$\bigcirc SciMedCentral$

Research Article

Zygmund-Calderon Operators in the Weighted Variable Exponent Spaces

Mykola Yaremenko*

National Technical University of Ukraine, Ukraine

Abstract

This article is dedicated to the Zygmund-Calderon operators in the variable exponent spaces $L^{p(\cdot)}$ with measurable function $p: \mathbb{R}^n \to (1, \infty)$. We establish that if an operator T(f)(x) = f * K with the kernel $|\partial_x^{\alpha} K(x)| \leq C(\alpha) |x|^{-n-|\alpha|}$, $|\alpha| \leq 1$ satisfies the $\int_{\mathbb{R}^n} |T(f)(x)|^{p(\cdot)} \omega(x) dx \leq c_2 \int_{\mathbb{R}^n} |f(x)|^{p(\cdot)} \omega(x) dx$ for all $f \in L^{p(\cdot)}(\mathbb{R}^n)$, $p_s = ess \sup_{x \in \mathbb{R}^n} p(x) < \infty$ then the weight $\omega = \frac{d\mu}{dx}$ belongs to $A_{p(\cdot)}$ -class. The inverse is also true, thus, if the maximal operator is bounded in $L^{p(\cdot)}(\mathbb{R}^n)$ and $|\partial_x^{\alpha} K(x)| \leq C(\alpha) |x|^{-n-|\alpha|}$, $|\alpha| \leq 1$, then, the inequality $\int_{\mathbb{R}^n} |T(f)(x)|^{p(x)} \omega(x) dx \leq c_2 \int_{\mathbb{R}^n} |f(x)|^{p(x)} \omega(x) dx$ holds for all $f \in L^{p(\cdot)}(\mathbb{R}^n)$ and each $\omega \in A_{m(\cdot)}^{n(\cdot)}$.

INTRODUCTION

The variable Lévesque spaces were introduced in 1961 by I. Tsenov who considered the problem of approximation in the Lévesque spaces [1-18]. The variable Lévesque space with a measurable function $p: \mathbb{R}^n \to (1, \infty)$ is the set of all measurable function on \mathbb{R}^n the inequality $\omega = \frac{1}{dx}$ holds for some positive values of the parameter λ . The norm of the variable Lévesque space $L^{p(\cdot)}$ is defined as an infimum

$$\left\|f\right\|_{L^{p(r)}(\mathbb{R}^n)} = \inf\left\{\lambda > 0: \int \left(\frac{\left|f(x)\right|}{\lambda}\right)^{p(x)} dx < \infty \le 1\right\}.$$

The classical Lévesque spaces L^p is a special case of $L^{p(\cdot)}$ when function $p: \mathbb{R}^n \to (1, \infty)$ is constant.

The most prominent feature of $L^{p(\cdot)}$ is existence of an analog of the Holder inequality in the weaker form $\int |f(x)g(x)| dx \le \left(1 + \frac{1}{p_m} - \frac{1}{p_s}\right) ||f||_{L^{p(\cdot)}} ||g||_{L^{p(\cdot)}}$, Where $p_m = ess \inf p(x)$ and $p_s = ess \sup p(x)$.

There is an essential difference between the classical Lévesque spaces and the variable $L^{p(\cdot)}$, the necessary and sufficient requirement for the operator $\tau(z, f(x)) = f(x-z)$ of translation to be bounded on $L^{p(\cdot)}$ is that the function $p: \mathbb{R}^n \to (1, \infty)$ be a constant. The corollary of this is that the Young lemma $||f * g||_{L^{p(\cdot)}} \leq const ||f||_{L^{p(\cdot)}} ||g||_{L^1}$ holds for all $f \in L^{p(\cdot)}$ and all $g \in L^1$ if and only if exponential function $p(\cdot)$ is a constant.

Let M is a maximal operator then the inequality

JSM Mathematics and Statistics

*Corresponding author

Mykola Yaremenko, National Technical University of Ukraine, Ukraine

Submitted: 10 December 2023

Accepted: 24 January, 2024

Published: 24 January, 2024

ISSN: 2578-3173

Copyright

© 2024 Yaremenko M, et al.

