Research Article

Zygmund-Calderon Operators in the Weighted Variable Exponent Spaces

Mykola Yaremenko*

National Technical University of Ukraine, Ukraine

Abstract

This article is dedicated to the Zygmund-Calderon operators in the variable exponent spaces $L^{p(\cdot)}$ with measurable function $p: R^{n} \rightarrow(1, \infty)$. We establish that if an operator $T(f)(x)=f * K$ with the kernel $\left|\partial_{x}^{\alpha} K(x)\right| \leq C(\alpha)|x|^{-n-\alpha \mid}, \quad|\alpha| \leq 1$ satisfies the $\left.\int\left|T(f)(x)^{p(x)} \omega(x) d x \leq c_{2} \int_{R^{n}}\right| f(x)\right|^{p(x)} \omega(x) d x$ for all $f \in L^{p(\cdot)}\left(R^{n}\right), p_{S}=\underset{x \in R^{n}}{\operatorname{ess}} \sup p(x)<\infty$ then the weight $\omega=\frac{d \mu}{d x}$ belongs to $A_{p(\cdot)}$-class. The inverse is also true, thus, if the maximal operator is bounded in $L^{p() .)}\left(R^{n}\right)$ and $\left|\partial_{x}^{\alpha} K(x)\right| \leq C(\alpha)|x|^{-n|\alpha|},|\alpha| \leq 1$, then, the inequality $\int|T(f)(x)|^{p(x)} \omega(x) d x \leq c_{2} \int|f(x)|^{p(x)} \omega(x) d x$ holds for all $f \in L^{p(\cdot)}\left(R^{n}\right)$ and each $\omega \in A_{p(\cdot)}^{R^{R^{\prime}}}$.

*Corresponding author
Mykola Yaremenko, National Technical University of Ukraine, Ukraine

Submitted: 10 December 2023
Accepted: 24 January, 2024
Published: 24 January, 2024
ISSN: 2578-3173
Copyright
© 2024 Yaremenko M, et al.

OPEN ACCESS

Keywords

- Harmonic Analysis; Singular Integrals; Convex seminars; Interpolation Theorem; Calderon-Zygmund Decomposition

INTRODUCTION

The variable Lévesque spaces were introduced in 1961 by I. Tsenov who considered the problem of approximation in the Lévesque spaces [1-18]. The variable Lévesque space with a measurable function $p: R^{n} \rightarrow(1, \infty)$ is the set of all measurable function on R^{n} the inequality $\omega=\frac{.}{d x}$ holds for some positive values of the parameter λ. The norm of the variable Lévesque space $L^{p(\cdot)}$ is defined as an infimum

$$
\|f\|_{L^{p(x)}\left(R^{n}\right)}=\inf \left\{\lambda>0: \int\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d x<\infty \leq 1\right\}
$$

The classical Lévesque spaces L^{p} is a special case of $L^{p(\cdot)}$ when function $p: R^{n} \rightarrow(1, \infty)$ is constant.

The most prominent feature of $L^{p(\cdot)}$ is existence of an analog of the Holder inequality in the weaker form $\int|f(x) g(x)| d x \leq\left(1+\frac{1}{p_{m}}-\frac{1}{p_{S}}\right)\|f\|_{L^{p^{(x)}}}\|g\|_{L^{(t)}}$, Where $p_{m}=\operatorname{ess} \inf p(x)$ and $p_{S}=\operatorname{ess} \sup p(x)$

There is an essential difference between the classical Lévesque spaces and the variable $L^{p(\cdot)}$, the necessary and sufficient requirement for the operator $\tau(z, f(x))=f(x-z)$ of translation to be bounded on $L^{p(\cdot)}$ is that the function $p: R^{n} \rightarrow(1, \infty)$ be a constant. The corollary of this is that the Young lemma $\|f * g\|_{L^{p()}} \leq$ const $\|f\|_{L^{p()}}\|g\|_{L^{1}}$ holds for all $f \in L^{p(\cdot)}$ and all $g \in L^{1}$ if and only if exponential function $p(\cdot)$ is a constant.

Let M is a maximal operator then the inequality
$\|\mathrm{M}(f)\|_{L^{p}\left(R^{n}, \mu\right)} \leq \sqrt[p]{A}\|f\|_{L^{p}\left(R^{n}, \mu\right)} \quad$ holds \quad for \quad al $f \in L^{p}\left(R^{n}, \mu\right), \quad d \mu(x)=\omega(x) d x \quad$ if and only if the weight $\omega \in A_{p}$, the class A_{p} is characterized by inequality $\frac{1}{\operatorname{mes}(B)_{B}} \int_{B} d \mu(x)\left(\frac{1}{\operatorname{mes}(B)_{B}} \int_{B} \omega(x)^{\frac{1}{1-p}} d x\right)^{p-1} \leq A$ holding fork balls B.

