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Abstract

This article is dedicated to the Zygmund-Calderon operators in the variable 
exponent spaces ( )pL ⋅  with measurable function ( ): 1,np R → ∞ . We establish that 
if an operator ( )( )T f x f K= ∗  with the kernel ( ) ( ) , 1n

x K x C x αα α α− −∂ ≤ ≤
 
satisfies 

the ( )( ) ( ) ( ) ( ) ( ) ( )
n n

p x p x

R R

T f x x dx c f x x dxω ω≤∫ ∫2

 

for all ( ) ( )p nf L R⋅∈ , ( )sup
n

S
x R

p ess p x
∈

= < ∞  

then the weight d
dx
µω =  belongs to ( )pA ⋅ -class. The inverse is also true, thus, if the 

maximal operator is bounded in ( ) ( )p nL R⋅ and ( ) ( ) , 1n
x K x C x αα α α− −∂ ≤ ≤ , then, 

the inequality  ( )( ) ( ) ( ) ( ) ( ) ( )
n n

p x p x

R R

T f x x dx c f x x dxω ω≤∫ ∫2  holds for all ( ) ( )p nf L R⋅∈  

and each ( )pAω ⋅∈ .

INTRODUCTION

The variable Lévesque spaces were introduced in 1961 by 
I. Tsenov who considered the problem of approximation in the 
Lévesque spaces [1-18]. The variable Lévesque space with a 
measurable function ( ): 1,np R → ∞   is the set of all measurable 
function on nR  the inequality  d

dx
µω =  holds for some positive 

values of the parameterλ . The norm of the variable Lévesque 
space ( )pL ⋅  is defined as an infimum 

( ) ( )
( ) ( )

inf 0 : 1p n

p x

L R

f x
f dxλ

λ
⋅

   = > < ∞ ≤      
∫

.

The classical Lévesque spaces pL  is a special case of ( )pL ⋅  when 
function ( ): 1,np R → ∞  is constant. 

The most prominent feature of  ( )pL ⋅  is existence of an
analog of the Holder inequality in the weaker form

( ) ( ) ( ) ( )
1 11 p qL L

m S

f x g x dx f g
p p

⋅ ⋅

 
≤ + − 
 

∫ , Where ( )infmp ess p x=  and

( )supSp ess p x= . 

There is an essential difference between the classical 
Lévesque spaces and the variable ( )pL ⋅ , the necessary and 
sufficient requirement for the operator ( )( ) ( ),z f x f x zτ = −  
of translation to be bounded on ( )pL ⋅  is that the function 

( ): 1,np R → ∞  be a constant. The corollary of this is that the 
Young lemma ( ) ( )p pL L L

f g const f g⋅ ⋅∗ ≤ 1 holds for all ( )pf L ⋅∈  
and all g L∈ 1  if and only if exponential function ( )p ⋅  is a constant. 

Let M  is a maximal operator then the inequality  

( ) ( ) ( ),,
M p np n

p
L RL R

f A f
µµ

≤
 holds for all 

( ) ( ) ( ), ,p nf L R d x x dxµ µ ω∈ =   if and only if the 

weight pAω∈ , the class pA  is characterized by inequality 

( ) ( ) ( ) ( )1 1
p

p

B B

d x x dx A
mes B mes B

µ ω
−

−
 

≤  
 

∫ ∫
1

1
1  holding fork balls B.

In 2008, L. Diening and P. Hasto [6,7] generalized classes pA
to the variable exponential Lebesgue spaces by demanding that 
the inequality  

( )( ) ( )
( )
( )

1sup 1 1 q
pB Bp B L LB

A
mes B

ω ω ⋅
⋅

− ≤1
1  

Holds for some constants, the minimum of these constants is 
the value of norm

( )pA
ω

⋅
.