OPEN ACCESS

Keywords

 Harmonic Analysis; Singular Integrals; Convex seminars; Interpolation Theorem; Calderon-Zygmund Decomposition

$$\begin{split} \left\| \mathbf{M}(f) \right\|_{L^{p}(\mathbb{R}^{n},\mu)} &\leq \sqrt{A} \left\| f \right\|_{L^{p}(\mathbb{R}^{n},\mu)} & \text{holds for all} \\ f \in L^{p}\left(\mathbb{R}^{n},\mu\right), \quad d\mu(x) &= \omega(x) dx & \text{if and only if the} \\ \text{weight } \omega \in A_{p}, \text{ the class } A_{p} \text{ is characterized by inequality} \\ \frac{1}{mes(B)} \int_{B} d\mu(x) \left(\frac{1}{mes(B)} \int_{B} \omega(x)^{\frac{1}{1-p}} dx \right)^{p-1} \leq A \text{ holding fork balls } B. \end{split}$$

In 2008, L. Diening and P. Hasto [6,7] generalized classes ${\cal A}_p$ to the variable exponential Lebesgue spaces by demanding that the inequality

$$\sup_{B} \frac{1}{\left(mes\left(B\right)\right)^{p(B)}} \|\omega \mathbf{1}_{B}\|_{L^{1}} \|\omega^{-1} \mathbf{1}_{B}\|_{L^{p(1)}} \leq A$$

Holds for some constants, the minimum of these constants is the value of norm $\|\omega\|_{A_{0,2}}$.

Some pertinent to the subject literature reviews can be found in the L. Diening, P. Hasto works [6,7], without being complete, we present the list of some interesting research on the subject [1-25]. In this article, we consider a Zygmund-Calderon operator T_a [17] in the variable exponent spaces $L^{p(\cdot)}$ given in the form $T(f)(x) = \int_{\mathbb{R}^n} K(x-y) f(y) dy$ for almost all $x \notin \operatorname{supp}(f)$, with a singular kernel K such that, for $|\alpha| \leq 1$, the estimate $|\partial_x^{\alpha} K(x)| \leq C(\alpha) |x|^{-n-|\alpha|}$ holds for all $x \in \mathbb{R}^n$ with the exception of x = 0. We establish that assume $f \mapsto T(f)$ is a Zygmund-Calderon operator T(f)(x) = f * K with the kernel under restriction $|\partial_x^{\alpha} K(x)| \leq C(\alpha) |x|^{-n-|\alpha|}$, $|\alpha| \leq 1$, and the $L^{p(\cdot)}$ -Condit

Cite this article: Yaremenko M (2024) Zygmund-Calderon Operators in the Weighted Variable Exponent Spaces. JSM Math Stat 6(1): 1019.

$$\int_{\mathbb{R}^n} \left| T(f)(x) \right|^{p(x)} \omega(x) dx \le c_2 \int_{\mathbb{R}^n} \left| f(x) \right|^{p(x)} \omega(x) dx$$

Holds for all $f \in L^{p(\cdot)}(\mathbb{R}^n)$, $p_s = ess \sup_{x \in \mathbb{R}^n} p(x) < \infty$, then the weight $\omega = \frac{d\mu}{dx}$ must belong to $A_{p(\cdot)}$ -class. Also, we prove the inverse result, namely, presume the maximal operator is bounded in $L^{p(\cdot)}(\mathbb{R}^n)$ and operator $f \mapsto T(f)$ defined as above, then, for each weight $\omega \in A_{p(\cdot)}$, the inequality

 $\int_{\mathbb{R}^n} |T(f)(x)|^{p(x)} \omega(x) dx \le c_2 \int_{\mathbb{R}^n} |f(x)|^{p(x)} \omega(x) dx \quad \text{Holds for all}$ $f \in L^{p(\cdot)}(\mathbb{R}^n)$

Lebesgue Spaces With Variable Exponential

Let Ω be an open connected subspace of the \mathbb{R}^n . Let $P(\Omega)$ be a subspace of $L^1(\Omega)$ such that $p(\cdot) \in P(\Omega)$, $p(\cdot): \Omega \to (1, \infty)$.

Definition 1: For given $p(\cdot) \in P(\Omega)$, we define the conjugate function $q(\cdot)$ by $q(x) = \frac{p(x)}{p(x)-1}$ for all $x \in \Omega$.

We denote $p_m(\tilde{\Omega}) = \operatorname{ess \ inf}_{x \in \tilde{\Omega}} p(x)$ and $p_s(\tilde{\Omega}) = \operatorname{ess \ sup}_{x \in \tilde{\Omega}} p(x)$ for fixed $\tilde{\Omega} \subset \Omega$.

Definition 2: For fixed $p(\cdot) \in P(\Omega)$, we define the functional ρ_p by

$$\rho_{\rho}(f) = \int_{\Omega} \left| f(x) \right|^{\rho(x)} dx \tag{1}$$

For $f \in L^{1}(\Omega)$.

Straight forward considerations yield the following properties.

Properties 1: For fixed subset $\Omega \subset \mathbb{R}^n$ and given $p(\cdot) \in P(\Omega)$, we have that

- 1) $\rho_p(f) \ge 0$ For all $f \in L^1(\Omega)$;
- 2) $\rho_p(f) = 0$ If and only if f = 0;

3) For all α , $\beta \ge 0$ such that $\alpha + \beta = 1$, the inequality

$$\rho_p(\alpha f + \beta g) \le \alpha \rho_p(f) + \beta \rho_p(g) \tag{2}$$

Holds for all $f, g \in L^1(\Omega)$;

4) If $|f(x)| \ge |g(x)|$ almost everywhere and $\rho_p(f) < \infty$ then $\rho_p(f) \ge \rho_p(g)$ and if $\rho_p(f) > \rho_p(g)$ then $|f(x)| \ne |g(x)|$.