In 2008, L. Diening and P. Hasto [6,7] generalized classes A_{p} to the variable exponential Lebesgue spaces by demanding that the inequality

$$
\sup _{B} \frac{1}{(\operatorname{mes}(B))^{p(B)}}\left\|\omega 1_{B}\right\|_{L^{1}}\left\|\omega^{-1} 1_{B}\right\| \frac{q(\cdot)}{L^{p()}} \leq A
$$

Holds for some constants, the minimum of these constants is the value of norm $\|\omega\|_{A_{p()}}$.

Some pertinent to the subject literature reviews can be found in the L. Diening, P. Hasto works [6,7], without being complete, we present the list of some interesting research on the subject [1-25]. In this article, we consider a Zygmund-Calderon operator T_{a} [17] in the variable exponent spaces $L^{p(\cdot)}$ given in the form $T(f)(x)=\int_{R^{n}} K(x-y) f(y) d y$ for almost all $x \notin \operatorname{supp}(f)$, with a singular kernel K such that, for $|\alpha| \leq 1$, the estimate $\left|\partial_{x}^{\alpha} K(x)\right| \leq C(\alpha)|x|^{-n-\alpha \mid}$ holds for all $x \in R^{n}$ with the exception of $x=0$. We establish that assume $f \mapsto T(f)$ is a Zygmund-Calderon operator $T(f)(x)=f * K$ with the kernel under restriction $\left|\partial_{x}^{\alpha} K(x)\right| \leq C(\alpha)|x|^{-n-|\alpha|}, \quad|\alpha| \leq 1$, and the $L^{p(\cdot)}$-Condit

$$
\int_{R^{n}}|T(f)(x)|^{p(x)} \omega(x) d x \leq c_{2} \int_{R^{n}}|f(x)|^{p(x)} \omega(x) d x
$$

Holds for all $f \in L^{p(\cdot)}\left(R^{n}\right), p_{S}=$ ess $\sup p(x)<\infty$, then the weight $\omega=\frac{d \mu}{d x}$ must belong to $A_{p(\cdot)} \quad$ class. Also, we prove the inverse result, namely, presume the maximal operator is bounded in $L^{p,()}\left(R^{n}\right)$ and operator $f \mapsto T(f)$ defined as above, then, for each weight $\omega \in A_{p(\cdot)}$, the inequality

$$
\left.\int_{\substack{R^{n} \\ \in L^{p()}}}\left|T(f)\left(R^{n}\right)\right| x\right)\left.\right|^{p(x)} \omega(x) d x \leq c_{2} \int_{R^{n}}|f(x)|^{p(x)} \omega(x) d x \quad \text { Holds for all }
$$

Lebesgue Spaces With Variable Exponential

Let Ω be an open connected subspace of the R^{n}. Let $P(\Omega)$ be a subspace of $L^{1}(\Omega)$ such that $p(\cdot) \in P(\Omega), p(\cdot): \Omega \rightarrow(1, \infty)$.

Definition 1: For given $p(\cdot) \in P(\Omega)$, we define the conjugate function $q(\cdot)$ by $q(x)=\frac{p(x)}{p(x)-1}$ for all $x \in \Omega$.

We denote $p_{m}(\tilde{\Omega})=\operatorname{ess} \inf p(x)$ and $p_{s}(\tilde{\Omega})=$ ess sup $p(x)$ for fixed $\tilde{\Omega} \subset \Omega$.

Definition 2: For fixed $p(\cdot) \in P(\Omega)$, we define the functional ρ_{p} by

$$
\begin{equation*}
\rho_{p}(f)=\int_{\Omega}|f(x)|^{p(x)} d x \tag{1}
\end{equation*}
$$

For $f \in L^{1}(\Omega)$.
Straight forward considerations yield the following properties.

Properties 1: For fixed subset $\Omega \subset R^{n}$ and given $p(\cdot) \in P(\Omega)$, we have that

1) $\rho_{p}(f) \geq 0$ For all $f \in L^{1}(\Omega)$;
2) $\rho_{p}(f)=0$ If and only if $f=0$;
3) For all $\alpha, \beta \geq 0$ such that $\alpha+\beta=1$, the inequality

$$
\begin{equation*}
\rho_{p}(\alpha f+\beta g) \leq \alpha \rho_{p}(f)+\beta \rho_{p}(g) \tag{2}
\end{equation*}
$$

Holds for all $f, g \in L^{1}(\Omega)$;
4) If $|f(x)| \geq|g(x)|$ almost everywhere and $\rho_{p}(f)<\infty$ then $\rho_{p}(f) \geq \rho_{p}(g)$ and if $\rho_{p}(f)>\rho_{p}(g)$ then $|f(x)| \neq|g(x)|$.

Definition 3: For fixed $p(\cdot) \in P(\Omega)$, we define a norm by
$\|f\|_{L^{(0)}}=\inf \left\{\lambda>0: \rho_{p}\left(\frac{f}{\lambda}\right) \leq 1\right\}$
For measurable function f. The functional space $L^{p(\cdot)}(\Omega)=L^{p}(\Omega)$ consists of all measurable functions f such that $\|f\|_{L^{D^{(\cdot)}}}<\infty$.