Some pertinent to the subject literature reviews can be 
found in the L. Diening, P. Hasto works [6,7], without being 
complete, we present the list of some interesting research on the 
subject [1-25].  In this article, we consider a Zygmund-Calderon 
operator Ta [17] in the variable exponent spaces ( )pL ⋅  given in 
the form ( )( ) ( ) ( )

nR

T f x K x y f y dy= −∫ for almost all ( )suppx f∉

, with a singular kernel  K such that, for 1α ≤ , the estimate 
( ) ( ) n

x K x C x αα α − −∂ ≤  holds for all  nx R∈  with the exception of
0x = . We establish that assume ( )f T f  is a Zygmund-Calderon 

operator ( )( )T f x f K= ∗  with the kernel under restriction

( ) ( ) , 1n
x K x C x αα α α− −∂ ≤ ≤ , and the ( )pL ⋅ -Condit
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( )( ) ( ) ( ) ( ) ( ) ( )
n n

p x p x

R R

T f x x dx c f x x dxω ω≤∫ ∫2

Holds for all ( ) ( )p nf L R⋅∈ , ( )sup
n

S
x R

p ess p x
∈

= < ∞ , then 

the weight d
dx
µω =  must belong to ( )pA ⋅

-class. Also, we prove 

the inverse result, namely, presume the maximal operator is 
bounded in ( ) ( )p nL R⋅  and operator ( )f T f  defined as above, 
then, for each weight ( )pAω ⋅∈ , the inequality 

( )( ) ( ) ( ) ( ) ( ) ( )
n n

p x p x

R R

T f x x dx c f x x dxω ω≤∫ ∫2  Holds for all
( ) ( )p nf L R⋅∈

Lebesgue Spaces With Variable Exponential 

Let Ω  be an open connected subspace of the Rn. Let ( )P Ω  be a 
subspace of ( )L Ω1  such that ( ) ( )p P⋅ ∈ Ω , ( ) ( ): 1,p ⋅ Ω→ ∞ . 

Definition 1: For given ( ) ( )p P⋅ ∈ Ω , we define the conjugate 

function ( )q ⋅  by ( ) ( )
( ) 1
p x

q x
p x

=
−

   for all x∈Ω .

We denote ( ) ( )infm
x

p ess p x
∈Ω

Ω =


  and ( ) ( )supS
x

p ess p x
∈Ω

Ω =


  for 
fixedΩ⊂Ω .

Definition 2: For fixed ( ) ( )p P⋅ ∈ Ω , we define the functional
pρ   by 

( ) ( ) ( )p x
p f f x dxρ

Ω

= ∫                                              (1)

For ( )f L∈ Ω1 .

Straight forward considerations yield the following 
properties.   

Properties 1: For fixed subset nRΩ⊂  and given ( ) ( )p P⋅ ∈ Ω , 
we have that 

1)  ( ) 0p fρ ≥  For all ( )f L∈ Ω1 ;

2)  ( ) 0p fρ =  If and only if 0f = ;

3) For all , 0α β ≥  such that 1α β+ = , the inequality 

( ) ( ) ( )p p pf g f gρ α β αρ βρ+ ≤ +                                        (2)

Holds for all ( ),f g L∈ Ω1 ;

4) If ( ) ( )f x g x≥  almost everywhere and ( )p fρ < ∞  then 

( ) ( )p pf gρ ρ≥  and if ( ) ( )p pf gρ ρ>  then ( ) ( )f x g x≠ .

Definition 3: For fixed ( ) ( )p P⋅ ∈ Ω , we define a norm by 

( ) inf 0 : 1p pL

ff λ ρ
λ

⋅

  = > ≤  
  

                                         (3)

For measurable function f. The functional space ( ) ( ) ( )p pL L⋅ Ω = Ω  
consists of all measurable functions f such that ( )pL

f ⋅ < ∞ .

Similar to the classical Lebesgue spaces, for the ( ) ( )pL ⋅ Ω - 
spaces, we can formulate an analog of the Holder norm inequality.

Theorem 2:  For fixed ( ) ( )p P⋅ ∈ Ω and conjugation functions

( )q ⋅ , the inequality  

( ) ( ) p qp L L
f x g x dx c f g

Ω

≤∫                                          (4)

With the constant  
1 11p

m S

c
p p

= + −   for all ( ) ( )pf L ⋅∈ Ω  and
( ) ( )qg L ⋅∈ Ω .

Proof: First, we show that 1
p

p
L

f
f

ρ
 

=  
 

 holds for each  

( ) ( )p P⋅ ∈ Ω and all ( ) ( ) , 0pf L f⋅∈ Ω ≠ . Indeed, for all
, 0 pL

fλ λ< < , we have 
S

p

p

p

L
p p

L

ff f
f

ρ ρ
λ λ

    ≤           
,

Thus, there exists λ  such that 1p
fρ
λ

  < 
 

 but 1
p

p
L

f
f

ρ
 

≥  
 

. 

