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Abstract

The problem of poor water-solubility has remained as a significant challenge in 
pharmaceutical industry. The emergence of solid lipid nanoparticles (SLNs) from former 
colloidal system proposes several advantages namely encapsulation of lipophilic 
agents, nano-sized particles, absence of organic solvents, and ease of large-scale 
production. This review aims to provide readers an overview regarding the feasibility 
and recent applications of SLNs as drug delivery systems for different administrations 
including oral, skin, ocular, pulmonary and parenteral routes. Researches about SLNs 
are predicted to continually flourish for an enormous contribution to the fields of 
medicine. 

INTRODUCTION
Significant amounts of current pharmaceutical products 

are found to possess unfavorable characteristics of poor water-
solubility, which are major challenges for pharmaceutical industry 
since they exhibit low bioavailability leading to limited efficiency 
or therapy failure at treatment site. Specifically, the obstacles lie 
in inadequate drug concentration because of poor absorption, 
rapid metabolism and elimination as well as uncontrollable 
fluctuations in plasma level. Hence, along with novel drug 
discoveries, several suitable drug delivery systems have been 
contemporaneously investigated in the attempts to facilitate 
solubility and controlled release properties of therapeutic agents 
[1]. The problem of poor water-solubility arises from the natural 
occurrence of drugs such as crystallinity [2], lipophilicity [3], 
large particle size [4], etc., making them hard to be dissolved 
in the biofluids. In this regards, the employment of lipid nano-
carriers has drawn significant attention from scientists.

The development of solid lipid nanoparticles (SLNs) which 
was emerged in 1990s incorporated the advantages of solid 
particles with those of emulsions and liposome’s [5]. SLNs consist 
of dispersed systems of lipid phase in aqueous solution, which 
are stabilized by surfactants [6]. They have been fabricated using 
well-established excipients namely fatty acids (palmitic acid, 
stearic acid), triglycerides (tristearin), steroids (cholesterol), 
waxes (cetyl palmitate), and emulsifiers (pluronic F68, F127) 
[7,8]. Although SLNs have proven the capability in encapsulating 
lipophilic compounds in their structure, challenges still remain 

for distributing hydrophilic materials in lipid matrix because 
of the tendency to separate towards the aqueous phase [9,10]. 
The particle size of SLNs is distributed in the submicron range 
from 50 to 1000 nm [11]. An interesting improvement of SLNs 
over other systems of liquid oil is its sustainable drug mobility 
due to the substitution of liquid lipid by solid components [12]; 
thus, protecting active compounds from potential chemical 
degradation. Other advantages of SLNs are the ease of large-scale 
production, low biotoxicity, and avoidance of organic solvents.

SLNs are conventionally prepared by high pressure 
homogenization techniques [13,14]. The principle of SLNs 
formation is basically based on the incorporation of drug melted 
in molten lipid and aqueous surfactant solution followed by 
homogenization and immediate cooling for lipid recrystallization. 
Solvents are then completely removed from resulting products 
for dry oral dosage design by spray drying [15] or lyophilization 
[16]. Other approaches include ultrasonication/high speed 
homogenization [17,18], micro emulsion based SLNs preparation 
[19,20] solvent emulsification/evaporation [21-23]. 

SLNs have been investigated for several different applications 
due to their outstanding characteristics. The aim of this review is 
to provide an overview about the feasibilities of SLNs in several 
routes of administration for poorly water-soluble drugs and 
highlight their potential in fabricating multi-combined systems 
of SLNs for maximizing therapeutic efficiency in treatment.

Oral delivery of SLNs

Oral is not only recognized for its natural and fast drug 
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administration but also for its high patient compliance. However, 
the oral route conquers various difficulties including permeability 
and stability in the gastrointestinal (GI) environment [24]. To 
this regard, SLNs offer a protection against biodegradation in GI 
tract owing to the large surface area of physiological compatible 
lipid matrix [25]. The protection ability is found to be susceptible 
to the degree of protein trapped inside the nanostructures 
[26]. Additionally, their nano-sized particles can promote the 
penetration across epithelial cells; hence, increasing cellular 
uptake of therapeutic agents. Researches regarding the use of 
SLNs in oral administration have been momentously developed 
for both aqueous dispersions and solid dosage forms such as 
powders, tablets, capsules, pellets [27].To be more specific, SLNs 
can be transformed into powder by complete sublimation of 
solvents using spray drying or lyophilization for tablets, and hard 
gelatin capsules formation. 