Similar to the classical Lebesgue spaces, for the $L^{p(\cdot)}(\Omega)$ spaces, we can formulate an analog of the Holder norm inequality.

Theorem 2: For fixed $p(\cdot) \in P(\Omega)$ and conjugation functions
$q(\cdot)$, the inequality
$\int_{\Omega}|f(x) g(x)| d x \leq c_{p}\|f\|_{L^{p}}\|g\|_{L^{q}}$
With the constant $c_{p}=1+\frac{1}{p_{m}}-\frac{1}{p_{S}}$ for all $f \in L^{p()}(\Omega)$ and $g \in L^{q(\cdot)}(\Omega)$.

Proof: First, we show that $\rho_{p}\left(\frac{f}{\|f\|_{L^{p}}}\right)=1$ holds for each $p(\cdot) \in P(\Omega)$ and all $f \in L^{p(\cdot)}(\Omega), \quad f \neq 0$. Indeed, for all $\lambda, \quad 0<\lambda<\|f\|_{L^{p}}$, we have
$\rho_{p}\left(\frac{f}{\lambda}\right) \leq\left(\frac{\|f\|_{L^{p}}}{\lambda}\right)^{p_{s}} \rho_{p}\left(\frac{f}{\|f\|_{L^{p}}}\right)$,
Thus, there exists λ such that $\rho_{p}\left(\frac{f}{\lambda}\right)<1$ but $\rho_{p}\left(\frac{f}{\|f\|_{L^{p}}}\right) \geq 1$.
Next, assuming $f \in L^{p \cdot()}(\Omega)$ and $g \in L^{q(\cdot)}(\Omega)$, applying the Young inequality, we estimate
$\int_{\Omega}\left|\frac{f(x)}{\|f\|_{L^{p}}} \frac{g(x)}{\|g\|_{L^{q}}}\right| d x \leq$
$\leq \int_{\Omega} \frac{1}{p(x)}\left|\frac{f(x)}{\|f\|_{L^{p}}}\right|^{p(x)} d x+\int_{\Omega} \frac{1}{q(x)}\left|\frac{g(x)}{\|g\|_{L^{p^{\prime}}}}\right|^{q(x)} d x \leq$
$\leq \frac{1}{p_{m}} \rho_{p}\left(\frac{f}{\|f\|_{L^{p}}}\right)+\frac{1}{q_{m}} \rho_{q}\left(\frac{g}{\|g\|_{L^{q}}}\right) \leq\left(1+\frac{1}{p_{m}}-\frac{1}{p_{S}}\right)$,
Since $q_{m}=$ ess inf $q(x)=\frac{p_{S}}{p_{S}-1}$. Thus, we obtain
$\int_{\Omega}|f(x) g(x)| d x \leq\left(1+\frac{1}{p_{m}}-\frac{1}{p_{s}}\right)\|f\|_{L^{\prime}}\|g\|_{L^{G^{\prime}}}$.
We formulate several fundamental properties of $L^{p(\cdot)}$ -functions without proving them.

1. Let $f \in L^{p(\cdot)}$ then there exists a sum-presentation of f as $f_{1}+f_{2}$ where $f_{1} \in L^{p_{s}} \cap L^{p(\cdot)}$ and $f_{2} \in L^{p_{m}} \cap L^{p(.)}$.
2. The functional space C_{0}^{∞} is dense in $L^{p(\cdot)}, \quad p_{S}<\infty$.
3. Assume $\left\{f_{k}\right\} \subset L^{p()}$ and $\lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{L^{(f)}}=0, f \in L^{p()}$ then there exists a subsequence $\left\{f_{k(t)}\right\} \subset L^{p \cdot \cdot)}$ that $\lim _{t \rightarrow \infty} f_{k(t)}=f$ for almost everywhere.
4. Each Cauchy sequence in $L^{p(\cdot)}$ converges in $L^{p(\cdot)}$.
5. Let $1<p_{m}$ then the mapping $g \mapsto \Psi(g)$ define by

$$
\begin{equation*}
\Psi(g, f)=\int f(x) g(x) d x \tag{5}
\end{equation*}
$$

Is an isomorphism so that for each continuous linear functional $\Psi \in\left(L^{p(\cdot)}\right)^{*}$ there exists a uniquely defined element g of $L^{q(\cdot)}$ such that $\Psi=\Psi(g)$ and $\|g\|_{L^{(\cdot)}} \approx\|\Psi\|$. The space $L^{p(\cdot)}$ is reflexive.

Weighted Classes A_{p}

First, we remind some general definitions from harmonic analysis and operator theory.

