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Abstract

The aim of this present article is to underscore the recent evidence linking anticancer 
activity and free radical scavenging activity of mycotoxins and its significance in the 
development of newer anticancer drugs. Although acute exposure to a massive amount 
of mycotoxin is rare but long-term exposure/consumption of food with low levels 
of lipophilic mycotoxin remains problematic. The aneuploidogenic and clastogenic 
potentials of the mycotoxins citrinin and patulin were studied in human cells is especially 
relevant for calculating the risk of carcinogenicity. The literature reviewed suggests that 
mycotoxins not all mycotoxins are toxic and some mycotoxins or mycotoxin derivatives 
have found use as anticancer drugs. The development of cancer in humans is a complex 
process including cellular and molecular changes mediated by diverse endogenous and 
exogenous stimuli and oxidative DNA damage. Reactive oxygen species (ROS), the 
key mediators of cellular oxidative stress and redox dysregulation involved in cancer 
initiation and progression, have recently emerged as promising targets for anticancer 
drug discovery. Some of the mycotoxins are also effective against multidrug resistant 
cancer. The present review enlightens the development of potential anticancer agent 
from mycotoxins.

ABBREVIATIONS
ROS: Reactive Oxygen Species; RNS: Reactive Nitrogen Species; 

NOX: Mono-Nitrogen Oxides NO and NO2; BCR:   Breakpoint 
Cluster Region  Protein; ABL: Abelson Murine Leukemia Viral 
Oncogene; CML: Chronic Myelogenous Leukemia; TP53INP1: 
Tumor Protein 53-Induced Nuclear Protein 1; MAP Kinases: 
Mitosin Activated Protein Kinases; AP 1: Activator Protein 1

INTRODUCTION
Fungi are ubiquitous to the environment and primarily 

saprophytic, using nonliving organic material as a nutrient 
source for growth and reproduction. There are over 200 
recognized mycotoxins, however, the study of mycotoxins and 
their health effects on humans is in its infancy and many more 
are waiting to be discovered. Many mycotoxins are harmful 
to humans and animals when inhaled, ingested or brought 
into contact with human skin. Mycotoxins can cause a variety 
of short term as well as long-term health effects, ranging from 
immediate toxic response to potential long-term carcinogenic 
and teratogenic effects. Mycotoxicoses are the animal diseases 
caused by mycotoxins; mycotoxicology is the study of mycotoxins 
[1]. Mycotoxins are small and low-molecular-weight natural 
products generally exotoxins produced as secondary metabolites 
by filamentous fungi. These metabolites constitute toxigenically 
and chemically heterogeneous assemblages that are grouped 
together only because the members can cause disease and death 

in human beings and others [2]. The term mycotoxin was coined 
in 1962 in the aftermath of an unusual veterinary crisis near 
London, England, during which approximately 100,000 turkey 
poults died [3,4]. The majority of human mycoses are caused 
by opportunistic fungi [5-8]. While all mycotoxins are of fungal 
origin, not all toxic compounds produced by fungi are called 
mycotoxins. 

From literature it is revealed that many natural products 
are available as chemo-preventive agents against commonly 
occurring cancer types. However, there is continuing need for 
identification, characterization, and development of new chemo-
preventive agents from enormous pool of synthetic, biological and 
natural products. About 60% of currently used anticancer agents 
are obtained from natural sources, including plants, marine 
organisms, and microorganisms. Fungal toxins (mycotoxins) 
though known to be toxic to the animal and human systems still find 
their use in therapeutic application. Mycophenolic acid, penicillic 
acid, 5-methoxy-sterigmatocystin [9], a series of analogues 
of anguidine [10,11], including triacetoxyscirpenol , three 
diacetoxyscirpenols, three monoacetoxyscirpenol and scirrpenol  
, T-2 toxin and related tricocethecenes [12] , cytochalasin 
B [13], patulin [14], aflastatin A [15], 14’-Hydromytoxin B 
and 16-Hydroxyroridin E [16], tenuazonic acid [17], 4- beta-
acetoxyscirpendiol [18], gliotoxin [19], fluorinated pseurotin A, 
synerazol [20], rubratoxin B, beauvericin showed antitumour 
activities in different types of cancer cell line and in vivo. Harri 
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et al. reported that the trichothecenes verrucarins A and B and 
roridin A inhibited the growth of Ehrlich ascites tumour, in mice 
and Walker carcinoma in rats. Myrocin C, a new diterpene from 
soil fungus Myrothecium verrucaria increases the life span of 
EAC–bearing mice. Leuteoskyrin, a hydroxyanthraquinone is 
proved to inhibit mRNA synthesis in Ehrlich ascites tumour cells 
[21]. 

