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Abstract

The ability to assemble nanoparticles into functional structures is an important 
challenge that needs to be addressed for the generation of nanoparticle-based 
devices. Sol-gel method represents a facile yet powerful strategy for the self-assembly 
of metal oxides, chalcogenides, and metal-semiconductor hybrid nanoparticle systems 
into three-dimensionally connected porous nanostructures. In contrast to traditional 
oxides, where gels are formed by hydrolysis and condensation of molecular 
precursors, gelation in non-oxidic systems (with the exception of carbon), is achieved 
by condensation of the pre-formed nanoparticles. In this highlight, the application 
of later strategy for the assembly of chalcogenide semiconductor and noble metal 
nanoparticles and their intriguing physical properties is reviewed in the context of 
future application in catalysis, sensing, and separation technologies.

INTRODUCTION
The intriguing physical characteristics observed in nanoscale 

metals and semiconductors are related to the changes in 
electronic structure as well as the large surface-to-volume ratios, 
which make them vastly different from corresponding bulk solids. 
These unique properties have led to the development of synthetic 
methods that permit exquisite control over materials size, shape, 
and dispersity in the nanometer length scale [1,2]. However, 
most of the applications envisioned, and the devices that are 
likely to be constructed, will not be solution based or single 
particle based but will be formed from nanoparticle assemblies 
in the solid state. Hence, developing methods for the assembly 
of nanoparticles into solid state structures, while retaining their 
characteristic physical properties, is an important challenge. 
One classic method that has proved useful for production of 
nanostructures is the sol-gel technique, in which nanoparticles 
are formed and aggregated through a series of hydrolysis and 
condensation reactions to form a wet-gel structure [3-7]. When 
the wet-gel is supercritically dried, the polymeric structure can 
be retained, producing a material known as an aerogel.

Aerogels are a unique class of porous inorganic polymers that 
exhibit high surface areas, solid contents ranging from 1-15% 
by volume, and densities as little as three times that of air [5].  
As such, they are ideal substrates for catalyst and sensors, and 
are excellent thermal insulating materials [3-7]. A schematic 
description of the morphology of a base-catalyzed silica aerogel 
is shown in (Figure 1), depicting the three-dimensionally (3-
D) connected network of nanoscale building blocks. One of 

the unique features of the aerogel that makes it useful for a 
variety of chemical applications is the continuous micro-(<2 
nm) to meso-(2-50 nm) pore structurewhich provides a facile 
conduit for molecules to reach the nanostructure surface [8-10]. 
Nevertheless, the potential uses of aerogels have been limited 
to insulating or wide band gap oxidic materials (e.g. SiO2, Al2O3, 
TiO2) for many years because of restrictions in the chemical 
systems that can be employed for the gel formation. Under sol-
gel conditions, a polymeric gel structure will form in preference 
to a precipitate only when hydrolysis and condensation kinetics 
are optimized and the metal is of moderate electronegativity [5]. 
Silica, alumina, and titania display ideal sol-gel characteristics, 
hence they have been extensively studied, while other systems, 
specifically conductive oxides [11-13]  and non-oxidic [6]  
materials have been significantly less explored. 

Over the last two decades, scientists have begun to extend 
sol-gel chemistry to non-oxidic systems. This has led to the 
development of carbon aerogels, the first class of non-oxide 

Figure 1 Pearl necklace architecture of the traditional base catalyzed silica 
aerogel. 
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aerogels prepared from pyrolysis of resorcinol-formaldehyde 
gel frameworks [14,15]. Later in 1997, Boilot et al. reported the 
synthesis of CdS (cadmium sulfide) wet-gels from thiolate coated 
CdS (cadmium sulfide) nanoparticles by oxidative removal of the 
surface ligands, i.e. the condensation of pre-formed NP colloids 
(Figure 2) [16-18].  Several research groups have successfully 
exploited this strategy for the construction of chalcogenide 
semiconductor and metal aerogels by employing thiolate or 
citrate stabilized pre-formed nanoparticles [19-40]. Interestingly, 
the resultant nanostructures display characteristic pearl necklace 
morphology of the nanosized constituents without the presence 
of intervening ligands but are low-dimensional materials 
with band energies (for semiconductors) that can be tuned 
by adjusting the density or the porosity of the gel framework 
[20,28]. The focus of this mini-review is to highlight the recent 
progress of the use of sol-gel chemistry for the assembly of metal 
and semiconductor nanoparticles, its advantages in comparison 
to other well-known nanoparticle assembling methods, and the 
unique physical characteristics of the sol-gel derived nanoparticle 
superstructures.