A classical maximal operator M on $R^{n}, n>2$ is given by

$$
\begin{equation*}
\mathrm{M}(f)(x)=\sup _{r>0} \frac{1}{\operatorname{mes}(B(r))} \int_{|y|<r}|f(x-y)| d y \tag{6}
\end{equation*}
$$

For all arbitrary locally integral functions f and all balls $B(r)$ of radius $r>0$ in $R^{n}, n>2$.

Let measure μ be absolutely continuous with respect to Lebesgue measure. A functional class A_{p} consists of all weights $\omega(x)=\frac{d \mu(x)}{d x}$, which coincide with locally integral functions $\omega \in L_{l o c}^{1}\left(R^{n}\right)$, such that the estimate

$$
\begin{equation*}
\frac{1}{\operatorname{mes}(B)} \int_{B} d \mu(x)\left(\frac{1}{\operatorname{mes}(B)} \int_{B} \omega(x)^{\frac{1}{1-p}} d x\right)^{p-1} \leq A \tag{7}
\end{equation*}
$$

Holds for all balls B, where $p+q=p q, \quad p \in(1, \infty)$. The A_{p} bound of the weight ω is a minimal constant for which (2) holds.

Applying the Holder inequality, we can prove the following lemma.

Lemma 1: For the weight ω to belong to A_{p}-class it is

$$
\begin{align*}
& \text { necessary and sufficient that the estimate } \\
& \qquad \frac{1}{m e s(B)} \int_{B}|f(x)| d x \leq c\left(\frac{1}{\mu(B)} \int_{B}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}} \tag{8}
\end{align*}
$$

Holds for all $f \in L_{l o c}^{1}\left(R^{n}\right)$ and all balls B, where $\omega(x) d x=d \mu(x)$.

Definition 4: The functional class BMO (bounded mean oscillation) consists of all locally integral functions f such that the inequality

$$
\begin{equation*}
\frac{1}{\operatorname{mes}(B)} \int_{B}\left|f(x)-\frac{1}{\operatorname{mes}(B)} \int_{B} f(x) d x\right| d x \leq A \tag{9}
\end{equation*}
$$

Holds for all balls B.
An important property of A_{p} - weights is given by the next theorem.

Theorem 3: Let $\omega \in A_{p}$ then the inequality

$$
\begin{equation*}
\int_{R^{n}}(\mathrm{M}(f)(x))^{p} \omega(x) d x \leq A \int_{R^{n}}|f(x)|^{p} \omega(x) d x \tag{10}
\end{equation*}
$$

Holds for all $f \in L^{p}(d \mu)$ and for each $p \in(1, \infty)$.
Now, we can generalize the definition of A_{p} - class to functional spaces $L^{p(\cdot)}(\Omega), p(\cdot) \in P(\Omega)$.

Definition 5: For given $p(\cdot) \in P(\Omega), \quad$ a \quad weight $\omega(x)=\frac{d \mu(x)}{d x}$ belongs to the variable class $A_{p(\cdot)}$ if the
inequality

$$
\begin{equation*}
\sup _{B} \frac{1}{(\operatorname{mes}(B))^{p(B)}}\left\|\omega 1_{B}\right\|_{L^{1}}\left\|\omega^{-1} 1_{B}\right\|_{L^{p()}} \frac{q()}{p()} \leq A \tag{11}
\end{equation*}
$$

Holds for all balls $B \subset \operatorname{clos}(\Omega)$, and some constants A, where

$$
\begin{equation*}
p(B)=\left(\frac{1}{\operatorname{mes}(B)} \int_{B} p(x)^{-1} d x\right)^{-1} \tag{12}
\end{equation*}
$$

And $p(x)^{-1}+q(x)^{-1}=1$.
Theorem 4: Let $p(\cdot) \in P(\Omega)$ then a weight $\omega(x)=\frac{d \mu(x)}{d x}$ belongs to the variable $A_{p(\cdot)}$ - class if and only if the inequality

$$
\begin{equation*}
\left(\frac{1}{\operatorname{mes}(B)} \int_{B} f(x) d x\right)^{p(B)} \leq c_{1}(\mu(B))^{-1} \int_{B} f(x)^{p(x)} \omega(x) d x \tag{13}
\end{equation*}
$$

Holds for all nonnegative $f \in L^{p(\cdot)}(d \mu)$ and all balls B.
Proof: Let $\omega \in A_{p(\cdot)}$ and applying the Holder inequality for variable Lebesgue spaces, we obtain

$$
\begin{aligned}
& \left(\frac{1}{\operatorname{mes}(B)} \int_{B}|f(x)| d x\right)^{p(B)}= \\
& =\left(\frac{1}{\operatorname{mes}(B)_{B}} \int_{B} f(x) \omega(x)^{\frac{1}{p(x)}} \omega(x)^{-\frac{1}{p(x)}} d x\right)^{p(B)} \leq \\
& \leq c \frac{1}{\operatorname{mes}(B)^{p(B)}}\left(\int_{B}(f(x))^{p(x)} \omega(x) d x\right)\left\|\omega^{-1}\right\|_{L^{p(\theta)}}^{p(x)}
\end{aligned}
$$

Applying the definition of $A_{p(\cdot)}$-class, we deduce the first statement of the theorem.