Redox dysregulation as anticancer drug target

Molecular mechanisms by which redox alterations contribute 
to cancer cell proliferative control, survival, invasion, and 
metastasis are the area of equal interest to researchers focusing 
on fundamental cancer biology or translational anticancer 
drug discovery, as expertly reviewed recently [22-26]. The 
involvement of ROS in cancer initiation and progression is now 
strongly established. Apart from its role as a causative factor 
in carcinogenesis through ROS-induced carcinogenesis, redox 
dysregulation contributes to malignant transformation and 
progression through ROS-mediated carcinogenic signaling and 
redox modulation of apoptotic and survival pathways [27,28]. 
Following early studies that described increased production 
of ROS including superoxide free radical anions and hydrogen 
peroxide (H2O2) by human tumor cells [29], recent research 
supports a causative role of altered redox regulation in the 
genesis of tumor and has identified numerous cellular sources of 
ROS production in cancer cells, including over expression of ROS-
generating NOX family members and enhanced electron leakage 
from the mitochondrial respiratory chain [30-35]. Furthermore, 
NOX-dependent ROS generation driving angiogenesis has 
recently emerged as a promising target for pharmacological 
anticancer redox intervention as suggested by prototype studies 
performed in murine hemangioma [36].

Early studies established a correlation between expression 
of oncogenes and cellular ROS levels, e.g., increased ROS 
production in response to Ras oncogenic activity has been 
described in H-RASv12-transformed NIH3T3 fibroblasts [37]. It 
is now established that constitutive upregulation of Ras protein 
signaling through overexpression or mutational activation, one 
of the most common genetic events observed in carcinogenesis, 
is associated with increased ROS production, cellular oxidative 
stress, and mutagenesis observed in many tumors [38,39]. 
RAS-transformed cells are more sensitive to pharmacological 
depletion of glutathione, suggesting that an elevated rate of 
constitutive ROS production in Ras-transformed cells may 
represent a functional target for pharmacological intervention 
that undermines the cellular antioxidant capacity.

The chimeric BCR / ABL tyrosine kinase responsible for 
chronic myelogenous leukemia (CML), increases intracellular 
oxidative stress and causes inactivation of protein phosphatases 
and genomic instability in ROS-dependent manner, providing 
another example of oncogene-controlled redox dysregulation 
in cancer cells [40]. ROS-producing signaling pathways are 
activated by BCR / ABL leading to oxidative DNA damage and 
transitional mutations that encode clinically relevant amino acid 
substitutions in the BCR/ABL kinase domain causing imatinib 
resistance [41].

On the other hand, inactivation of tumor suppressor genes 

may cause deviations from redox homeostasis that increases 
mutagenesis and tumorigenesis. For example, recent mouse 
studies suggest that p53 mutational inactivation impairs p53 
antioxidant function through transcriptional downregulation of 
key mediators including TP53INP1 (tumor protein 53-induced 
nuclear protein 1) resulting in increased oxidative stress, 
accelerated mutational rate, and increased tumor growth, all of 
which can be suppressed by antioxidant supplementation [42]. 
These exemplary studies suggest that a number of oncogenes 
and tumor suppressor genes exert their functions in part through 
redox mechanisms that may be amenable to pharmacological 
intervention by redox chemotherapeutics.

