortical granule exocytosis [37] but more likely to 
a delayed ZP reaction and/ or simultaneous sperm penetration 
[37].

The polyspermic block resides either at ZP, or the egg plasma 
membrane, or both depend on species. Polyspermy is primarily 
blocked by ZP changes in hamster, goat, ovine, bovine oocytes, 
by oolema changes in rabbit oocytes and by both in mouse, 
rat, guinea pig, and cat oocytes [38]. Moreover, proteinases, 
ovoperoxidase, N-acetylglucosaminidase and neuraminidase are 
thought to bring about changes in the ZP. After sperm-egg fusion, 
cortical granules (CG) release into perivitelline spaces (cortical 
reaction), causing the ZP to become refractory to sperm binding 
and penetration (zona reaction). The CG proteinase exerts the 
ZP sperm receptor modification and catalyzes the proteolysis of 
ZP2 as a consequence of a decrease in solubility of the ZP (zona 
hardening) [39]. Interestingly, according to the findings reported 
by Velásquez et al. [40], the neuraminidase released from the CG 
during cortical reaction of bovine oocytes and its neuraminidase 
would participate in polyspermic block by removing sialic acid 
from ZP. The desialylation of ZP glycoproteins during oocyte 
maturation decreased the sperm penetration, sperm binding to 
ZP and AR induction. 

Apparently, GlcNAc residues in ZP were important for 
the initial steps in fertilization of porcine oocytes. Similar 
observations on the involvement of zona GlcNAc in the 
fertilization of hamster and human oocytes have been reported 
[41-43,24]. As reported by Rath et al. [44], ZP glycoproteins 
underwent biochemical changes, such as N-glycosylation, during 
final maturation of porcine oocytes. The N-glycosylation of ZP 
glycoproteins is involved in the sperm-ZP interactions in porcine 
COCs [31]. Similarly, N-linked carbohydrates chains of ZP3α 
play a major role in the sperm binding to ZP [45]. Conversely, 
the O-linked carbohydrate chain of mouse ZP3 is involved in 
mediating the sperm binding to ZP [46].

Velásquez et al., [40] reported that the α-2,3-linked, but not 
α-2,6-linked, sialic acids residues in bovine ZP glycoproteins 
were necessary for the binding between gametes. Thus, it seems 
that there is a difference between the two species in the sialylated 
oligosaccharide form associated with sperm-ZP interactions.

These findings strongly suggest that porcine ZP glycoproteins 
undergo the sialic modifications in the final maturation phase 
of oocytes prior to fertilization, as reported by Rath et al., [44]. 
A similar phenomenon is observed in bovine oocytes, and the 
number of sperm bound to ZPs and the rate of penetration were 
remarkably decreased in oocytes treated with neuraminidase 
compared with untreated oocytes [40]. These findings indicate 
that the sialylation of ZP glycoproteins occurred in accordance 
with GVBD during oocyte maturation in both COCs and DOs 
[33]. Rath et al. [44], reported that porcine ZP glycoproteins 
undergo the acidic modifications elicited by sulfation in the 
final maturation phase of oocytes prior to fertilization. The 
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modifications of ZP glycans responsible for sperm AR induction 
are established by glycosylation, sulfation, sialylation and 
fucosylation during oocyte growth and maturation [47].

The amount of sulfate is high in the basic structures of 
N-linked oligosaccharides in the porcine ZP, and the sulfated 
glycans of ZP glycoproteins play important roles in the binding of 
boar sperm to eggs and penetration by the sperm [48]. It is likely 
that the blocking sulfation of ZP glycoproteins had a specific 
influence on the secondary binding of AR sperm to the ZP during 
the initial stages of fertilization, thus resulting in a decrease in 
polyspermic fertilization [33].

CONCLUSION
Porcine oocytes undergo ZP modifications during maturation, 

and N-glycosylation, sialylation and sulfation of ZP glycoproteins 
during meiotic maturation is essential in sperm-ZP interactions. 
N-glycosylation of GlcNAc residues in ZP glycoproteins was 
indispensable for sperm-ZP interactions, and such N-glycosylation 
occurred during the first 24 and 36 h of IVM of porcine COCs 
and DOs, respectively. ZP acidifications elicited by sialylation 
and sulfation of ZP glycoproteins during oocyte maturation 
contributed to the porcine ZP acquiring the capacity to accept 
sperm. These ZP acidifications were temporally compatible 
with the induction of GVBD during oocyte maturation, but did 
not require for the presence of cumulus cells. The inhibition 
of N-glycosylation and the removal of sialic acid residues in ZP 
glycoproteins during oocyte maturation dramatically decreased in 
the incidences of sperm penetration and polyspermy, the number 
of sperm bound to ZP and percentage of AR-inducing sperm. By 
contrast, it is very interesting that the blocking sulfation of ZP 
glycoproteins during oocyte maturation significantly suppressed 
in polyspermic fertilization with no detrimental effect on sperm 
penetration and MPN formation.
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