Conversely, we take $f(x)=(\omega(x)+\varepsilon)^{-\frac{q(x)}{p(x)}}$ and have

$$
\frac{1}{(\operatorname{mes}(B))^{p(B)}}\left\|\omega 1_{B}\right\|_{L^{1}}\left\|(\omega+\varepsilon)^{-1} 1_{B}\right\|_{L^{p(\cdot)}} \leq c_{1}
$$

Take the limit as $\varepsilon \rightarrow 0$ and obtain that $\omega \in A_{p(\cdot)}$.
For the weighted variable Lebesgue space $L^{p(\cdot)}\left(R^{n}, \mu\right)$, one can prove an analog of Theorem 3 as follows.

Theorem (analog of theorem 3) 5: For fixed $p(\cdot) \in P\left(R^{n}\right)$ and weight $\omega \in A_{p(\cdot)}$, if maximal operator M is continuous on $L^{q(\cdot)}(d \mu)$ then the inequality

$$
\begin{equation*}
\int_{R^{n}}(\mathrm{M}(f)(x))^{p(x)} \omega(x) d x \leq A \int_{R^{n}}|f(x)|^{p(x)} \omega(x) d x \tag{14}
\end{equation*}
$$

Holds for all $f \in L^{p(\cdot)}(d \mu)$ and for some constants A

Pseudo-Differential Operators

The singular integral realization of the pseudo-differential operator T_{a} can be present as

$$
\begin{equation*}
T_{a}(f)(x)=\int_{R^{n}} k(x, y) f(x-y) d y \tag{15}
\end{equation*}
$$

Or in classical form

$$
\begin{equation*}
T_{a}(f)(x)=\int_{R^{n}} K(x, y) f(y) d y \tag{16}
\end{equation*}
$$

For almost all $x \notin \operatorname{supp}(f)$, where $K(x, y)=k(x, x-y)$ and the Fourier transform

$$
\begin{equation*}
a(x, \xi)=\int_{R^{n}} \exp (-2 \pi y \cdot \xi) k(x, y) d y \tag{17}
\end{equation*}
$$

We consider a convolution operator in the form

$$
\begin{equation*}
T(f)(x)=\int_{n} K(x-y) f(y) d y \tag{18}
\end{equation*}
$$

For almost all $R^{R^{n}} x \notin \operatorname{supp}(f)$. The natural assumption on the integral kernel K is that there exists a smooth function $K(x)$, for all $x \in R^{n}$ except $x \neq 0$, such that the kernel agrees with $K(x)$ on elements of $C_{0}^{\infty}\left(R^{n}\right)$, which vanish on the neighborhood of $x=0$, for all $|\alpha| \leq 1$ we assume

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} K(x)\right| \leq C(\alpha)|x|^{-n-|\alpha|} \tag{19}
\end{equation*}
$$

For all $x \in R^{n}$ except origin. This class of pseudo-differential operators satisfies the Zygmund-Calderon conditions.

Theorem 6: Let $p(\cdot) \in P\left(R^{n}\right)$ and let $f \mapsto T(f)$ be a convolution operator $T(f)(x)=f * K$ corresponding to kernel K such that $\left|\partial_{x}^{\alpha} K(x)\right| \leq C(\alpha)|x|^{-n-|\alpha|}, \quad|\alpha| \leq 1, p_{S}=\operatorname{ess} \sup _{x \in R^{n}} p(x)<\infty$. If the integral inequality

$$
\begin{equation*}
\int_{R^{n}}|T(f)(x)|^{p(x)} \omega(x) d x \leq c_{2} \int_{R^{n}}|f(x)|^{p(x)} \omega(x) d x \tag{21}
\end{equation*}
$$

Holds for all $f \in L^{p(\cdot)}\left(R^{n}\right)$ then the weight $\omega(x)=\frac{d \mu(x)}{d x}$ satisfies the inequality

$$
\begin{equation*}
\sup _{B} \frac{1}{(\operatorname{mes}(B))^{p(B)}}\left\|\omega 1_{B}\right\|_{L^{1}}\left\|\omega^{-1} 1_{B}\right\| \frac{q(\cdot)}{\frac{L^{p()}}{p}} \leq A \tag{22}
\end{equation*}
$$

Namely $\omega \in A_{p(\cdot)}$.
Proof: Applying conditions on the kernel, we have

$$
|K(x+z)-K(x)| \leq \breve{c}|x|^{-n}
$$

For $|z| \leq \bar{c}|x|$. Assume $B(\tilde{x}, \rho)$ then we have that the inequality

$$
|T(f)(x)| \geq \breve{c}_{1} \frac{1}{(\operatorname{mes}(B))^{p(B)}}|K(x-\tilde{x}-\rho \widehat{x})| \int_{R^{n}} f(x)^{p(x)} d x
$$