Definition 3: For fixed $p(\cdot) \in P(\Omega)$, we define a norm by

$$\left\|f\right\|_{L^{p(\cdot)}} = \inf\left\{\lambda > 0: \rho_p\left(\frac{f}{\lambda}\right) \le 1\right\}$$
(3)

For measurable function *f*. The functional space $L^{p(\cdot)}(\Omega) = L^p(\Omega)$ consists of all measurable functions *f* such that $\|f\|_{L^{p(\cdot)}} < \infty$.

Similar to the classical Lebesgue spaces, for the $L^{p(\cdot)}(\Omega)$ -spaces, we can formulate an analog of the Holder norm inequality.

Theorem 2: For fixed $p(\cdot) \in P(\Omega)$ and conjugation functions

 $q(\cdot)$, the inequality

$$\int_{\Omega} |f(x)g(x)| dx \le c_p ||f||_{L^p} ||g||_{L^q}$$
(4)

With the constant $c_p = 1 + \frac{1}{p_m} - \frac{1}{p_s}$ for all $f \in L^{p(\cdot)}(\Omega)$ and $g \in L^{q(\cdot)}(\Omega)$.

Proof: First, we show that $\rho_p\left(\frac{f}{\|f\|_{L^p}}\right)=1$ holds for each $p(\cdot) \in P(\Omega)$ and all $f \in L^{p(\cdot)}(\Omega)$, $f \neq 0$. Indeed, for all λ , $0 < \lambda < \|f\|_{L^p}$, we have

$$\rho_{p}\left(\frac{f}{\lambda}\right) \leq \left(\frac{\left\|f\right\|_{L^{p}}}{\lambda}\right)^{p_{s}} \rho_{p}\left(\frac{f}{\left\|f\right\|_{L^{p}}}\right),$$

Thus, there exists λ such that $\rho_{p}\left(\frac{f}{\lambda}\right) < 1$ but $\rho_{p}\left(\frac{f}{\left\|f\right\|_{L^{p}}}\right) \geq 1.$

Next, assuming $f \in L^{p(\cdot)}(\Omega)$ and $g \in L^{q(\cdot)}(\Omega)$, applying the Young inequality, we estimate

$$\begin{split} &\int_{\Omega} \left| \frac{f(x)}{\|f\|_{L^{p}}} \frac{g(x)}{\|g\|_{L^{g}}} \right| dx \leq \\ &\leq \int_{\Omega} \frac{1}{p(x)} \left| \frac{f(x)}{\|f\|_{L^{p}}} \right|^{p(x)} dx + \int_{\Omega} \frac{1}{q(x)} \left| \frac{g(x)}{\|g\|_{L^{g}}} \right|^{q(x)} dx \leq \\ &\leq \frac{1}{p_{m}} \rho_{p} \left(\frac{f}{\|f\|_{L^{p}}} \right) + \frac{1}{q_{m}} \rho_{q} \left(\frac{g}{\|g\|_{L^{g}}} \right) \leq \left(1 + \frac{1}{p_{m}} - \frac{1}{p_{s}} \right). \end{split}$$

Since $q_m = ess \inf q(x) = \frac{p_s}{p_s - 1}$. Thus, we obtain

$$\iint_{\Omega} \left| f(x)g(x) \right| dx \le \left(1 + \frac{1}{p_m} - \frac{1}{p_s} \right) \left\| f \right\|_{L^p} \left\| g \right\|_{L^p}.$$

We formulate several fundamental properties of $L^{p(\cdot)}$ -functions without proving them.

1. Let $f \in L^{p(\cdot)}$ then there exists a sum-presentation of f as $f_1 + f_2$ where $f_1 \in L^{p_s} \cap L^{p(\cdot)}$ and $f_2 \in L^{p_m} \cap L^{p(\cdot)}$.

2. The functional space C_0^{∞} is dense in $L^{p(\cdot)}$, $p_s < \infty$.

3. Assume $\{f_k\} \subset L^{p(\cdot)}$ and $\lim_{k \to \infty} \left\| f_k - f \right\|_{L^{p(\cdot)}} = 0$, $f \in L^{p(\cdot)}$ then there exists a subsequence $\left\{ f_{k(t)} \right\} \subset L^{p(\cdot)}$ that $\lim_{t \to \infty} f_{k(t)} = f$ for almost everywhere.