Semiconductor aerogels by nanoparticle condensation

Chalcogenide semiconductors have gained considerable 
interest from the scientific community due to their strong size, 
shape, and composition dependent photophysical properties 
[41,42]. Significant efforts have already been devoted to the 
assembly of such particles utilizing organic ligands,  polymers, 
biomolecules, and templating strategies [43-46]. Despite the 
successes in producing ordered or non-ordered superstructures 
by these methods, the use of intervening ligands have been 
shown to moderate inter-particle interactions hindering charge 
transport and limiting the thermal stability of the resultant 
nanostructures. In contrast, a strategy involving direct cross-
linking of nanoscale metals, such that intrinsic to a nanoparticle 
based aerogel, would result in highly conducting superstructures 
with tunable surface area and pore characteristics. Accordingly, 
the synthesis of CdS (cadmium sulfide) wet-gels by a two-step 
nanoparticle formation and condensation route was originally 
reported by Gacoin et al. (Figure 2) [16-18,47,48].  In this 

approach, stable CdS nanoparticle sols were prepared by 
dispersing pre-formed thiolate capped particles in acetone. 
In a second step, partial removal of the surface ligands using a 
chemical oxidant (H2O2) resulted in transparent or opaque wet 
gel structures. It was also revealed that the gelation phenomena 
in metal chalcogenide nanoparticles rely on the kinetics of 
the surface thiolate oxidation, in which active sites for the 
nanoparticle condensation become available. If excess of oxidant 
is present in the sol, too many active sites are generated on the 
nanoparticle surface, leading to precipitation whereas, if too 
little oxidant is present in the sol, nanoparticles are completely 
passivated by the thiolates leading to a stable sol. Gacoin et al.  
suggests that at a minimum concentration of oxidant/thiolate 
(Xmin) no gel is formed whereas above Xmin, gelation occurs [16]. 
With increasing Xmin, rate of the gelation/condensation increases 
ultimately leading to precipitation at ~5Xmin [16]. Hence, the 
density, surface area and  porosity of the resulting gel networks 
were fine-tuned by varying the amount of oxidant (Xmin-5Xmin), 
type of the oxidant, and the gel aging time [23].   

The generality of this route to prepare a number of other 
chalcogenide and pnictide gel structures based entirely on 
pre-formed nanoparticles was described by Brock et al. 
[19,21,22,33,49,50]. The gelation can be induced by a variety of 
oxidants such as H2O2, tetranitromethane, and photo oxidation and 
the nanoparticles prepared by different synthetic methods have 
been successfully transformed into wet-gel and aerogel structures 
[21]. As-prepared semiconductor aerogels are monolithic, 
consist of a three-dimensional assembly of nanoparticles and 
are morphologically similar to silica aerogels prepared by base 
catalysis (Figure 3A). Chalcogenide aerogels produced by these 
route exhibit bulk densities as low as 0.07-0.35 g/cm3 and are 
meso-to-macroporous with BET surface areas up to ~250 m2/g 
(600 m2/g silica equivalence). Even though the nanoparticles are 
directly hard-wired into random three-dimensional architectures, 
the size dependent energetic features are mostly retained as a 
result of low dimensionality (high porosity) of the gel structure 
(Figure 3B and Table 1). For instance, the nanocrystals of CdSe 
(cadmium selenide) when interconnected in a colloidal wet-

Figure 2 Schematic description of the direct self-supported assembly of metal and semiconductor nanoparticles into aerogel frameworks via nanoparticle condensation 
strategy.  Concentrated colloidal sols are prepared in polar solvents and the gel formation is induced by oxidative removal of the surface ligands over 1-21 days. The 
resulting wet-gel structures are dried under supercritical conditions to form highly porous superstructures (aerogels) composed entirely of nanoscale building blocks. 
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Figure 3 [A] Transmission electron micrograph of a CdSe aerogel prepared by nanoparticle condensation route showing the meso to macro porous interconnected 
network of colloidal nanoparticles. [B] Optical absorption spectra of chalcogenide gels prepared by nanoparticles condensation route. [C] A photograph of CdS wet-gel 
(center) and a xerogel (left) prepared by bench top drying and an aerogel (right) dried under supercritical conditions. Part A is reproduced with permission from 2006 
American Chemical Society and part B and C are reproduced with permission from 2005 American Association for the Advancement of Science.