Holds for all $x \in B(\tilde{x}+\rho \hat{x}, \rho)$, the application of the integral inequality yields

$$
\operatorname{mes}(B(\tilde{x}+\rho \hat{x}, \rho))\left(\frac{1}{\operatorname{mes}(B)} \int_{R^{n}} f(x)^{p(x)} d x\right)^{p(B)} \leq c_{2} \int_{B} f(x)^{p(x)} \omega(x) d x
$$

Taking $B(\tilde{x}+\rho \hat{x}, \rho)$ instead of $B(x, \rho)$, we obtain

$$
\operatorname{mes}(B)\left(\frac{1}{\operatorname{mes}(B)} \int_{B} f(x) d x\right)^{p(B)} \leq c_{2} \int_{B} f(x)^{p(x)} \omega(x) d x
$$

Theorem 7: Let $p(\cdot) \in P\left(R^{n}\right)$ suchthat $p_{S}=\underset{x \in R^{n}}{\operatorname{ess} \sup } p(x)<\infty$, and let $f \mapsto T(f)$ be a convolution operator corresponding to kernel K
under the assumption $\left|\partial_{x}^{\alpha} K(x)\right| \leq C(\alpha)|x|^{-n-|\alpha|}, \quad|\alpha| \leq 1 \quad$ by $T(f)(x)=f * K$. Assume that the maximal operator is bounded in $L^{p(\cdot)}\left(R^{n}\right)$, then, for each weight $\omega \in A_{p(\cdot)}$, the inequality

$$
\begin{equation*}
\int_{R^{n}}|T(f)(x)|^{p(x)} \omega(x) d x \leq c_{2} \int_{R^{n}}|f(x)|^{p(x)} \omega(x) d x \tag{23}
\end{equation*}
$$

Holds for all $f \in L^{p(\cdot)}\left(R^{n}\right)$.
Proof: Let $T_{\varepsilon}, \quad \varepsilon>0$ be a truncated approximation with kernel $K_{\varepsilon}(x)=K(x) 1(\{|x| \geq \varepsilon\})$ so that

$$
T_{\varepsilon}(f)(x)=\int_{R^{n}} K_{\varepsilon}(x-y) f(y) d y
$$

And we define $T_{*}(f)(x)=\sup _{\varepsilon}\left|T_{\varepsilon}(f)(x)\right|$.
We show that the inequality

$$
\begin{aligned}
& \operatorname{mes}\left(\left\{x: T_{*}(f)(x)>\alpha, f(x) \leq \tilde{c} \alpha\right\}\right) \leq \\
& \leq c_{2} \tilde{c}(1-\tilde{b})^{-1} \operatorname{mes}\left(\left\{x: T_{*}(f)(x)>\tilde{b} \alpha\right\}\right)
\end{aligned}
$$

Holds for all $f \in C_{0}^{\infty}$ and for all $\tilde{b}<1, \quad \alpha>0$ and $\tilde{c}>0$.
Indeed, for fixed $\varepsilon>0$ and for all $f \in C_{0}^{\infty}, T_{\varepsilon}(f)$ is a continuous function, therefore, there exists an open coverage Θ such that $T_{*}(f)(x)=\sup \left|T_{\varepsilon}(f)(x)\right|>\tilde{b} \alpha$ is open, this open coverage Θ is decomposed into a disjoint union of Whitney cubes $\bigcup Q_{i}$.

Now, we decompose the function f into the sum $f_{\tilde{\sim}}+f_{2}$ of two functions $f_{1}=f 1_{B}$ and $f_{1}=f 1_{R^{n} \backslash B}$. For $\tilde{b}_{1}+\tilde{b}_{2}=1$ we obtain

$$
\left\{x: T_{*}(f)(x)>\alpha\right\} \subset\left\{x: T_{*}\left(f_{1}\right)(x)>\tilde{b}_{1} \alpha\right\} \cup\left\{x: T_{*}\left(f_{2}\right)(x)>\tilde{b}_{2} \alpha\right\}
$$

Since for all $f \in L^{1}\left(R^{n}\right)$ there is an inequality
$\operatorname{mes}\left\{x: T_{*}(f)(x)>\alpha\right\} \leq \frac{c_{2}}{\alpha} \int_{R^{n}}|f(x)| d x$,
We have
$\operatorname{mes}\left\{x \in Q_{i}: T_{*}\left(f_{1}\right)(x)>\tilde{b}_{1} \alpha\right\} \leq \frac{c_{2}}{\alpha \tilde{b}_{1}} \int_{R^{n}}\left|f_{1}(x)\right| d x$
And
$\int_{R^{n}}\left|f_{1}(x)\right| d x \leq \tilde{c} c_{2} \alpha \operatorname{mes}\left(Q_{i}\right)$,
Thus, we obtain
$\operatorname{mes}\left\{x: T_{*}\left(f_{1}\right)(x)>\tilde{b}_{1} \alpha\right\} \leq \tilde{c} \frac{c_{2}}{\tilde{b}_{1}} \operatorname{mes}\left(Q_{i}\right)$.
Next, we must estimate the f_{2}-term. Applying our conditions, we calculate

$$
\begin{aligned}
& \quad \int_{|y-z| \mid s s} \frac{|f(y)|}{|y-z|^{n+1}} d y=\int_{|y| \geq s} \frac{|f(z-y)|}{|y|^{n+1}} d y= \\
& =\sum_{k=0,1, \ldots, 2^{i} s \leq|y| y 2^{i+1} s} \frac{|f(z-y)|}{|y|^{n+1}} d y \leq 2 \tilde{c}_{1} f(z)
\end{aligned}
$$