4. Each Cauchy sequence in $L^{p(\cdot)}$ converges in $L^{p(\cdot)}$.

5. Let $1 < p_m$ then the mapping $g \mapsto \Psi(g)$ define by

$$\Psi(g,f) = \int f(x)g(x)dx \tag{5}$$

Is an isomorphism so that for each continuous linear functional $\Psi \in (L^{p(\cdot)})^*$ there exists a uniquely defined element g of $L^{q(\cdot)}$ such that $\Psi = \Psi(g)$ and $\|g\|_{L^{p(\cdot)}} \approx \|\Psi\|$. The space $L^{p(\cdot)}$ is reflexive.

Weighted Classes A_p

First, we remind some general definitions from harmonic analysis and operator theory.

A classical maximal operator M on R^n , n > 2 is given by

$$\mathbf{M}(f)(x) = \sup_{r>0} \frac{1}{mes(B(r))} \int_{|y| < r} |f(x-y)| dy \quad (6)$$

For all arbitrary locally integral functions f and all balls B(r) of radius r > 0 in \mathbb{R}^n , n > 2.

Let measure μ be absolutely continuous with respect to Lebesgue measure. A functional class A_p consists of all weights $\omega(x) = \frac{d\mu(x)}{dx}$, which coincide with locally integral functions $\omega \in L^1_{loc}(\mathbb{R}^n)$, such that the estimate $\frac{1}{mes(B)} \int_{\mathbb{B}} d\mu(x) \left(\frac{1}{mes(B)} \int_{\mathbb{B}} \omega(x)^{\frac{1}{1-p}} dx\right)^{p-1} \le A$ (7)

Holds for all balls *B*, where p + q = pq, $p \in (1, \infty)$. The A_p bound of the weight ω is a minimal constant for which (2) holds.

Applying the Holder inequality, we can prove the following lemma.

Lemma 1: For the weight ω to belong to A_p -class it is necessary and sufficient that the estimate

$$\frac{1}{mes(B)} \int_{B} \left| f(x) \right| dx \le c \left(\frac{1}{\mu(B)} \int_{B} \left| f(x) \right|^{p} d\mu(x) \right)^{p}$$
(8)

Holds for all $f \in L^1_{loc}(\mathbb{R}^n)$ and all balls *B*, where $\omega(x) dx = d\mu(x)$.

Definition 4: The functional class BMO (bounded mean oscillation) consists of all locally integral functions f such that the inequality

$$\frac{1}{mes(B)} \int_{B} \left| f(x) - \frac{1}{mes(B)} \int_{B} f(x) dx \right| dx \le A$$
(9)

Holds for all balls B.

An important property of $\boldsymbol{A}_{\boldsymbol{p}}$ - weights is given by the next theorem.

Theorem 3: Let $\omega \in A_p$ then the inequality

$$\int_{\mathbb{R}^{n}} \left(\mathbf{M}(f)(x) \right)^{p} \omega(x) dx \leq A \int_{\mathbb{R}^{n}} \left| f(x) \right|^{p} \omega(x) dx$$
Holds for all $f \in L^{p}(d\mu)$ and for each $p \in (1, \infty)$.
$$(10)$$

Now, we can generalize the definition of A_p - class to functional spaces $L^{p(\cdot)}(\Omega)$, $p(\cdot) \in P(\Omega)$.

 $\begin{array}{lll} \mbox{Definition} & 5: \mbox{ For given } p(\cdot) \in P(\Omega), \ \mbox{a weight} \\ \omega(x) = & \frac{d\mu(x)}{dx} & \mbox{belongs to the variable class } A_{p(\cdot)} & \mbox{if the inequality} \end{array}$

$$\sup_{B} \frac{1}{\left(mes\left(B\right)\right)^{p(B)}} \|\omega \mathbf{1}_{B}\|_{L^{1}} \|\omega^{-1} \mathbf{1}_{B}\|_{L^{p(\cdot)}} \leq A$$
(11)

JSM Math Stat 6(1): 1019 (2024)

Holds for all balls $B \subset clos(\Omega)$, and some constants A, where

$$p(B) = \left(\frac{1}{mes(B)} \int_{B} p(x)^{-1} dx\right)^{-1}$$
(12)
And $p(x)^{-1} + q(x)^{-1} = 1.$

Theorem 4: Let $p(\cdot) \in P(\Omega)$ then a weight $\omega(x) = \frac{d\mu(x)}{dx}$ belongs to the variable $A_{p(\cdot)}$ - class if and only if the inequality

$$\left(\frac{1}{mes(B)}\int_{B}f(x)dx\right)^{p(B)} \le c_{1}\left(\mu(B)\right)^{-1}\int_{B}f(x)^{p(x)}\omega(x)dx \quad (13)$$

Holds for all nonnegative $f \in L^{p(\cdot)}(d\mu)$ and all balls *B*.

