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According to the world health organization (WHO), cancer is 
an important health problem that claims the level of more than 
7 million people worldwide on an annual basis [1,2]. Because 
of the limitation of surgery and radiotherapy in effecting a cure 
for cancer, chemotherapy has been increasingly important 
[1,2]. Therefore, identification of novel potent, selective, and 
less toxic anticancer agents remains one of the most pressing 
health problems. In the vast cancer chemotherapeutic space, 
glycosides have played a very important role as established 
cancer chemotherapeutic agents, either in their nature, semi-
synthetically, or synthetically forms [3-62]. As cited above, 
among the natural glycosides based antitumor the antibiotic 
doxorubicin, anthracycline O- glycoside, ranks among the most 
effective anticancer drug for acute myelocytic leukaemia [5-7]. 
Furthermore, many sugar modified nucleoside analogues are 
clinically useful chemotherapeutics [3]. For example, capecitabine 
[14], N-nucleoside and C-nucleoside, are applied in the treatment 
of metastatic breast cancer and hairy cell leukaemia, respectively. 
Recently, several S-glycosides, a new non-classical class of 
nucleosides, have been proved to be potential anticancer agents 
against many cell Lines [17-22]. Khodair et al., described the 
synthesis of a series of heterocyclic S-glycosides, thiohydantoins 
[31-47], rhodanines [48], thioquinazolines [49,50], thiopyridines 
(51-53), and thiopyrimidine [54], S-glycosides and revealed their 
potential antitumor activities.

Breast cancer is the most frequent malignancy in females. 
Due to its major impact on the population, this disease represents 
a critical public health problem that requires further research at 
the molecular level to define its prognosis and specific treatment. 
Basic research is required to accomplish this task and this 
involves cell lines as they can be widely used in many aspects 
of laboratory research and, particularly, as in vitro models in 
cancer research. MCF-7 is a commonly used breast cancer cell 
line, that has been promoted for more than 40 years by multiple 
research groups but its characteristics have never been gathered 
in a consistent review article. The current paper provides a 
broad description of the MCF-7 cell line, including the molecular 
profile, proliferation, migration, invasion, spheroid formation, 
its involvement in angiogenesis and lymphangiogenesis and its 
interaction with the mesenchymal stem cells [63].

Breast cancer is a commonly diagnosed cancer and a 
leading cause of cancer-related death in women worldwide 
[64]. It remains an area of active research both clinically and 

experimentally. Recent advances in metabolomics show that 
metabolic profiling can be useful for the identification of 
biomarkers in breast cancer. Metabolic profiles of human breast 
cancer show differences among breast cancer subtypes and offer 
a way to identify and develop strategies for precise prevention 
and treatment [65-67]. Obesity is a risk factor for breast cancer; 
its occurrence is positively associated with the risk of breast 
cancer [68,69]. Obesity is a modern disorder that has resulted, 
not just from changes in energy balance, but from changes in 
lifestyle that alter meal times and eating patterns [70,71]. These 
changes, as environmental factors, disrupt biological rhythms 
and contribute to metabolic dysfunction [72,73]. Laboratory 
studies have shown that the feeding timing modifies obesogenic 
in rodents. For example, mice fed a high-fat diet (HFD) during the 
light phase (rest phase for nocturnal animals) gain more weight 
than mice fed during the dark phase (active phase for nocturnal 
animals) [74]. Mice fed an HFD during both light and dark phases 
exhibit altered daily pattern of energy expenditure and gain body 
fat [75]. Time-restricted feeding (TRF) is an effective tool in 
obesity research in rodents. It reinforces the circadian rhythms of 
energy metabolism by temporal regulation of the feeding/fasting 
pattern to a fixed time during the dark phase of the day. Available 
studies have shown that TRF restores the diurnal rhythms of 
energy metabolism [73], and circadian gene expression [76], 
improves insulin sensitivity, and reduces body adiposity and 
inflammation in mice fed an HFD [75-77].

Our research interest focused on design and synthesize new 
small heterocyclic nucleosides targeting cancer especially MCF-7 
and HepG2 cell lines. The elaboration of quinazoline derivatives 
linked with ethoxy ethyl and glycopyranose sugars (Figure 1), 
to form the target nucleosides was our task [49,50]. The in vitro 
cytotoxic activity against MCF-7 and HepG2 cell lines showed 
effective anti-proliferative activity of the analyzed derivatives 
with lower IC50 values especially 9a with IC50 = 2.09 and 2.08 µM 
against MCF-7 and HepG2, respectively, and their treatments 
were safe against the normal cell line Gingival mesenchymal 
stem cells (GMSC). Moreover, RT-PCR reaction investigated the 
apoptotic pathway for the compound 9a, which activated the P53 
genes and its related genes. So, further work is recommended 
for developing it as a chemotherapeutic drug. We found that 
anticancer activity of the promising derivatives 5, 8a,b and 
9a,b was tested against breast (MCF-7), liver (HepG2) cell lines 
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Figure 1 General structures of nucleoside drugs used in the MCF-7 and HepG2 cell lines.

Table 1: Summarized IC50 for the activity of the analyzed compounds against the MCF-7 and HepG2 cell lines.

IC50 (µM)

MCF-7 HepG2 GMSC

5-FU 4.23 4.43 ˃ 50

5 8.96 1.52 ˃ 50

8a 5.93 3.79 ˃ 50

8b 2.42 1.17 ND

9a 2.09 2.08 ˃ 50

9b 2.04 2.09 ˃ 50

ND= Not Determined

by measuring the percentage of cell survival against their serial 
dilutions (0.01, 0.1, 1, 10, and 100 µM) [50]. Moreover, they 
were screened against the GMSC as normal cell line to test their 
safety [50]. We conclude the incorporation of sugar portion to the 
nucleus, enhanced the cytotoxic activity against the MCF-7 and 
HepG2 cell lines by having lower IC50 values, as shown in Table 
1.  Although both compounds 9a and 9b have near IC50 values 
(2.09 and 2.04µM, respectively) against HepG2 cells, 9a was 
considered as the lead compound in our study according to the 
molecular docking results. It has a higher binding affinity towards 
the EGFR tyrosine kinase receptor because it forms a larger 
number of hydrogen bonds with the key amino acid residue Met 
769 compared to other derivatives, so it was selected for further 
testing as the molecular mode of action. An attempt to study the 
structure-activity relationship using the molecular docking tool 
for elucidation the binding interactions of the nucleosides which 
might justify their higher potency [50]. Glycosides of structurally 
similar heterocyclic systems have been reported before [31-62].

The nucleoside bases 3-substituted 2-thioxo-2,3-dihydro-1H-
quinazolin-4-ones and 3-substituted 2-thioxo-2,3-dihydro-1H-
benzo[g]quinazolin-4-ones can be utilized as starting materials 
for the synthesis of other carbohydrate derivatives as deoxy, 
amino and azido nucleosides.
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