Aerogel 
Bandgap onset 

(eV)
Bulk Bandgap 

(eV)
BET Surface Area (m2/g)

BJH Average Pore diameters 
(nm)

BJH adsorption
cumulative pore
volume (cm3/g)

PbS [19] 0.80(1) 0.37 119–141 21–45 0.79–0.94

CdSe [19] 2.19(5) 1.74 128–161 16–29 0.53–0.98

CdS [19] 2.71(2) 2.42 239–250 29–30 1.90–2.02

CdTe [34] 1.92 1.50 120-140 12.7-13.8 0.55-0.83

ZnS [19] 3.80(4) 3.54 182–202 15–30 0.40–0.86

PbTe [35] N/A N/A 74 19 0.34

InP [40] 2.1 1.35 195-212 7.7-8.7 0.41-0.46

Bi2Te3 [38] N/A N/A 45 9 0.10

Bi2-xSbxTe3 [38] N/A N/A 36 9 0.10

Ag/CdS [51] N/A N/A 73-165 3.2-3.4 0.29-0.61

Au/CdS [52] N/A N/A 50-81 3.14-3.62 0.20-0.21

Au/Ag [53] N/A N/A 48 N/A N/A

Pt/Ag [53] N/A N/A 46 N/A N/A

Pd [54] N/A N/A 92 N/A N/A

Table 1: Comparison of the optical bandgaps of chalcogenide semiconductor aerogels and corresponding bulk materials along with the BET surface areas, BJH average pore 
diameters, and cumulative pore volumes of metal and semiconductor aerogels reported to date.

gel network retain their optical band gap [21].  However, with 
increasing dimensionality (an increase in density or a decrease 
in porosity) from wet gels to aerogels to xerogels, the band gap of 
the inter-connected particles shows a red shift, but compared to 
bulk CdSe the band gap values remain significantly blue shifted 
(Figure 4) [20,28].  Hence, the quantum confined optical features 
in these gel structures has been successfully tuned as a function 
of the density or the porosity of nanostructures.  Likewise, the 
band gap of the inter-connected nanoparticles can be further 
tuned by heating, resulting in a systematic red shift in the 
absorption onset with increasing annealing temperature (100-

300 ºC) [19,33].  This red shift is accompanied with a crystallite 
size growth and a phase change from cubic to hexagonal for 
CdS aerogels. CdSe aerogels prepared by this approach show 
weak band-edge emission of their linked nanoparticles, which 
is attributed to the residual thiolate ligands acting as traps for 
the electron-hole recombination [21].  However, the thiolate 
ligands exchange with pyridine in the wet-gel stage results in a 
considerable enhancement of band edge emission. This novel 
approach has been successfully extended for the assembly of a 
variety of metal chalcogenide and pnictide based nanoparticles 
including but not limited to CdS [33],  CdSe [19-21,28-30],  CdTe 
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(cadmium telluride) [31,32,34],  ZnS (zinc sulfide) [19,20,37],  
PbS (lead sulfide) [19,20], PbTe (lead telluride), [35]  InP (indium 
phosphide) [40], Bi2Te3 (bismuth telluride) and Bi2−xSbxTe3 
(bismuth antimony telluride)  nanoparticles [38]. Moreover, 
the synthesis of Ag/CdS (silver/cadmium sulfide) [51],  and 
Au/CdS (gold/cadmium sulfide) [52] metal-semiconductor 
hybrid gel structures by employing a similar strategy has also 
been reported. The optical bandgaps, Brunauer-Emmett-Teller 
(BET) surface areas, Barrett-Joyner-Halenda (BJH) average 
and cumulative pore volumes of the aerogels prepared from 
nanoparticle condensation route are listed in Table 1.

Metal aerogels by nanoparticle condensation

Intriguing physical properties observed in metal-
chalcogenide and pnictide based aerogels have sparked research 
forefronts to investigate the potential of sol-gel chemistry for 
the assembly of metal nanoparticles. Accordingly, Eychmuller 
et al. has successfully utilized the nanoparticle condensation 
strategy for the creation of non-ordered superstructures 
of metal nanoparticles (Ag, Au, Pt, and Pd) [53,54].  In this 
approach, monometallic and heterogeneous bimetallic 
nanoparticles coated with citrate ligands were slowly oxidized 
to form monolithic gel structures composed entirely of metal 
nanoparticles (Figure 5). The resultant aerogels are reported 
to be extremely light with average densities that are two orders 
of magnitude lower than reported metal forms [55] and three 
orders of magnitude lower as compared to bulk metals. These 
metal aerogels are morphologically distant from chalcogenide 
semiconductor aerogels and appeared to be consisting of 
ultra-thin wire-like nanostructures with typical thickness in 
the same scale as precursor nanoparticles (Figure 5) [53].  
Resultant bimetallic aerogels (Au/Ag and Pt/Ag) are reported 
to exhibit BET surface areas in the range of 46-48 m2/g. The 
formation of such noble metal nanoparticle based mesoporous 