Proof: Let $\omega \in A_{p(\cdot)}$ and applying the Holder inequality for variable Lebesgue spaces, we obtain

$$\left(\frac{1}{mes(B)}\int_{B} |f(x)| dx\right)^{p(B)} =$$

$$= \left(\frac{1}{mes(B)}\int_{B} f(x)\omega(x)^{\frac{1}{p(x)}}\omega(x)^{-\frac{1}{p(x)}} dx\right)^{p(B)} \leq$$

$$\leq c \frac{1}{mes(B)^{p(B)}} \left(\int_{B} (f(x))^{p(x)}\omega(x) dx\right) \|\omega^{-1}\|_{L^{p(x)}},$$

Applying the definition of $A_{p(\cdot)}$ -class, we deduce the first statement of the theorem.

Conversely, we take $f(x) = (\omega(x) + \varepsilon)^{\frac{q(x)}{p(x)}}$ and have

$$\frac{1}{\left(mes\left(B\right)\right)^{p\left(B\right)}}\left\|\omega\mathbf{1}_{B}\right\|_{L^{1}}\left\|\left(\omega+\varepsilon\right)^{-1}\mathbf{1}_{B}\right\|_{L^{p\left(\cdot\right)}}\leq c_{1},$$

Take the limit as $\mathcal{E} \to 0$ and obtain that $\omega \in A_{p(\cdot)}$.

For the weighted variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n, \mu)$, one can prove an analog of Theorem 3 as follows.

Theorem (analog of theorem 3) 5: For fixed $p(\cdot) \in P(\mathbb{R}^n)$ and weight $\omega \in A_{p(\cdot)}$, if maximal operator M is continuous on $L^{q(\cdot)}(d\mu)$ then the inequality

$$\int_{\mathbb{R}^{n}} \left(\mathbf{M}(f)(x) \right)^{p(x)} \omega(x) dx \leq A \int_{\mathbb{R}^{n}} \left| f(x) \right|^{p(x)} \omega(x) dx \quad (14)$$

Holds for all $f \in L^{p(\cdot)}(d\mu)$ and for some constants A

Pseudo-Differential Operators

The singular integral realization of the pseudo-differential operator T_a can be present as

$$T_a(f)(x) = \int_{\mathbb{R}^n} k(x, y) f(x-y) dy$$
⁽¹⁵⁾

Or in classical form

$$T_a(f)(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$
(16)

For almost all $x \notin \text{supp}(f)$, where K(x, y) = k(x, x-y)and the Fourier transform

$$a(x,\xi) = \int_{\mathbb{R}^n} \exp(-2\pi y \cdot \xi) k(x,y) dy.$$
 (17)

We consider a convolution operator in the form

$$T(f)(x) = \int_{\mathbb{R}^n} K(x-y)f(y)dy$$
⁽¹⁸⁾

For almost all $x \notin \operatorname{supp}(f)$. The natural assumption on the integral kernel K is that there exists a smooth function K(x), for all $x \in \mathbb{R}^n$ except $x \neq 0$, such that the kernel agrees with K(x) on elements of $C_0^{\infty}(\mathbb{R}^n)$, which vanish on the neighborhood of x = 0, for all $|\alpha| \le 1$ we assume

$$\left|\partial_x^{\alpha} K(x)\right| \le C(\alpha) |x|^{-n-|\alpha|} \tag{19}$$

For all $x \in \mathbb{R}^n$ except origin. This class of pseudo-differential operators satisfies the Zygmund-Calderon conditions.

Theorem 6: Let $p(\cdot) \in P(\mathbb{R}^n)$ and let $f \mapsto T(f)$ be a convolution operator T(f)(x) = f * K corresponding to kernel K such that $\left|\partial_x^{\alpha} K(x)\right| \le C(\alpha) |x|^{-n-|\alpha|}$, $|\alpha| \le 1$, $p_s = \operatorname{ess\,sup}_{x \in \mathbb{R}^n} p(x) < \infty$. If the integral inequality

$$\int_{\mathbb{R}^{n}} \left| T(f)(x) \right|^{p(x)} \omega(x) dx \le c_2 \int_{\mathbb{R}^{n}} \left| f(x) \right|^{p(x)} \omega(x) dx \tag{21}$$

Holds for all $f \in L^{p(\cdot)}(\mathbb{R}^n)$ then the weight $\omega(x) = \frac{d\mu(x)}{dx}$ satisfies the inequality

$$\sup_{B} \frac{1}{\left(mes(B)\right)^{p(B)}} \|\omega \mathbf{1}_{B}\|_{L^{1}} \|\omega^{-1} \mathbf{1}_{B}\|_{L^{p(\cdot)}} \leq A,$$
(22)

Namely $\omega \in A_{p(\cdot)}$.

