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Abstract

A gold nanoparticle (Au NP)-functionalized standing graphene/carbon paper 
composite was fabricated using an all-dry process. After the growth of standing 
graphene on the surface of the carbon paper, the surface area of the paper increased 
by up to 366%. The size of the Au NPs was controlled by adjusting the thickness of the 
initial Au thin film. Since the all-dry procedure was used, it should prove to be easy to 
scale up. The synthesized composite material should find use in a number of devices 
such as fuel cells and biomedical sensors.

ABBREVIATIONS
RTA: Rapid Thermal Annealing; CVD: Chemical Vapor 

Deposition; NP: Nanoparticles; CP: Carbon Paper; SG: Standing 
Graphene; 2D: Two-Dimensional; SEM: Scanning Electron 
Microscopy.

INTRODUCTION
Carbon paper (CP), which consists of micrometer-sized 

carbon fibers, has found application in a variety of fields, including 
as the gas diffusion layer in fuel cells and pseudocapacitors and 
as an efficient heat-exchange material in electrical devices [1-3]. 
Increasing the surface area of CP can significantly improve device 
performance because the area of the reaction site is proportional 
to the CP surface area. Standing graphene (SG), also known as 
carbon nanowalls [4-6], has a large surface area, in addition to 
exhibiting all the outstanding characteristics of graphene [7]. 
Graphene is a one-atom-thick, two-dimensional (2D) sheet 
and exhibits high carrier mobility, mechanical flexibility, and 
chemical stability. Therefore, a composite of CP and SG should 
be a promising material for numerous applications, owing to its 
very large surface area and high chemical stability. The growth 
of SG itself has been investigated widely, and it is possible to 
control the number of layers and size of the grown graphene 
sheet [4-6]. However, there have been few reports on the 
fabrication of a composite material based on CP and SG [8,9]. 
Adding greater functionality to such a composite would make it 
even more attractive as a material. Nanoparticles (NPs) should 
be ideal for affording a CP/SG composite greater functionality, 
because they exhibit unique physical and chemical features 
such as quantum confinement, surface plasmon resonance, and 
superparamagnetism [10-12]. Platinum (Pt) NPs exhibit excellent 
performance as electrochemical catalysts in low-temperature 

proton exchange fuel cells [13]. Gold (Au) NPs are used as 
sensitive detectors in biomedical sensing applications [14]. 
Although the functionalization of NPs on SG has been reported 
by many groups, almost all of the fabrication methods used have 
been based on wet chemical processes [15-17]. Wet chemical 
processes are relatively easy to implement and are cost effective. 
However, the aggregation of thus-functionalized NPs and their 
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Figure 1 Fabrication process of Au-NP/SG/CP composite. (a-c) Detailed 
structures of  (a) CP, (b) SG/CP, and (c) Au NPs/SG/CP.
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contamination with impurities owing to the solution-base 
reactions involved remain problems. The difficulty encountered 
in large-scale fabrication and the nonuniformity of the thus-
synthesized NPs are also critical issues from an industrial point 
of view. Thus, the development of an all-dry process for NP 
functionalization is very important. There have been a few reports 
on NP synthesis through dry processes [15,18]. These processes 
include atomic layer deposition and supercritical fluid chemical 
vapor deposition; however, they require relatively expensive 
equipment. The NP functionalization of a SG/CP composite is yet 
to be realized using either wet chemical processes or dry ones.

Here we describe a simple, all-dry process for the fabrication 
of an Au NP-functionalized SG/CP composite. Since Au NPs could 
be functionalized in high density on a large-surface-area SG/CP 
composite, significant improvements in device performance can 
be expected through the use of this unique composite material. 