superstructures is an important step towards self-supported 
monoliths with enormously high catalytically active surfaces. 
When one considers that metal nanoparticles possess unique 
optical properties due to their pronounced surface plasmon 
resonance, aerogels derived from metal nanoparticles may also 
find future applications in nanophotonics. Very recently, the 
same group has reported the synthesis of Pd aerogels cross-
liked with cyclodextrin, which exhibits a relatively higher surface 
area of 92 m2/g as well as superior catalytic activity in ethanol 
oxidation in fuel cell applications [54].  As a result of the synthesis 
of metal and semiconductor aerogels through a general synthetic 
approach (nanoparticle condensation), synthetic routes to metal-
semiconductor hybrid gel structures have also been established 
(e.g. Au/CdTe (gold/cadmium telluride)) [56,57]. The control of 
synthetic parameters, gel drying and processing conditions has 
allowed the researchers to create monolithic gel structures on a 
time scale of minutes to hours suggesting the potential for up-
scaling the synthesis for future technological applications. 

To date, the understanding of the fundamental phenomena 
relating to: the mechanism of nanoparticle-based gel formation, 
the nature of the interactions between nanosized constituents, 
and the effect of low-dimensional connectivity on optical, 
electrical, and thermal transport properties of the aerogels is 
still in its infancy. In a previous report on gelation mechanics of 
metal chalcogenide aerogels (e.g. CdSe), Brock et al. has shown 
that the oxidative removal of the surface thiolates triggers the 
oxidation of surface selenides (Se2-) into diselenide bridges 
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Figure 4 An illustration of the effect of network density on the optical bandgaps 
of CdSe gel structures. Bandgap values can be tuned in between the individual 
nanoparticle and bulk values by engineering the density or the porosity of the 
nanostructure. Reproduced with permission from 2006 Comments on Inorganic 
Chemistry, Taylor and Francis Publishers.

Figure 5 (a) Photograph of a heterogeneous Au/Ag hydrogel, and (b) of a piece 
of the corresponding aerogel produced by oxidative removal of citrate ligands 
from corresponding nanoparticles followed by supercritical drying. (c) Energy 
dispersive spectroscopy mapping of the aerogel, showing equal distributions of 
gold and silver. (d) SEM images of a bimetallic gold/silver aerogel at different 
magnifications. Reproduced with permission from 2009 Angewandte Chemie 
International Edition, Wiley Online publishers.
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(Se-Se) supporting the network formation [24].  Similarly, in 
a recent report from the same group suggests the gelation in 
pnictide-based nanoparticles (e.g. InP) is due to condensation of 
phosphorus oxo-anionic moieties generated at the interfaces of 
the particles [40].  However, such mechanistic studies on recently 
developed metal aerogels and metal/semiconductor hybrid gel 
structures have not been reported. 

CONCLUSION AND PROSPECTUS 
Chalcogenide, pnictide, and metallic gel structures formed 

via nanoparticle condensation is an exciting and emerging 
field of non-oxidic sol-gel chemistry. This route ensures the 
production of particulate gel structures by separating the 
nanoparticle formation from the condensation event. The ability 
to create such self-supported metal and semiconductor aerogels 
as thin films or monoliths will generate a host of new device 
possibilities in catalytic, sensing, and separation technologies, 
while their density, morphology, conductivity, surface area and 
porosity can be tuned by engineering the gelation kinetics as 
well as the physical properties of the precursor nanoparticle 
colloids. The direct hardwiring of the pre-formed nanoparticles 
into highly conducting gel frameworks with tunable surface 
area and porosities is a unique and creative component to this 
strategy that has already demonstrated superior performance 
in electrocatalysis [54]. These nanostructures are proven to 
exhibit nanoparticle connectivity, control over surface area 
and porosity, as well as superior charge transport properties. 
As such, they would be uniquely poised to tackle a number of 
technological issues that have not been successfully addressed 
by bulk materials, discrete nanoparticles, and ligand-stabilized 
nanoparticle superstructures. Finally, the ability to create 
aerogels using chalcogenide/pnictide semiconductors and 
noble metals provides the means to carry out the nanoparticle 
condensation in a larger number of other nanoparticle systems 
including but not limited to other catalytic metals, elemental 
and compound semiconductors, as well as their hybrid 
materials, while retaining the characteristic physical properties 
of individual particles.  However, an area of concern for sol-gel 
derived nanoparticle superstructures is the poor mechanical 
stability of the resulting aerogels. Presently gels that are formed 
in solution and dried are often fragile hence; the free standing 
superstructures should be carefully handled during subsequent 
characterization and applications. To address this issue, it should 
also be possible to produce composite materials based on these 
aerogels, e.g. by polymer infiltration, to combine their physical 
properties with greater mechanical stability. Specific studies to 
test this premise are currently underway.
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