Since $\left|K_{\varepsilon}(\tilde{x}-y)-K_{\varepsilon}(x-y)\right| \leq \frac{c_{2} s}{|y-z|^{n+1}}$ for $x \in Q_{i}, y \in R^{n} \backslash B$ and $R^{n} \backslash B \subset\{y:|y-z| \geq s\}$, the ball B has center at \tilde{x}. Therefore, we estimate

$$
\left|T_{\varepsilon}\left(f_{2}\right)(\tilde{x})-T_{\varepsilon}\left(f_{2}\right)(x)\right| \leq c_{2} f(z)
$$

For all $x \in Q_{i}$. Taking the supreme over all $\varepsilon>0$, we have

$$
T_{*}\left(f_{2}\right)(x) \leq T_{*}\left(f_{2}\right)(\tilde{x})+c_{2} f(z) \leq \alpha \tilde{b}+c_{2} \tilde{c} \alpha
$$

For all $x \in Q_{i}$.
So, we choose $\tilde{b}_{2} \geq \tilde{b}+c_{2} \tilde{c}$ and $\tilde{b}_{1}+\tilde{b}_{2}=1$ then we have
$\operatorname{mes}\left(\left\{x: T_{*}(f)(x)>\alpha, f(x) \leq \tilde{c} \alpha\right\}\right) \leq$
$\leq c_{2} \tilde{c} \tilde{b}_{1}^{-1} \operatorname{mes}\left(Q_{i}\right)$,
If $c_{2} \tilde{c}(1-\tilde{b})^{-1} \geq 2^{-1}$ then we choose new c_{2} as $2 c_{2}$ and obtain
$\operatorname{mes}\left(\left\{x: T_{*}(f)(x)>\alpha, f(x) \leq \tilde{c} \alpha\right\}\right) \leq$
$\leq c_{2} \tilde{c}(1-\tilde{b})^{-1} \operatorname{mes}\left(Q_{i}\right)$.
Taking the sum over all cubes Q_{i}, we obtain
$\operatorname{mes}\left(\left\{x: T_{*}(f)(x)>\alpha, f(x) \leq \tilde{c} \alpha\right\}\right) \leq$
$\leq c_{2} \tilde{c}(1-\tilde{b})^{-1} \operatorname{mes}\left(\left\{x: T_{*}(f)(x)>\tilde{b} \alpha\right\}\right)$
For all $\alpha>0$ and each $0<\tilde{b}<1$ and each $0<\tilde{c}$.
Next, we show that the inequality
$\mu\left\{x: T_{*}(f)(x)>\alpha, f(x) \leq \tilde{c} \alpha\right\} \leq$
$\leq \tilde{a} \mu\left\{x: T_{*}(f)(x)>\tilde{b} \alpha\right\}$
Holds for all $f \in C_{0}^{\infty}$ and for all $\tilde{b}<1, \quad \alpha>0$ and some $\tilde{a}<1, \quad \tilde{c}>0$, constant \tilde{a} depends on the weight function.

Indeed, in previous consideration, we fix $\tilde{b}<1$ and choose \tilde{c} so that $c_{2} \tilde{c}(1-\tilde{b})^{-1}$ is small enough, then the inequality

$$
\begin{aligned}
& \operatorname{mes}\left(\left\{x: T_{*}(f)(x)>\alpha, f(x) \leq \tilde{c} \alpha\right\}\right) \leq \\
& \leq \delta \operatorname{mes}\left(Q_{i}\right) .
\end{aligned}
$$

Holds for some small enough positive δ and all cubes. Assuming $\tilde{a}=\delta<1$, we summate over all cubes and obtain

$$
\begin{aligned}
& \mu\left(\left\{x: T_{*}(f)(x)>\alpha, f(x) \leq \tilde{c} \alpha\right\}\right) \leq \\
& \leq \delta \mu(Q) .
\end{aligned}
$$

We will need the following properties of the $p(\cdot)$-spaces. For constant $\tilde{a}<1$, we choose $\tilde{b}<1$ such that the inequality $\tilde{a}<\tilde{b}^{p_{s}}$ holds for all x. Let f and g be a nonnegative function such that inequality

$$
\begin{aligned}
& \mu(\{x: f(x)>\alpha, g(x) \leq \tilde{c} \alpha\}) \leq \\
& \leq \tilde{a} \mu(\{x: f(x)>\tilde{b} \alpha\})
\end{aligned}
$$

Holds for all $\alpha>0$. Then, the inequality

$$
\int_{R^{n}}|f(x)|^{p(x)} d \mu(x) \leq c_{3} \int_{R^{n}}|g(x)|^{p(x)} d \mu(x)
$$

Holds with some constants c_{3} and under the condition $\tilde{a}<\tilde{b}^{p_{s}}$ and $f \in L^{p(\cdot)}$. Proving of this statement is similar to standard one.