Early in vitro studies by R.H. Müller et al. [28], Investigated 
cyclosporine A (CycA) loaded aqueous SLN dispersion for 
enhancing its solubility and prolonging release time. The 
crystallinity of CycA disappeared upon incorporating into SLNs. 
Additionally; relatively high drug loading was obtained (20%). 
Extensive characterization methods were performed; however, 
limited drug release results were reported. Later studies have 
drawn decisive evidence on the oral bioavailability of CycA loaded 
SLNs [29]. It was found that the drug particles were released from 
lipid matrix by enzymatic degradation together with optimized 
range in blood concentration profile. CycA loaded SLNs achieve 
better bioavailability as compared to CycA nanocrystals in the 
same testing conditions. Other recent applications of SLNs 
in enhancing oral absorption of poorly water-soluble drugs 
namely curcumin [30-32], camptothecin [33], paclitaxel [34], 
and antihypertensive drugs [35]etc. have been widely reported, 
which showed promising findings. Furthermore, SLNs have been 
employed for successful transporting peptides and proteins 
such as to bramycin [36,37], rifampicin [38], isoniazid and 
pyrazinamide [39]. SLNs have opened up a novel approach for 
an efficient delivery of therapeutic agents via oral administration. 
The applications of SLNs are predicted to continue to flourish in 
the future. 

Skin delivery of SLNs

The implications of SLNs in skin delivery of pharmaceutical 
molecules and cosmetic products have gained considerable 
interests among scientists. Due to the lipophilicity and small 
particle size, SLNs exhibit great permeation through skin 
membrane in controlled manner; thus, preventing sudden 
systemic absorption and potential toxicity [40,41]. Moreover, 
SLNs offer a protection to active drug compounds through the 
incorporation of various well-tolerated excipients which also 
reduce the risks of irritation or bio-incompatibility [5,42].

A study by Jie Liu and co-workers [43] designed skin 
targeting formulations for topical delivery of isotretinoin loaded 
SLNs. Significant particle size reduction ranging from 30 to 
50 nm with high entrapment efficiency up to 100% and good 
stability were achieved. In vitro evaluation using Franz diffusion 
cells fitted with rat skins demonstrated the permeation rate of 
0.76 ± 0.30 μg cm−2 h−1 through skins alongside with the absence 
of systemic uptake. Other interests in this concern include 

clotrimazole [44], prenicarbate and betamethasone 17-valerate 
[45], tretinoin [46]. 

SLNs have brought numerous advantages to the field of 
cosmetics and dermatology [47]. One of interesting features is 
occlusion of SLNs which can increase skin hydration through 
increased water content [48]. Moreover, SLNs exhibit a physical 
UV-blocking property individually or combining with molecular 
sunscreens for maximizing photo protecting effects [49]. The use 
of SLNs as pharmaceutical and cosmetic carriers for skin delivery 
is still on the promising road of development. 

Ocular delivery of SLNs

The complexity of ocular structure has presented several 
physiological barriers namely efflux transporters, tear dynamics, 
epithelium membranes, and non-specific absorption which 
significantly regulate the penetration and bioavailability of 
drugs [50]. The employment of SLNs in ocular delivery has been 
documented for their remarkable advantages over conventional 
ophthalmic formulations. SLNs are able to entrap lipophilic drugs 
in their amphiphilic structure for extending release rate and 
protection against eye enzymatic degradation [51]. Exceptional 
nano-sized, shape, and surface charge properties of SLNs 
improve adhesion and interaction to the epithelial ocular surface 
as well as prolong pre-corneal retention in the conjunctiva sac 
by interacting with the lipid layer of tear film; thus, enhancing 
bioavailability of therapeutic agents [52]. SLNs have been 
applied to improve ocular bioavailability of poorly water-soluble 
drugs including levofloxacin [53], Cyclosporine A [54,55], anti-
inflammatory drugs [56].