Next, assuming  ( ) ( )pf L ⋅∈ Ω  and ( ) ( )qg L ⋅∈ Ω , applying the 
Young inequality, we estimate  

( ) ( )

( )
( )

( )

( )
( )

( )
1 1

1 1 1 11 ,

p q

p q

p q

L L

p x q x

L L

p q
m m m SL L

f x g x
dx

f g

f x g x
dx dx

p x f q x g

f g
p f q g p p

ρ ρ

Ω

Ω Ω

≤

≤ + ≤

     
≤ + ≤ + −             

∫

∫ ∫

Since ( )inf
1

S
m

S

pq ess q x
p

= =
−

. Thus, we obtain 

( ) ( ) 1 11 p qL L
m S

f x g x dx f g
p pΩ

 
≤ + − 
 

∫
.

We formulate several fundamental properties of ( )pL ⋅

-functions without proving them. 

1. Let ( )pf L ⋅∈  then there exists a sum-presentation of f as 
f f+1 2  where ( )S ppf L L ⋅∈ ∩1  and ( )m ppf L L ⋅∈ ∩2 .

2. The functional space C∞
0  is dense in ( ) ,p

SL p⋅ < ∞ .

3. Assume { } ( )p
kf L ⋅⊂  and ( )lim 0pk Lk

f f ⋅
→∞

− = , ( )pf L ⋅∈  then there 

exists a subsequence ( ){ } ( )p
k tf L ⋅⊂  that 

( )lim k tt
f f

→∞
=  for almost 

everywhere.  

4. Each Cauchy sequence in ( )pL ⋅  converges in ( )pL ⋅ .

5. Let 1 mp<  then the mapping ( )g gΨ  define by 

( ) ( ) ( ),g f f x g x dxΨ = ∫                                    (5)

Is an isomorphism so that for each continuous linear 
functional ( )( )pL

∗⋅Ψ∈  there exists a uniquely defined element g  

of  ( )qL ⋅  such that ( )gΨ = Ψ  and ( )gL
g ⋅ ≈ Ψ . The space ( )pL ⋅  is 

reflexive.

Weighted Classes pA

First, we remind some general definitions from harmonic 
analysis and operator theory.  

A classical maximal operator M on , 2nR n >  is given by 
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( )( ) ( )( ) ( )1M sup
r y r

f x f x y dy
mes B r> <

= −∫
0

 (6)

For all arbitrary locally integral functions f and all balls ( )B r  
of radius 0r >  in , 2nR n > .

Let measure µ  be absolutely continuous with respect to 
Lebesgue measure. A functional class pA  consists of all weights

( ) ( )d x
x

dx
µ

ω = , which coincide with locally integral functions

( )n
locL Rω∈ 1 ,   such that the estimate

( ) ( ) ( ) ( )1 1
p

p

B B

d x x dx A
mes B mes B

µ ω
−

−
 

≤  
 

∫ ∫
1

1
1          (7)

Holds for all balls B, where ( ), 1,p q pq p+ = ∈ ∞ . The 

pA bound of the weight ω  is a minimal constant for which (2) 
holds. 

Applying the Holder inequality, we can prove the following 
lemma. 

Lemma 1: For the weight ω  to belong to pA -class it is 
necessary and sufficient that the estimate  

( ) ( ) ( ) ( ) ( )1 1 pp

B B

f x dx c f x d x
mes B B

µ
µ

 
≤   

 
∫ ∫

1

          (8)

Holds for all ( )n
locf L R∈ 1  and all balls B, where

( ) ( )x dx d xω µ= .

Definition 4: The functional class BMO (bounded mean 
oscillation) consists of all locally integral functions f  such that 
the inequality 

( ) ( ) ( ) ( )1 1

B B

f x f x dx dx A
mes B mes B

− ≤∫ ∫          (9)

Holds for all balls B.

An important property of pA - weights is given by the next 
theorem. 

Theorem 3:  Let pAω∈  then the inequality 

( )( )( ) ( ) ( ) ( )M
n n

pp

R R

f x x dx A f x x dxω ω≤∫ ∫           (10)

Holds for all ( )pf L dµ∈  and for each ( )1,p∈ ∞ .