Redox dysregulation in cancer cells is a complex integration of 
many aspects of the cancerous phenotype, including alterations 
in metabolism, proliferative control, and anti-apoptotic 
survival signaling, as reviewed extensively elsewhere. In many 
human cancer cell lines and tumors, alterations of proliferative 
and apoptotic control have been shown to depend partly on 
constitutive activation of multiple redox sensitive targets 
through autocrine production of ROS, including components of 
signaling cascades (e.g., Akt/protein kinase B and MAP kinases) 
as well as transcription factors [e.g., nuclear factor κB (NFκB) 
and activator protein 1 (AP-1) [43,44]. Recently, the role of ROS-
dependent redox dysregulation in tumor progression has been 
studied in detail in human melanoma where over expression 
of Akt converts noninvasive to invasive growth phase tumors 
with increased generation of superoxide originating from NOX4 
upregulation, preferential glycolytic energy metabolism, and 
VEGF-dependent angiogenesis. It is obvious to mention that 
the antagonist of phosphoinositide-dependent Akt activation 
and tumor suppressor PTEN and other members of the protein 
tyrosine phosphatase super family are established molecular 
targets of ROS signaling, chemically inactivated by ROS-
dependent oxidation of essential cysteine residues facilitating 
tumorigenic tyrosine kinase receptor signaling [45-49].

Other than the proliferative, anti-apoptotic, metastatic, 
and angiogenic signaling, ROS may also exert cytotoxic and 
proapoptotic functions that would limit tumorigenicity and 
malignant progression. Any changes in cellular redox homeostasis 
and ROS levels will affect viability through redox modulation of 
the mitochondrial permeability transition pore opening leading 
to cytochrome C release, apoptosome assembly, and activation 
of executioner caspases, if cellular ROS levels reach a certain 
threshold incompatible with cellular survival. Consequently, 
redox homeostasis in cancer cells that produce ROS at elevated 
levels due to glycolytic metabolic adaptations, mitochondrial 
insufficiencies, and ROS-dependent survival signaling depends 
on a concerted upregulation of antioxidant defense mechanisms, 
most notably the glutathione- and thioredoxin-dependent redox 
systems [50,51], but also involves upregulation of fundamental 
stress response signaling including the heat shock response and 
the electrophilic stress response.

Taken together, evidence suggests feasibility of 
chemotherapeutic redox intervention by modulation of 
constitutively elevated levels of cellular oxidative stress using 
novel pro- and antioxidant redox chemotherapeutics that 
target mitogenic and anti-apoptotic ROS-signaling. It has been 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824519/#B48
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suggested that differential redox set points in cancer cells versus 
non transformed normal cells represent a therapeutic window 
of sufficient width permitting redox intervention that selectively 
targets cancer cells with constitutively upregulated levels of ROS. 
Therefore, attention has therefore focused on the identification 
and development of experimental chemotherapeutics that 
induce positive deviations from redox homeostasis through 
prooxidant action, either by direct production of oxidizing 
species or by modulation of specific cellular targets involved in 
redox homeostasis. Theoretically, prooxidant deviation induces 
a redox shift that leads to cell cycle arrest and cell death without 
compromising viability of untransformed cells based on the 
redox differential between normal and tumor cells. Notably, the 
requirements for prooxidant proliferative and survival signaling 
encountered in rapidly dividing cancer cells also suggest 
feasibility of antioxidant intervention by pharmacological 
induction of negative deviations from redox homeostasis 
expected to attenuate the cancer cell proliferative engine.

