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Abstract

Fumarate hydratase (FH) is a key enzyme of the Krebs cycle. Germline mutations 
in the FH gene encoding fumarate hydratase was implicated in autosomal dominant 
syndromes multiple cutaneous and uterine leiomyomata, hereditary leiomyomatosis 
and renal cell cancer (HLRCC). We report here a novel FH gene mutationin a patient 
with metastatic prostate cancer. In addition, somatic mutations in multiple genes known 
to be involved in aerobic glycolysis were identified in the tumor sample of prostate 
cancer. Our findings supported a role of metabolic reprogramming may play a role in 
the prostate cancer tumorigenesis. 

INTRODUCTION
Cancer cells have long been known to exhibit 

alterationsprofiles in their metabolism, a phenomenon known as 
Warburg effect with elevated aerobic glycolysis [1-3]. In recent 
years, the discovery of cancer-associated gene mutations in key 
metabolic enzymes suggests a direct link between cancer and 
altered metabolism. For example, oncogenes, such as c-Myc and 
Ras, have been identified to promote the expression of metabolic 
enzymes and regulators that lead tumor cells to preferential 
use of glycolysis over mitochondrial oxidative phosphorylation 
(OXPHOS). On the other hands, the loss of tumor suppressor 
genes, such as TP53, fumarate hydratase (FH), and succinate 
dehydrogenase (SDH), can also  lead to significant changes in 
energy metabolism and may contribute to activation of hypoxia-
inducible factor (HIF)-1α-dependent pathways and adaptation to 
tumor hypoxia [4,5].

FH is an enzyme involved in the Krebs cycle that plays a crucial 
role in the generation of energy and oxygenation of cells [4-6]. 
Mutations of FH gene have been shown to cause chronic hypoxia 
that encourages tumor formation. FH mutations have been 
linked to cause hereditary leiomyomatosis and renal cell cancer 
(HLRCC) [7,8]. While the literature supporting this relationship 
is vast, only few reportsof associated FH mutations with other 
types of malignancies [9-11]. Here, we present the first case of 
FH mutation in prostate cancer. In addition, we identify somatic 
mutations in multiple genes known to be involved in glycolysis in 
the same tumor sample of prostate cancer.

CASE REPORT
A 63-year-old African American man presented to emergency 

department complaining of urinary retention, blurred vision, 
and persistent headaches for two months. A magnetic resonance 
imaging (MRI) of head revealed a mass invading the left ethmoid 
sinus (Figure 1). The patient underwent left endoscopic 
partial ethmoidectomy and the histopathological examination 
suggested metastatic adenocarcinoma, with strongpositive 
staining to prostatic specific antigen (PSA), and prostatic acid 
phosphatase (PSAP); and negative for CK7, CK20, S100, P63, 
Ck20, NSE, synaptophysin, neurofilment, TTF-1, GCDFP-15, CD 
117, Estrogen receptor (ER) and Sox10. A total serum prostate 
specific antigen (PSA) value was 5000 ng/ml. Taken together, 
the clinicopathologic findings were consistent with a high-
grade metastatic prostate carcinoma (Figure 2). A CT scan chest 
abdomen and pelvis, bone scan showed enlarged prostate with 
diffuse metastatic lesions to the appendicular and axial skeleton. 
A transurethral resection of the prostate showed high-grade 
metastatic prostate carcinoma.

The patient initially treated with radiotherapy for total dose 
of 5040 cGy over 28 fractions and androgen deprivation with 
dramatic response. Subsequently he received multiple additional 
lines therapies. Thirty months after diagnosis of metastatic 
prostate cancer, the patient is alive with good quality of life.

Next-generation sequencing (NGS) was performed to profile 
his tumor sample from ethmoidectomy, the results showed CDK12 
(K372fs*64, L21*), TP53 mutation (V10I), MYC amplification, and 



Wang et al. (2018)
Email:  

Ann Mens Health Wellness 2(1): 1011 (2018) 2/4

Central
Bringing Excellence in Open Access





Table 1: Genomic alterations were identified in multiple genes known to be involved in aerobic glycolysis in the same tumor sample.
Genomic Alterations Function Clinical Significance Regulate glycolysis
c-MYC amplification Transcription factor oncogene +
FH V435M Fumarate hydratase tumor suppressor +
TP53 V10I Tumor suppressor tumor suppressor +

PDK1 A353T Pyruvate Dehydrogenase Kinase 1
key enzymes in the 
pathway of glucose 
metabolism

+

MTOR H1739Q mammalian target of rapamycin glycolytic shift +
TSC1 A808V Tuberous sclerosis tumor suppressor +
FAT1 N383K Protocadherin FAT1 tumor suppressor +

ABL2 G6A Tyrosine-protein kinase ABL2 upregulates aerobic 
glycolysis +

PREX2 amplification Phosphatidylinositol-3,4,5-trisphosphate-
dependent Rac exchange factor 2

guanine nucleotide 
exchanger +

NOTCH1 R1350H Notch homolog 1 glycolytic shift +

MAP3K1 S816A Mitogen-activated protein kinase 
kinasekinase 1 serine/threonine kinase +

MDM4 D154G murine double minute 2 gene Negative p53 regulator +
ESR1 H6Y Estrogen receptor alpha steroid hormones receptor +

Figure 1 Magnetic resonance imaging (MRI) revealed a 4.5 × 4.5 × 3-cm mass 
invading the left ethmoid sinus.

