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Abstract

Malaria parasite growth assessment assays using nucleic acid dye SYBR GreenI 
are frequently compromised by high background readings due to haemoglobin and 
detergents in lysis buffer. Here, we have assessed and further validated an intact-cell 
SYBR Green I-based fluorescence assay (Cell-MSF) for antimalarial activity assessment 
even of highly fluorescent compounds. Our modifications include:

•	The absence of detergents and cell debris renders a high dynamic range and 
z’>0.7

•	Tested against fluorescent and non-fluorescent compounds

•	Without cell lysis, one centrifugation and uses transparent 96 well plates

Graphical abstract

Method name: Cell-MSF - whole-cell SYBR Green I-based fluorescence assay

BACKGROUND
Antimalarial drug inhibitory concentrations determined 

through the measurement of fluorescent DNA binding dyes are 
based on the fact that the host, red blood cells, lacks DNA. The 
extensively used malaria SYBR Green I (SG) fluorescence assay 
(MSF) [1] has some technical problems due to the low signal-to-
noise ratio, resulting from high background signals [2-5] in lysis 

buffers, and haemoglobin (that drastically quenches fluorescence 
signal of DNA-SG adducts) has been implicated in this poor 
signal-to-noise ratio [5]. In addition, the absorption spectrum 
of haemoglobin overlaps almost exactly with the excitation/
emission wavelengths for SG [1,6].

In our hands (also reported by others [1,3,5,7], either 
detergents or haemoglobin fluorescence quenching (or both), 
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were compromising the signal, rendering dispersed readings and 
low reproducibility results for the MSF assay.

To overcome this problem, we have assessed and further 
validated a simple whole-cell SG-based fluorescence assay (Cell-
MSF) for use in antimalarial drug screening based on the work 
described by Bennett et al., 2004 [3].

METHOD 
Plasmodium falciparum strains 3D7, chloroquine (CQ) 

and mefloquine (MEF) susceptible, and Dd2, CQ and MEF 
resistant strains were cultured in standard cultures conditions 
as previously described [8]. Cultures were synchronized by 
double sorbitol treatment [9] prior to the assays. Staging and 
parasitemia (%) were determined by light microscopy of Giemsa-
stained thin blood smears. To determine the correspondent 
IC50s, 3D7 and Dd2 were cultivated for 48 h in the presence of 
a two-fold serial dilutions of CQ(500-0.5nM for 3D7 and 9000-
8.8nM for Dd2), MEF (500-0.5nM for 3D7 and 9000-8.8nM for 
Dd2), dihydroartemisinin (DHA) (1000-1nM for both 3D7 and 
Dd2), acridine orange (5000-39µM for 3D7)and a control culture 
without drug.

Basic procedure

1 -100μl of P. Falciparum ring-stage (>85%) 3D7 and Dd2 cell 
culture is distributed in a 96-well transparent flat bottom plate

2 – After incubation (48h), 100μl of a solution of SG (0.001% 
v/v in PBS) is added to each well

3 - Plates are incubated for 60 min under standard culture 
conditions

4 - Centrifuged at 2750g for 2 min, supernatant (SN) is 
discarded

5 - Cells re-suspended in 100μl of PBS

6 - Fluorescence is collected in a fluorimeter plate reader 
with: Excitation 485nm and Emission 535 nm

Assessment of the linearity of fluorescence signal and 
Z′ value of the assay

3D7 ring-stage parasitized red blood cells (iRBC) 
were serially diluted (1:2) with four suspensions of non-
parasitizedRBCscontaining1, 2, 3 and 4% haematocrit (HTC). 
100μl of mixture was distributed in triplicate in a 96-well 
transparent flat bottom plate and treated as above and 
fluorescence was collected. Parasitemia was plotted against the 
relative fluorescence units (RFU) values and analyzed by linear 
regression, the slope and R2 values were determined to establish 
goodness of fit (Figure1).

Correspondent slope and R2 values were as follows: 
1% HTC slopes =424600±19800, R2=0.978; 2%HTC, 
slope=424600±28600, R2=0.950; 3%HTC, slope =627300±20280, 
R2=0.961; 4% HTC, slope =548100±47490, R2=0.898; all the 
four curves had a p<0.0001. The quality and robustness of the 
assay was verified using the statistical measure of Z′ [10]. Z’ 
was calculated as follows: Z’=1- (3xSDiRBC+3xSDRBC)/(MiRBC-
MRBC), where MiRBC and SDiRBC are the mean and standard 
deviation of RFU values from iRBC, respectively and MRBC and 

SDRBC are the mean and standard deviation of RFU values from 
the RBC, respectively, the denominator is the absolute value of 
the difference of MiRBC and MRBC. Assays that display a Z′ value 
of ≥0.5 are generally acceptable [11]. The haematocrit of 3% was 
chosen for further assays, based in the highest slope and R2 for the 
correlation curve and the highest Z′-factor (Figure 1). Z′ values 
ranged between 0.92 and 0.95 with a mean value of 0.94±0.01.