Now, we can generalize the definition of pA - class to 
functional spaces ( ) ( )pL ⋅ Ω , ( ) ( )p P⋅ ∈ Ω .

Definition 5: For given ( ) ( )p P⋅ ∈ Ω , a weight 

( ) ( )d x
x

dx
µ

ω =  belongs to the variable class ( )pA ⋅  if the 
inequality 

( )( ) ( )
( )
( )

1sup 1 1 q
pB Bp B L LB

A
mes B

ω ω ⋅
⋅

− ≤1
1                              (11)

Holds for all balls ( )B clos⊂ Ω , and some constants A , 
where

( ) ( ) ( )1

B

p B p x dx
mes B

−
− 

=   
 

∫
1

1                              (12)

And ( ) ( ) 1p x q x− −+ =1 1
.

Theorem 4: Let ( ) ( )p P⋅ ∈ Ω  then a weight 

( ) ( )d x
x

dx
µ

ω =  belongs to the variable ( )pA ⋅ - class if and only 

if the inequality 

( ) ( )
( )

( )( ) ( ) ( ) ( )1
p B

p x

B B

f x dx c B f x x dx
mes B

µ ω
− 

≤  
 

∫ ∫
1

1
    (13)

Holds for all nonnegative ( ) ( )pf L dµ⋅∈  and all balls B.

Proof: Let ( )pAω ⋅∈   and applying the Holder inequality for 
variable Lebesgue spaces, we obtain

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )
( )

1

1

1 ,q
p

p B

B

p B

p x p x

B

p x

p B L
B

f x dx
mes B

f x x x dx
mes B

c f x x dx
mes B

ω ω

ω ω ⋅
⋅

−

−

 
=  

 

 
= ≤  
 

 
≤  

 

∫

∫

∫

1 1

1

Applying the definition of ( )pA ⋅ -class, we deduce the first 
statement of the theorem.  

Conversely, we take   ( ) ( )( )
( )
( )

q x
p xf x xω ε

−
= +  and have 

( )( ) ( ) ( ) ( )
( )

1 1 1 q
pB Bp B L L

c
mes B

ω ω ε ⋅
⋅

−+ ≤1

1
1

,

Take the limit as 0ε →  and obtain that ( )pAω ⋅∈ .

For the weighted variable Lebesgue space ( ) ( ),p nL R µ⋅ , one 
can prove an analog of Theorem 3 as follows. 

Theorem (analog of theorem 3) 5: For fixed ( ) ( )np P R⋅ ∈  
and weight ( )pAω ⋅∈ , if maximal operator M is continuous on 

( ) ( )qL dµ⋅
  then the inequality 

( )( )( ) ( ) ( ) ( ) ( ) ( )M
n n

p xp x

R R

f x x dx A f x x dxω ω≤∫ ∫       (14)

Holds for all ( ) ( )pf L dµ⋅∈  and for some constants A

Pseudo-Differential Operators

The singular integral realization of the pseudo-differential 
operator Ta  can be present as 

( )( ) ( ) ( ),
n

a
R

T f x k x y f x y dy= −∫                              (15)
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Or in classical form

( )( ) ( ) ( ),
n

a
R

T f x K x y f y dy= ∫                                      (16)

For almost all ( )suppx f∉ , where ( ) ( ), ,K x y k x x y= −  
and the Fourier transform

( ) ( ) ( ), exp 2 ,
nR

a x y k x y dyξ π ξ= − ⋅∫ .                             (17)

We consider a convolution operator in the form 

( )( ) ( ) ( )
nR

T f x K x y f y dy= −∫                                      (18)

For almost all ( )suppx f∉ . The natural assumption on the 
integral kernel K is that there exists a smooth function K(x), for 
all nx R∈  except 0x ≠ , such that the kernel agrees with K(x) on 
elements of ( )nC R∞

0 , which vanish on the neighborhood of x = 0, 
for all 1α ≤   we assume     

( ) ( ) n
x K x C x αα α − −∂ ≤                                                       (19)

For all nx R∈ except origin. This class of pseudo-differential 
operators satisfies the Zygmund-Calderon conditions. 