Proof: Applying conditions on the kernel, we have

$$\left|K(x+z)-K(x)\right| \leq \breve{c} \left|x\right|^{-}$$

For $|z| \leq \tilde{c} |x|$. Assume $B(\tilde{x}, \rho)$ then we have that the inequality

$$\left|T(f)(x)\right| \geq \bar{c}_{1} \frac{1}{\left(mes(B)\right)^{p(B)}} \left|K\left(x-\tilde{x}-\rho \hat{x}\right)\right| \int_{\mathbb{R}^{n}} f(x)^{p(x)} dx$$

Holds for all $x \in B(\tilde{x} + \rho \tilde{x}, \rho)$, the application of the integral inequality yields

$$mes(B(\tilde{x}+\rho \hat{x},\rho))\left(\frac{1}{mes(B)}\int_{\mathbb{R}^{n}}f(x)^{p(x)}dx\right)^{p(B)} \leq c_{2}\int_{B}f(x)^{p(x)}\omega(x)dx$$

Taking $B(\tilde{x} + \rho \hat{x}, \rho)$ instead of $B(x, \rho)$, we obtain

$$mes(B)\left(\frac{1}{mes(B)}\int_{B}f(x)dx\right)^{p(B)} \leq c_{2}\int_{B}f(x)^{p(x)}\omega(x)dx$$

Theorem 7: Let $p(\cdot) \in P(R^n)$ such that $p_s = \operatorname{ess sup}_{x \in R^n} p(x) < \infty$, and let $f \mapsto T(f)$ be a convolution operator corresponding to kernel K

under the assumption $\left|\partial_x^{\alpha}K(x)\right| \leq C(\alpha)|x|^{-n-|\alpha|}$, $|\alpha| \leq 1$ by T(f)(x) = f * K. Assume that the maximal operator is bounded in $L^{p(\cdot)}(\mathbb{R}^n)$, then, for each weight $\omega \in A_{p(\cdot)}$, the inequality

$$\int_{R^{n}} \left| T(f)(x) \right|^{p(x)} \omega(x) dx \le c_{2} \int_{R^{n}} \left| f(x) \right|^{p(x)} \omega(x) dx \quad (23)$$

Holds for all $f \in L^{p(\cdot)}(R^{n})$.

Proof: Let T_{ε} , $\varepsilon > 0$ be a truncated approximation with kernel $K_{\varepsilon}(x) = K(x) \mathbb{1}(\{|x| \ge \varepsilon\})$ so that

$$T_{\varepsilon}(f)(x) = \int_{\mathbb{R}^{n}} K_{\varepsilon}(x-y) f(y) dy$$

And we define $T_{\varepsilon}(f)(x) = \sup_{\varepsilon} |T_{\varepsilon}(f)(x)|$.
We show that the inequality
$$mes(\{x:T_{\varepsilon}(f)(x) > \alpha, f(x) \le \tilde{\varepsilon}\alpha\}) \le$$
$$\le c_{2}\tilde{\varepsilon}(1-\tilde{b})^{-1} mes(\{x:T_{\varepsilon}(f)(x) > \tilde{b}\alpha\})$$

Unlike for all $f \in C^{\infty}$ and for all \tilde{v} all one of

Holds for all $f \in C_0^{\infty}$ and for all b < 1, $\alpha > 0$ and $\tilde{c} > 0$.

Indeed, for fixed $\varepsilon > 0$ and for all $f \in C_0^{\infty}$, $T_{\varepsilon}(f)$ is a continuous function, therefore, there exists an open coverage Θ such that $T_*(f)(x) = \sup_{\varepsilon} |T_{\varepsilon}(f)(x)| > \tilde{b}\alpha$ is open, this open coverage Θ is decomposed into a disjoint union of Whitney cubes $\bigcup \Omega$.

Now, we decompose the function f into the sum $f_1 + f_2$ of two functions $f_1 = f \mathbf{1}_B$ and $f_1 = f \mathbf{1}_{R^n \setminus B}$. For $\tilde{b}_1 + \tilde{b}_2 = 1$ we obtain

 $\{x:T_*(f)(x) > \alpha\} \subset \{x:T_*(f_1)(x) > \tilde{b}_1\alpha\} \cup \{x:T_*(f_2)(x) > \tilde{b}_2\alpha\}.$ Since for all $f \in L^1(\mathbb{R}^n)$ there is an inequality $mes\{x:T_*(f)(x) > \alpha\} \leq \frac{c_2}{\alpha} \int_{\mathbb{R}^n} |f(x)| dx,$ We have $mes\{x \in Q_i:T_*(f_1)(x) > \tilde{b}_1\alpha\} \leq \frac{c_2}{\alpha \tilde{b}_1} \int_{\mathbb{R}^n} |f_1(x)| dx$ And