ROS in cancer chemotherapy: From toxicological 
liability to therapeutic asset

It is well established that dose-limiting off-target toxicity of 
anthracycline tumor antibiotics can result in cardiomyopathy, 
attributed to the generation of free radical-mediated damage 
originating from anthraquinone-derived redox active drugs in 
cardiac sarcoplasmic reticulum and mitochondria [52]. Indeed, 
considerable effort has pursued the identification of cytoprotective 
metal chelators (e.g., dexrazoxane hydrochloride) and antioxidant 
cytoprotective adjuvants (e.g., amifostine) that can serve as 
combinatorial agents for prevention of chemotherapy-associated 
organ toxicity without compromising chemotherapeutic efficacy 
of these agents [52,53]. Recently, improvement of the therapeutic 
index of anticancer drugs by the superoxide dismutase mimetic 
mangafodipir has been established, and mangafodipir protective 
activity against oxaliplatin neurotoxicity is currently evaluated in 
a Phase II clinical trial.

DISCUSSION
The development of cancer in humans is a complex process 

including cellular and molecular changes mediated by diverse 
endogenous and exogenous stimuli. It is well established that 
oxidative DNA damage is responsible for cancer development 
[54-55]. Cancer initiation and promotion are associated with 
chromosomal defects and oncogene activation induced by 
free radicals. A common form of damage is the formation of 
hydroxyled bases of DNA, which are considered an important 
event in chemical carcinogenesis [56,57]. This adduct formation 
interferes with normal cell growth by causing genetic mutations 
and altering normal gene transcription. Oxidative DNA damage 
also produces a multiplicity of modifications in the DNA structure 
including base and sugar lesions, strand breaks, DNA-protein 
cross-links and base-free sites. For example, tobacco smoking 
and chronic inflammation resulting from noninfectious diseases 
like asbestos are sources of oxidative DNA damage that can 
contribute to the development of lung cancer and other tumors 
[58,59]. In a study, the effects of mycotoxin on cell cycle arrest 
and microtubule formation were investigated by applying human 
embryonic kidney (HEK293) cells as a model. With the assistance 
of immunocytostaining of α-tubulin and citrinin was found to 

disrupt the stable microtubule skeleton during the interphase 
of cell cycle during mitosis which contributes to the induction 
of numerical chromosome aberration in human cells. Although 
acute exposure to a massive amount of mycotoxin is rare but 
long-term consumption of food with low levels of lipophilic 
mycotoxin such as citrinin remains problematic. This study 
clearly demonstrates the molecular mechanism and aneuploid 
potential of mycotoxin. The induction of chromosome loss 
and/or non disjunction by citrinin in human cells is especially 
relevant for calculating the risk of carcinogenicity [60]. Among 
the many mycotoxins, T-2 toxin, citrinin, patulin, aflatoxin B1 
and ochratoxin A are potential to induce dermal toxicity and/
or tumorigenesis in rodent models [61]. Cancer is considered 
as a multifactor disease, where oxidative stress may be involved 
in both initiation and promotion of multi-step carcinogenesis. 
ROS can accelerate DNA damage, stimulate pro-carcinogenesis, 
initiate lipid per oxidation, inactivate antioxidant enzyme 
systems and thus can modulate the expression of genes related 
to tumor promotion [62,63]. A significant number of attractive 
molecular cancer targets, many of which are amenable to redox 
intervention by small molecule therapeutics, have now been 
identified and validated [64-67]. Further translational research 
will be necessary to enhance the therapeutic benefit provided by 
early developmental candidates, but it is now evident that redox 
drugs represent a significant expansion of the chemotherapeutic 
armamentarium providing novel weapons that promise to impact 
the ongoing war on cancer.

CONCLUSION
ROS, the key mediators of cellular oxidative stress and redox 

dysregulation involved in cancer initiation and progression, 
have recently emerged as promising targets for anticancer drug 
discovery. The exploration of these fungal toxins may develop 
better treatment options for the deadly diseases like cancer. 
Mycotoxin could be the next big thing for the development 
of anticancer drugs especially for the treatment of multidrug 
resistant cancer. The derivatives or analogues of the natural 
mycotoxin are sometimes better in activity as well as less harmful 
as far as side effects are concerned. Although more studies should 
be undertaken to unravel the molecular mechanisms and safety 
is a great concern to use mycotoxin as anticancer agents but it 
may contribute for the development of a new group of anti-
cancer agents.
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