Theorem 6: Let ( ) ( )np P R⋅ ∈  and let ( )f T f  be a
convolution operator ( )( )T f x f K= ∗  corresponding to kernel
K such that ( ) ( ) , 1n

x K x C x αα α α− −∂ ≤ ≤ , ( )sup
n

S
x R

p ess p x
∈

= < ∞ . 

If the integral inequality 

( )( ) ( ) ( ) ( ) ( ) ( )
n n

p x p x

R R

T f x x dx c f x x dxω ω≤∫ ∫2
                             (21)

Holds for all ( ) ( )p nf L R⋅∈  then the weight ( ) ( )d x
x

dx
µ

ω =  
satisfies the inequality

( )( ) ( )
( )
( )

1sup 1 1 q
pB Bp B L LB

A
mes B

ω ω ⋅
⋅

− ≤1
1 ,                                (22)

Namely ( )pAω ⋅∈ .

Proof: Applying conditions on the kernel, we have  

( ) ( ) nK x z K x c x −+ − ≤ 

For z c x≤  . Assume ( ),B x ρ  then we have that the inequality 

( )( )
( )( ) ( ) ( ) ( ) ( )1

n

p x

p B
R

T f x c K x x x f x dx
mes B

ρ≥ − − ∫1
 



Holds for all ( ),x B x xρ ρ∈ + 

 , the application of the integral 
inequality yields 

( )( ) ( ) ( ) ( )
( )

( ) ( ) ( )1,
n

p B
p x p x

BR

mes B x x f x dx c f x x dx
mes B

ρ ρ ω
 

+ ≤  
 

∫ ∫2


 .

Taking ( ),B x xρ ρ+ 

  instead of ( ),B x ρ , we obtain 

( ) ( ) ( )
( )

( ) ( ) ( )1
p B

p x

B B

mes B f x dx c f x x dx
mes B

ω
 

≤  
 

∫ ∫2

.

Theorem 7: Let ( ) ( )np P R⋅ ∈  such that ( )sup
n

S
x R

p ess p x
∈

= < ∞ , and 

let ( )f T f
 be a convolution operator corresponding to kernel K

under the assumption ( ) ( ) , 1n
x K x C x αα α α− −∂ ≤ ≤   by

( )( )T f x f K= ∗ . Assume that the maximal operator is bounded 
in ( ) ( )p nL R⋅ , then, for each weight ( )pAω ⋅∈ , the inequality  

( )( ) ( ) ( ) ( ) ( ) ( )
n n

p x p x

R R

T f x x dx c f x x dxω ω≤∫ ∫2
     (23)

Holds for all ( ) ( )p nf L R⋅∈ .

Proof: Let , 0Tε ε >  be a truncated approximation with 

kernel ( ) ( ) { }( )1K x K x xε ε= ≥  so that 

( )( ) ( ) ( )
nR

T f x K x y f y dyε ε= −∫
And we define ( )( ) ( )( )supT f x T f xε

ε
∗ = .  

We show that the inequality 

( )( ) ( ){ }( )
( ) ( )( ){ }( )

: ,

1 :

mes x T f x f x c

c c b mes x T f x b

α α

α

∗

−

∗

> ≤ ≤

≤ − >
1

2



 



Holds for all f C∞∈ 0   and for all 1, 0b α< >   and 0c > .

Indeed, for fixed 0ε >  and for all f C∞∈ 0 , ( )T fε  is a continuous 
function, therefore, there exists an open coverageΘ  such that
( )( ) ( )( )supT f x T f x bε

ε
α∗ = >  is open, this open coverage Θ  is 

decomposed into a disjoint union of Whitney cubes iQ
 . 

Now, we decompose the function f into the sum  f f+1 2  of 
two functions 1Bf f=1  and \

1 nR B
f f=1 . For 1b b+ =1 2

   we obtain 

( )( ){ } ( )( ){ } ( )( ){ }: : :x T f x x T f x b x T f x bα α α∗ ∗ ∗> ⊂ > ∪ >1 1 2 2
 

.
Since for all ( )nf L R∈ 1  there is an inequality 

( )( ){ } ( ):
nR

cmes x T f x f x dxα
α∗ > ≤ ∫2

,
We have 

( )( ){ } ( ):
n

i
R

cmes x Q T f x b f x dx
b

α
α∗∈ > ≤ ∫2

1 1 1
1





And

( ) ( )
n

i
R

f x dx cc mes Qα≤∫ 1 2 ,

Thus, we obtain

( )( ){ } ( ): i
cmes x T f x b c mes Q
b

α∗ > ≤ 2
1 1

1







.