And

$$\int_{\mathbb{S}^n} \left| f_1(x) \right| dx \leq \tilde{c} c_2 \alpha \, mes(Q_i) \, ,$$

Thus, we obtain

$$mes\left\{x:T_*\left(f_1\right)\left(x\right)>\tilde{b}_1\alpha\right\}\leq \tilde{c}\frac{c_2}{\tilde{b}_1}mes\left(Q_i\right).$$

Next, we must estimate the $f_{\rm 2}$ -term. Applying our conditions, we calculate

$$\int_{|y-z|\ge s} \frac{|f(y)|}{|y-z|^{n+1}} dy = \int_{|y|\ge s} \frac{|f(z-y)|}{|y|^{n+1}} dy =$$
$$= \sum_{k=0,1,\dots,2^{t}} \int_{s\le |y|\le 2^{t+1}s} \frac{|f(z-y)|}{|y|^{n+1}} dy \le 2\tilde{c}_{1}f(z)$$

Since $|K_{\varepsilon}(\tilde{x}-y)-K_{\varepsilon}(x-y)| \leq \frac{c_2 s}{|y-z|^{n+1}}$ for $x \in Q_i$, $y \in \mathbb{R}^n \setminus B$ and $\mathbb{R}^n \setminus B \subset \{y : |y-z| \geq s\}$, the ball *B* has center at \tilde{x} . Therefore, we estimate

$$\left|T_{\varepsilon}(f_{2})(\tilde{x})-T_{\varepsilon}(f_{2})(x)\right|\leq c_{2}f(z)$$

For all $x \in Q_i$. Taking the supreme over all $\mathcal{E} > 0$, we have

$$T_*(f_2)(x) \le T_*(f_2)(\tilde{x}) + c_2 f(z) \le \alpha \tilde{b} + c_2 \tilde{c} \alpha$$

For all $x \in Q_i$.

So, we choose $\tilde{b}_2 \ge \tilde{b} + c_2 \tilde{c}$ and $\tilde{b}_1 + \tilde{b}_2 = 1$ then we have $mes(\{x: T_*(f)(x) > \alpha, f(x) \le \tilde{c}\alpha\}) \le$

$$\leq c_2 \tilde{c} \tilde{b}_1^{-1} mes(Q_i),$$

If $c_2 \tilde{c} \left(1 - \tilde{b}\right)^{-1} \ge 2^{-1}$ then we choose new c_2 as $2c_2$ and obtain

$$mes({x:T_*(f)(x) > \alpha, f(x) \le \tilde{c}\alpha}) \le$$

 $\leq c_2 \tilde{c} (1-\tilde{b})^{-1} mes(Q_i).$

Taking the sum over all cubes Q_i , we obtain

$$mes\left(\left\{x:T_*(f)(x) > \alpha, f(x) \le \tilde{c}\alpha\right\}\right) \le$$

$$\leq c_2 \tilde{c} \left(1 - \tilde{b}\right)^{-1} mes\left(\left\{x : T_*(f)(x) > \tilde{b}\alpha\right\}\right)$$

For all $\alpha > 0$ and each $0 < \tilde{b} < 1$ and each $0 < \tilde{c}$.

Next, we show that the inequality

$$\mu \{ x: T_*(f)(x) > \alpha, f(x) \le \tilde{c}\alpha \} \le$$
$$\le \tilde{a} \mu \{ x: T_*(f)(x) > \tilde{b}\alpha \}$$

Holds for all $f \in C_0^{\infty}$ and for all $\tilde{b} < 1$, $\alpha > 0$ and some $\tilde{a} < 1$, $\tilde{c} > 0$, constant \tilde{a} depends on the weight function.

Indeed, in previous consideration, we fix $\tilde{b} < 1$ and choose \tilde{c} so that $c_2 \tilde{c} (1-\tilde{b})^{-1}$ is small enough, then the inequality

 $mes(\{x:T_*(f)(x) > \alpha, f(x) \le \tilde{c}\alpha\}) \le \le \delta mes(Q_i).$

Holds for some small enough positive δ and all cubes. Assuming $\tilde{a} = \delta < 1$, we summate over all cubes and obtain

$$\mu(\{x:T_*(f)(x) > \alpha, f(x) \le \tilde{c}\alpha\})$$

$$\le \delta\mu(Q).$$

We will need the following properties of the $p(\cdot)$ -spaces. For constant $\tilde{a} < 1$, we choose $\tilde{b} < 1$ such that the inequality $\tilde{a} < \tilde{b}^{p_s}$ holds for all *x*. Let *f* and *g* be a nonnegative function such that inequality

$$\mu\left(\left\{x:f(x)>\alpha,g(x)\leq\tilde{c}\alpha\right\}\right)\leq \\ \leq \tilde{a}\mu\left(\left\{x:f(x)>\tilde{b}\alpha\right\}\right)$$

Holds for all $\alpha > 0$. Then, the inequality

$$\int_{\mathbb{R}^{n}} |f(x)|^{p(x)} d\mu(x) \leq c_{3} \int_{\mathbb{R}^{n}} |g(x)|^{p(x)} d\mu(x)$$

Holds with some constants c_3 and under the condition $\tilde{a} < \tilde{b}^{p_3}$ and $f \in L^{p(\cdot)}$. Proving of this statement is similar to standard one.