Figure 2 Tumor sample from endoscopic partial ethmoidectomy: a) 
Hematoxylin-eosin (H-E) staining showing groups of glandular cells with 
different grades of atypia. b) The tumor cells show positive staining for prostate 
specific antigen (PSA).

mostly interesting, a FH (fumarate hydratase) mutation (V435M) 
was identified. The V435M single base substitution results in a 
missense mutation, likely resulting in a conformational change 
in the C-terminal domain, impacting the ability of the enzyme 
to move from open to closed conformation, with subsequent 
change in fumarate binding. In addition, one or more alterations 
of sixteen genes which known to be involved in regulation 
glycolysis in caner were also detected in this patient’s tumor, 
including c-Myc, Ras, p53, phosphoinositide 3-kinase (PI3K),  
pyruvate dehydrogenase kinase-1(PDK1) and mammalian target 
of rapamycin complex 1 (MTOR).

DISCUSSION
Reprogramming of the cellular energy metabolism constitutes 

a hallmark of cancer and may serve as a basis for novel therapeutic 
intervention [3]. However, alterations in genes encoding enzymes 

involved in glucose metabolism in prostate cancer are largely 
unknown. The identification of molecular alterations in multiple 
oncogenes and tumor suppressor genes in our patient are very 
intriguing. These include the Krebs cycle genes FH and PKD, as 
well as several the well characterized oncogenes, such as PI3K, 
AKT, C-MyC, and RAS, that known to promote glycolysis; while 
tumor suppressors p53 negatively regulates the expression of 
the glycolytic protein phosphoglycerate mutase-2 (PGM2) and 
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promotes the expression of Tumor Protein 53-Induced Glycolysis 
and Apoptosis Regulator (TIGAR), which depletes the glycolytic 
activator 2,6-fructose biphosphate, and  inhibit glycolysis [4,5,12] 
(Table 1).

FH is an enzyme of the tricarboxylic acid (TCA) cycle, involved 
in fundamental cellular energy production. Whilst homozygous 
FH mutations cause fumaric aciduria, a condition associated 
with infantile encephalopathy and brain malformations [12], 
heterozygous FH mutations followed by the loss of heterozygosity 
of the second allele cause Hereditary Leiomyomatosis and Renal 
Cell Cancer (HLRCC) [8,9]. FH-deficient RCC is associated with a 
metabolic shift termed the “Warburg effect”,characterized by the 
activation of aerobic glycolysis and oncogenic pathways [24]. FH 
is also mutated in paraganglioma, pheochromocytoma [13] and 
[14], and downregulated in sporadic clear cell carcinomas [15] 
and deleted in neuroblastoma [16,17].The FH gene has been 
classified as a tumor suppressor gene [18,19].

Our patients reported a negative family history for renal 
cancer and cutaneous leiomyomatosis. At last follow-up, none 
of the patient’s immediate family members had been tested 
for germline FH mutations, limiting further analysis of familial 
cancer predisposition.

In a recent review of a large database of approximately 
90,000 cases evaluated for genomic alterations [20], only 4 other 
patients were found to have the specific alteration identified in 
this prostate patient.  Of the 1339 patients with prostate cancer, 
3.6% prostate undifferentiated carcinomas, 3.0% prostate 
acinar adenocarcinomas, and 1.4% prostate neuroendocrine 
carcinomas had FH alterations.

The application of next-generation sequencing (NGS) has 
substantially increased our understanding of prostate cancer 
biology [21,22]. Detection of germline and somatic mutations in 
prostate cancer patients not only expands the current repertoire 
of driver mutations and downstream effectors in tumorigenesis, 
but also sheds light on how oncometabolites may exert their 
oncogenic roles. Another potential benefit of identifying 
metabolic-enzyme gene mutations that are pathogenic in prostate 
cancer is that such cancers may be susceptible to pharmacologic 
manipulations that are more effective and less toxic than existing 
therapies [21-23].There are currently no FDA approved therapies 
for this patient’s tumor type nor of any other tumor type with 
the same mutation. In our case, alterations in the C-terminal 
binding domain of FH might be pathologically significant and 
inform drug development. Several therapeutic approaches for 
targeting the metabolic basis of FH-deficient kidney cancer are 
under development or are being evaluated in clinical trials [24-
26]. A Phase 2 trial of bevacizumab and erlotinib reported overall 
response rate in 60% of patient with HLRCC [27]. The findings 
from this case and previous report [20], suggest that deregulation 
metabolic pathway activation may contribute to prostate cancer 
pathogenesis. 

CONCLUSION
We described here a novel mutation in the FH gene in a 

63-year-old African American man with advanced prostate 
cancer. To our knowledge, this is the first reporton prostate 
cancer with somatic FH mutation. In addition, we identify somatic 

mutations in multiple genes known to be involved in aerobic 
glycolysis (“Warburg-like” profiles) in the same tumor sample 
of prostate cancer.Our observations suggest that deregulation 
metabolic pathway activation may contribute to prostatecancer 
carcinogenesis; novel therapy should be developed for this 
subgroup patients.Finding more cases of prostate cancer with 
“Warburg-like” profiles is essential to promote translational 
research and design future clinical trials.
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