MATERIALS AND METHODS 
SG was grown using a laboratory-made helicon plasma 

chemical vapor deposition (CVD) system. CH4 gas was used as the 
carbon source for the growth of SG. A weak magnetic field (40 G) 
was applied to the plasma generation and diffusion region. Since a 
helicon wave could be generated by combining a radiofrequency 
(13.56 MHz) electric field, supplied to the solenoid coils, and 
externally applied magnetic field, uniform, large-area plasma 
could be generated. The Au NPs were decorated on the SG/
CP composite through thin-film deposition, followed by rapid 
thermal annealing (RTA) (∼900°C) under high vacuum (< 10-3 
Pa). The structures of SG and the Au NPs were analyzed using 
scanning electron microscopy (SEM) (Hitachi SU1510).

RESULTS AND DISCUSSION 
Figure 1 shows a schematic illustration of the fabrication 

process for the Au NP-decorated SG/CP composite. SG was grown 
on the surface of the CP by helicon plasma CVD (Figure 1a). Then, 
an Au thin film (5–14 nm) was deposited on the surface of the SG 
by vacuum evaporation. Finally, RTA was performed under high 
vacuum. Dense Au nanoparticles were formed on the surface of 
the SG without there being any damage to the SG and CP (Figure 
1b). Thus, the process enabled us to obtain Au NP-decorated SG 
on CP (Figure 1c). 

The results of SG growth on the surface of the CP are shown 
in (Figure 2). The CP consisted of micron-scaled carbon fibers. 
Every carbon fiber had a straight structure, and its surface was 
relatively smooth (Figure 2a). After the helicon plasma CVD, the 
surfaces of the carbon fibers were covered with dense SG without 
there being any changes in the overall structure of the carbon 
fibers (Figures 2b-d). This shows that the overall structure of CP 
can be maintained even after plasma CVD. Further, the surface 
area of the CP increased significantly after the SG had covered 
the carbon fibers. A simple calculation revealed that the surface 
area of the CP after SG growth was 366% greater than that of the 
pristine CP. Such a large surface area could result in significant 
improvements in device performance with respect to various 
applications.

One possible application for this large-surface-area material 

is in biomedical sensors. Au NPs are being used widely as 
detectors of biomedical molecules [14]. Thus, we attempted to 
decorate Au NPs on the surface of the CP covered with dense 
SG. Being able to control the initial thickness of the Au thin film 
before the RTA process was critical to forming well-dispersed Au 
NPs on the surface of the SG (Figure 1). The overall structure of 
the SG-covered carbon fibers was maintained even after the RTA 
process. The thin film (∼4 nm) of Au was converted into a dense 
cluster of NPs on the surface of the SG after the RTA process 
(Figures 3a-d). Au NPs were formed not only on the top surface 

Figure 2 SEM images of  (a) Pristine CP and (b) low-, (c) middle-, and (d) high-
magnification SG/CP.
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Figure 3 Typical  (a) low-, (b) middle-, (c, d) high-magnification SEM images 
of Au-NPs/SG/CP. (e) Size distribution of Au NP depending on initial Au film 
thickness.
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of the SG but also on the bottom of the SG (Figures 3c,d). The size 
distribution of the Au NPs, shown in (Figure 3(e)), reveals that 
the mean diameter of the Au NPs was approximately 20 nm. The 
size of the Au NPs could be controlled by changing the thickness 
of the initial Au film. With an increase in the Au film thickness, 
the average Au NP diameter increased from 20 nm to 30 nm. This 
ability to tune the size of the Au NPs is important for controlling 
the sensitivity of biomedical sensors. Very recently, similar 
results have been reported in the case of Pt NP functionalization 
on a carbon nanowalls/CP composite for fuel cell applications 
[19]. However, the process for NP synthesis used in the current 
study is completely different from the one used to fabricate the 
Pt NP. 

CONCLUSION
We were able to fabricate Au NPs on a SG/CP composite. 

After the growth of SG, the surface area of the CP increased by 
366%. Dense Au NPs could be decorated on the surface of the 
SG by a simple, all-dry process. Thin Au film deposition followed 
by RTA allowed well-dispersed Au NPs to be formed on the SG/
CP composite in high density. Furthermore, the size distribution 
of the Au NPs could be controlled by changing the thickness of 
the initial Au film. This Au NP-decorated SG/CP composite should 
be useful in various devices such as fuel cells and biomedical 
sensors.
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