This proves our statement for $f \in C_0^{\infty}$ since $|T_*(f)(x)| \leq C(1+|x|)^{-n}$ holds for all $f \in C_0^{\infty}$. The extension to the whole $L^{p(\cdot)}(\mathbb{R}^n,\mu)$ follows from the standard argument that each element of $L^{p(\cdot)}(\mathbb{R}^n,\mu)$ can be approximated by ele elements of $C_0^{\infty}(\mathbb{R}^n)$.

JSM Math Stat 6(1): 1019 (2024)

REFERENCES

- Adimurthi K, Phuc NC. Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations. Calc Var Partial Differential Equations. 2015; 54: 3107-3139.
- Beni A, ochenig K, Okoudjou KA, Rogers LG. Unimodular Fourier multiplier for modulation spaces. J Funct Anal. 2007; 246: 366–384.
- 3. Cruz-Uribe D, Penrod M, Rodney S. Poincar'e inequalities and Neumann problems for the variable exponent setting. Math Eng. 2022; 4: 1-22.
- Xiong C. Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds. J Funct Anal. 2018; 275: 3245–3258.
- Cruz-Uribe D, Fiorenza A. Weighted endpoint estimates for commutators of fractional integrals. Czechoslovak Math J. 2007; 57:153–160.
- Diening L, Hasto P. Muckenhoupt weights in variable exponent spaces. 2008.
- Diening L. Maximal function on generalized Lebesgue spaces L p (·), Math Inequal Appl. 2004; 7: 245–253.
- 8. Fan X, Zhao D. On the spaces Lp(x) (Ω) and W m,p(x) (Ω). J Math Anal Appl. 2001; 263: 424–446.
- 9. Ortiz-Caraballo C, Perez C, Rela E. Exponential decay estimates for singular integral operators. Math Ann. 2013; 357: 1217–1243.
- Hao C, Zhang W. Maximal L p L q regularity for two-phase fluid motion in the linearized Oberbeck-Boussinesq approximation. J Differ Equ. 2022; 322: 101–134.
- 11. Ho K, Sim I. Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators. Sci China Math. 2017; 60: 133–146.
- Kim YH, Wang L, Zhang C. Global bifurcation for a class of degenerate elliptic equations with variable exponents. J Math Anal Appl. 2010; 371: 624–637.
- Liu X, Wang M, Zhang Z. Local well-posedness and blow-up criterion of the Boussinesq equations in critical Besov spaces. J Math Fluid Mech. 2010; 12: 280–292.
- Miao C, Zheng X. On the global well-posedness for the Boussinesq system with horizontal dissipation. Commun Math Phys. 2013; 321: 33–67.
- 15. Qiaoling Wang, Xia C. Sharp bounds for the first non-zero Stekloff eigenvalues. J Funct Anal. 2009; 257: 2635–2644.
- 16. Restrepo JE, Suragan D. Hardy-type inequalities in generalized grand Lebesgue spaces. Adv Oper Theory. 2021; 6: 30.
- Stein EM. Singular integrals and differentiability properties of functions. Princeton Mathematical Series (PMS-30). Princeton University Press Princeton. 1970; 30.
- Tsenov IV. Generalization of the problem of best approximation of a function in the space. Ls Uch Zap Dagestan Gos Univ. 1961; 7: 25–37.
- Trudinger N. On Imbeddings into Orlicz Spaces and Some Applications. Indiana Univ Math J. 1967; 17: 473–483.
- 20. Wang B, Huo Z, Hao C, Guo Z. Harmonic Analysis Method for Nonlinear Evolution Equations. World Scientfic, 2011.
- 21. Wang FY. Distribution dependent SDEs for Landau type equations. Stochastic Processes and their Applications. 2018; 128: 595–621.
- 22. Xia P, Xie L, Zhang X, Zhao G. Lq(Lp)-theory of stochastic differential equations. 2019; 130: 5188-5211.

- 23. Zhang X. Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. Electron J Probab. 2011; 16:1096–1116.
- 24. Zhang X, Zhao G. Singular Brownian Diffusion Processes. Communications in Mathematics and Statistics. 2018; 6: 533–581.
- 25. Zhang X, Zhao G. Stochastic Lagrangian path for Leray solutions of 3D Navier-Stokes equations. Communications in Mathematical Physics. 2021; 381: 491-525.