Suitability of the Cell-MSF assay for antimalarial 
activity assessment

3D7 and Dd2 strains were diluted to 3%HTC and 1% 
parasitemia and cultivated for 48 h in the presence and absence 
of two-fold serial dilutions of CQ, MEF, and DHA and processed 
as above. Correspondent IC50 values were estimated from 
dose response curves generated using Graph Pad Prism 5 (trial 
version) (Figure 2). To determine the Z’ for the drug assays, wells 
containing culture media and wells containing maximum dose of 
each compound were compared using the formula above (Figure 
2). Overall, drug assays produced satisfactory Z’ values ranging 
from 0.71 to 0.80. These are similar to those previously described 
for other fluorescence based assays: SG (0.73-0.95) (12), YOYO-1 
(0.75) (11) and 4’,6-diamidino-2-phenylindole (DAPI) (0.80) (7).

The IC50s determined for CQ, MEF and DHA using the 
Cell-MSF assay are comparable to those in literature [4,13-
15]. Additionally, absolute IC50 values for CQ and MEF in P. 
falciparum strains vary across the literature, but most data show 
identical relative drug susceptibilities between strains, obtained 
in a given growth inhibition format. For example, Dd2 parasites 
are >10-fold more resistant to CQ than susceptible strains (such 
as 3D7), assuming the same method for IC50 calculation [14]. 
This is reflected by our results where the IC50 for CQ in Dd2 is 
20.7 times higher than in 3D7.

Assessment of fluorescent compounds interference 
with the Cell-MSF dynamic range

Figure 1 Cell-MSF assay: linear regression line and correspondent 
R2 for RFU from ring-stage 3D7 parasites plotted over a range of 
parasitemia and haematocrit.
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Figure 2 Cell-MSF assay quality parameters and inhibitory concentrations of CQ, MEF and DHA for P. falciparum. Representative dose response 
curves generated with the Cell-MSF assay. CQ (A), MEF (B) and DHA (C) effect on 3D7 and Dd2 strain survival. Inserted table: mean IC50 of 
experiments run on different days ± standard deviation (SD), number of independent experiments is in parentheses. The mean ± standard deviation 
(SD) for the Z’-factor corresponds to the optimization of the assay with 3D7 strain.

Figure 3 Assessment of acridine orange fluorescence interference with the Cell-MSF assay dynamic range. (A) Curves represent RFU before and 
after SG addition to cultures. iRBC+AO - iRBC before removing the culture media with AO (open squares); RBC+AO - non-parasitized RBC before 
removing the culture media with AO (open circles); iRBC+AO+SG - iRBC after incubation with SG (filed squares); RBC+AO+SG - non-parasitized RBC 
after incubation with SG (filed circles). (B) Representative dose response curve of AO effect on P. falciparum 3D7 strain growth, generated with the 
Cell-MSF.
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The antimalarial activity of the highly fluorescent acridine 
orange (AO), with an emission peak of 550 nm, close to SG - 
535 nm, was tested using the Cell-MSF assay. 3D7 parasite 
microculture (3% HTC, 1% parasitemia) was incubated for 
48 h in the presence and absence of a two-fold serial dilutions 
of AO as described above for IC50 determinations. After 48h of 
incubation, RFUs of AO were measured before adding SG. The 
resulting curves form iRBC and RBC nearly coincide (Figure 
3), due to high fluorescence emitted by AO. In contrast, after 
incubation with SG and removing the SN, RFUs remained at a 
residual level in the RBCs and inversely correlated with AO doses 
in the iRBC, reflecting parasite growth inhibition by AO (Figure 
3). We concluded that AO fluorescence does not influence the 
dynamic range of the Cell-MSF assay, since Z’=0.79 was within 
the range of those determined for CQ, MEF and DHA (0.71-0.80). 
Furthermore, the resulting IC50 for AO in 3D7 (630.6±245.1 nM) 
was similar to that described in the literature determined by 
HRPII assay (465.7±274.9 nM) [16].

Because a Z’≥0.5 is considered favorable for high-
throughput drug screening due to the high degree of day-to-day 
reproducibility and large dynamic range that the score reflects 
[11], in this report we provide evidence that the Cell-MSF assay is 
simple,robust and amenable for in vitro screening of antimalarial 
compounds even those that emit high fluorescence with a wave 
length close to SG, such as AO.
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