Parenteral delivery of SLNs

Structure of SLNs makes them advantageous for their 
extreme physical stability in parenteral applications. Similar to 
other routes of administration mentioned above, SLNs provide a 
protection to encapsulated drug against potential biodegradation 
as well as exhibit specific site targeting and controlled release 
model. Wissing et al. [57], closely investigated the profile of 
SLNs in parenteral route. The disadvantages of SLNs lie mostly 
in insufficient drug loading capacity that importantly depend 
on the choice of suitable lipid carriers [58]. SLNs have desired 
particle sizes that permit circulation in microvascular system. 
Moreover, the possibility for hydrophilic coating prevents SLNs 
from macrophage uptake; thus, prolonging blood circulation 
[59]. Efforts in formulating PEG-modified SLNs, alternatively 
known as stealth SLNs, have been taken into considerations [60]
as promising alternatives.

Studies of doxorubicin loaded SLNs injected on rats illustrated 
higher blood levels as compared to commercial drug solution 
[61]. Higher drug concentrations were found in lung, spleen, and 
brain. In another study by Cavalli et al., a sustained release of 
doxorubicin was obtained [62]. Also, cardiotoxic side effects of 
doxorubicin in rats were remarkably reduced. Pharmacokinetic 
profile of paclitaxel was further conducted [63], which draw 
similar findings. Considering the transportation of therapeutics 
to central nervous system [64], as hydrophilic coating SLNs 
enhance the absorption across the blood brain barrier, more 
optimized drug concentrations were obtained following the 
intravenous injection [65]. 



Central
Bringing Excellence in Open Access





Tran et al. (2016)
E-mail:    

JSM Nanotechnol Nanomed 4(1): 1038 (2016) 3/5

Pulmonary delivery of SLNs 

The systemic administration through pulmonary route 
demonstrates its feasibility for treatment of cancer, diabetes, 
immune deficiencies, and infection, listed as exhibiting large 
vascularized surface area, thin alveolar epithelium, and the 
easily permeable membrane [66]. Due to the low extracellular 
and intracellular enzyme activity, drug degradation rate in lung 
remains slow [67]. Pulmonary route favors both rapid onset 
action and prolonged release patterns. A review by Weber et 
al. [68], extensively discussed the use of SLNs for pulmonary 
applications. SLNs are found to be distributed in deep lungs 
because of their ability to be fabricated into inhalable particles 
with extremely small sized, good muco adhesion, and non-
biotoxicity. Researches in the field are still on the urge of 
development of the delivery system [69-71].  

Conclusions and future perspectives

SLNs have attracted significant concerns from scientists for 
their outstanding advantages over other colloidal carriers in 
terms of solubilized feature, high stability, low bio-toxicity, and 
large-scale production. Therefore, applications of SLNs for oral, 
skin, ocular, pulmonary and parenteral administrations have 
been widely developed, some of which present interesting results. 
Disadvantages remain for SLNs include entrapment efficiency 
and encapsulation of hydrophilic materials. Lately, the novel idea 
of combining methods of SLNs and other polymeric systems has 
been initiated. In a study published by Casadei et al. [72], the 
lipophilic drug (ibuprofen) was capable of being incorporated into 
modified hydrophilic system for oral administration by coupling 
SLNs and hydrogels. SLNs were prepared by hot homogenization 
followed by mixing with dextran methacrylate (DEX-MA) prior 
to UV irradiation. The combined system eliminated the use of 
organic solvents in fabricating lipophilic drug loaded hydrogels 
through solubilizing active compounds in lipid phase of SLNs. 
Additionally; hydrogels offer a better modified release profile as 
compared to SLNs alone. To this regard, SLNs loaded hydrogels 
for topical delivery were also investigated [73]. The future 
perspectives of these combined SLNs systems are encouraged to 
be promoted.

Recently SLNs have been developed as an interesting 
approach of anti-bacterial surface coating for invasive medical 
devices such as endo tracheal tubes in order to prevent bacterial 
infections and avoid the use of anti-biotic solutions [74,75]. 
Membrane disruptive lipophilic compounds namely free fatty 
acids and monoglycerides could be encapsulated inside SLNs 
structure. Taylor et al. [76], conducted research on Pseudomonas 
aeruginosa and showed that bacterial adhesion was reduced 
by 99% along with bacterial growth inhibitory effect. Other 
attempts in this concern include S. epidermidis, P. acnes, and S. 
aureus [77], Nisin [78]. Overall, several potential applications of 
SLNs in pharmaceutical research have been investigated, which 
importantly contribute to the work of enhancing bioavailability 
of poorly water-soluble drugs. Researches regarding to the work 
of developing alternative routes of administration or towards 
broad-spectrum treatment of viral infections still remain to be 
further explored in near future [79].
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