Next, we must estimate the f2-term. Applying our conditions, 
we calculate  

( ) ( )

( ) ( )
, ,...

2
i i

n n
y z s y s

n
k s y s

f y f z y
dy dy

y z y

f z y
dy c f z

y+

+ +
− ≥ ≥

+
= ≤ ≤

−
= =

−

−
= ≤

∫ ∫

∑ ∫
1

1 1

11
0 1 2 2



Since ( ) ( ) n
c sK x y K x y

y zε ε +− − − ≤
−

2
1  for ix Q∈ , \ny R B∈  and 

{ }\ : ,nR B y y z s⊂ − ≥   the ball B has center at x . Therefore, we 
estimate 

( )( ) ( )( ) ( )T f x T f x c f zε ε− ≤2 2 2

For all ix Q∈ . Taking the supreme over all 0ε > , we have
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( )( ) ( )( ) ( )T f x T f x c f z b c cα α∗ ∗≤ + ≤ +2 2 2 2


 

For all ix Q∈ .

So, we choose b b c c≥ +2 2
 

   and 1b b+ =1 2
   then we have 

( )( ) ( ){ }( )
( )

: ,

,i

mes x T f x f x c

c cb mes Q

α α∗

−

> ≤ ≤

≤ 1
2 1







If ( )1 2c c b
− −− ≥

1 1
2



  then we choose new c2 as 2c2 and obtain 

( )( ) ( ){ }( )
( ) ( )

: ,

1 .i

mes x T f x f x c

c c b mes Q

α α∗

−

> ≤ ≤

≤ −
1

2







Taking the sum over all cubes iQ , we obtain 

( )( ) ( ){ }( )
( ) ( )( ){ }( )

: ,

1 :

mes x T f x f x c

c c b mes x T f x b

α α

α

∗

−

∗

> ≤ ≤

≤ − >
1

2



 



For all 0α >  and each 0 1b< <  and each 0 c<  . 

Next, we show that the inequality 

( )( ) ( ){ }
( )( ){ }

: ,

:

x T f x f x c

a x T f x b

µ α α

µ α

∗

∗

> ≤ ≤

≤ >







Holds for all f C∞∈ 0   and for all 1, 0b α< >   and some
1, 0a c< > 

, constant a  depends on the weight function.

Indeed, in previous consideration, we fix 1b <  and choose  c  
so that ( )1c c b

−
−

1

2


  is small enough, then the inequality   

( )( ) ( ){ }( )
( )
: ,

.i

mes x T f x f x c

mes Q

α α

δ
∗ > ≤ ≤

≤



Holds for some small enough positive δ  and all cubes. 
Assuming 1a δ= < , we summate over all cubes and obtain 

( )( ) ( ){ }( )
( )
: ,

.

x T f x f x c

Q

µ α α

δµ
∗ > ≤ ≤

≤



We will need the following properties of the ( )p ⋅ -spaces. For 
constant 1,a <  we choose 1b <  such that the inequality Spa b<   
holds for all x. Let f and g  be a nonnegative function such that 
inequality 

( ) ( ){ }( )
( ){ }( )

: ,

:

x f x g x c

a x f x b

µ α α

µ α

> ≤ ≤

≤ >







Holds for all 0α > . Then, the inequality 

( ) ( ) ( ) ( ) ( ) ( )
n n

p x p x

R R

f x d x c g x d xµ µ≤∫ ∫3

Holds with some constants c3 and under the condition Spa b<   
and ( )pf L ⋅∈ . Proving of this statement is similar to standard one. 

This proves our statement for f C∞∈ 0  since 
( )( ) ( )1

n
T f x C x

−

∗ ≤ +  holds for all f C∞∈ 0 . The extension to the 
whole ( ) ( ),p nL R µ⋅  follows from the standard argument that each 

element of ( ) ( ),p nL R µ⋅   can be approximated by ele elements of
( )∞ nC R0

.
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