This proves our statement for $f \in C_{0}^{\infty}$ since $\left|T_{*}(f)(x)\right| \leq C(1+|x|)^{-n}$ holds for all $f \in C_{0}^{\infty}$. The extension to the whole $L^{p(\cdot)}\left(R^{n}, \mu\right)$ follows from the standard argument that each element of $L^{p(\cdot)}\left(R^{n}, \mu\right)$ can be approximated by ele elements of $C_{0}^{\infty}\left(R^{n}\right)$.

REFERENCES

1. Adimurthi K, Phuc NC. Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations. Calc Var Partial Differential Equations. 2015; 54: 3107-3139.
2. Beni A, ochenig K, Okoudjou KA, Rogers LG. Unimodular Fourier multiplier for modulation spaces. J Funct Anal. 2007; 246: 366-384.
3. Cruz-Uribe D, Penrod M, Rodney S. Poincar'e inequalities and Neumann problems for the variable exponent setting. Math Eng. 2022; 4: 1-22.
4. Xiong C. Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds. J Funct Anal. 2018; 275: 3245-3258.
5. Cruz-Uribe D, Fiorenza A. Weighted endpoint estimates for commutators of fractional integrals. Czechoslovak Math J. 2007; 57:153-160.
6. Diening L, Hasto P. Muckenhoupt weights in variable exponent spaces. 2008.
7. Diening L. Maximal function on generalized Lebesgue spaces Lp(•), Math Inequal Appl. 2004; 7: 245-253.
8. Fan X, Zhao D. On the spaces $\operatorname{Lp}(x)(\Omega)$ and $W m, p(x)(\Omega)$. J Math Anal Appl. 2001; 263: 424-446.
9. Ortiz-Caraballo C, Perez C, Rela E. Exponential decay estimates for singular integral operators. Math Ann. 2013; 357: 1217-1243.
10. Hao C, Zhang W. Maximal L p - L q regularity for two-phase fluid motion in the linearized Oberbeck-Boussinesq approximation. J Differ Equ. 2022; 322: 101-134.
11. Ho K, Sim I. Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators. Sci China Math. 2017; 60: 133-146.
12. Kim YH, Wang L, Zhang C. Global bifurcation for a class of degenerate elliptic equations with variable exponents. J Math Anal Appl. 2010; 371: 624-637.
13. Liu X, Wang M, Zhang Z. Local well-posedness and blow-up criterion of the Boussinesq equations in critical Besov spaces. J Math Fluid Mech. 2010; 12: 280-292.
14. Miao C, Zheng X. On the global well-posedness for the Boussinesq system with horizontal dissipation. Commun Math Phys. 2013; 321: 33-67.
15. Qiaoling Wang, Xia C. Sharp bounds for the first non-zero Stekloff eigenvalues. J Funct Anal. 2009; 257: 2635-2644.
16. Restrepo JE, Suragan D. Hardy-type inequalities in generalized grand Lebesgue spaces. Adv Oper Theory. 2021; 6: 30.
17. Stein EM. Singular integrals and differentiability properties of functions. Princeton Mathematical Series (PMS-30). Princeton University Press Princeton. 1970; 30.
18. Tsenov IV. Generalization of the problem of best approximation of a function in the space. Ls Uch Zap Dagestan Gos Univ. 1961; 7: 25-37.
19. Trudinger N. On Imbeddings into Orlicz Spaces and Some Applications. Indiana Univ Math J. 1967; 17: 473-483.
20. Wang B, Huo Z, Hao C, Guo Z. Harmonic Analysis Method for Nonlinear Evolution Equations. World Scientfic, 2011.
21. Wang FY. Distribution dependent SDEs for Landau type equations. Stochastic Processes and their Applications. 2018; 128: 595-621.
22. Xia P, Xie L, Zhang X, Zhao G. Lq(Lp)-theory of stochastic differential equations. 2019; 130: 5188-5211.

OSciMedCentral
23. Zhang X. Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. Electron J Probab. 2011; 16:1096-1116.
24. Zhang X, Zhao G. Singular Brownian Diffusion Processes Communications in Mathematics and Statistics. 2018; 6: 533-581.
25. Zhang X, Zhao G. Stochastic Lagrangian path for Leray solutions of 3D Navier-Stokes equations. Communications in Mathematical Physics. 2021; 381: 491-525.

