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Abstract

In this first principles investigation, we have analysed the refractive indices, optical absorption and conductivity spectra of tetragonal graphene sheet 
and its experimentally realized substructure, the narrowest arm chair nanoribbon. It is noteworthy that, the oscillatory behaviours encountered in the optical 
responses are shifted towards the UV region under perpendicular polarization. The real part of refractive index spectra exhibit anisotropic nature for both the 
systems. This anisotropy leads to the anomalous dispersion near certain frequencies where attenuation peaks are also observed. A particular example is that, 
the violet light of energy 2.94 eV undergoes maximum attenuation when parallel polarized EM wave propagates through the sheet. Besides, the maximum 
peak position of absorption and attenuation spectra coincides for perpendicularly polarized light. In addition, the conductivity and absorption spectra show 
identical behaviour under a particular type of polarization. Our observations strongly support the fact that, these optically active, non-hexagonal, anisotropic 
materials can be used as birefringent in future nano-electronic devices.

INTRODUCTION
First experimental isolation of single-layer graphene [1], 

sheet from graphite has amazed the world of science in the last 
decade. Its spectacular mechanical, electrical, thermodynamic 
and optical properties have motivated researchers in both 
scientific and industrial research [2,3]. In particular, the 
ultrahigh carrier mobility [4], fractional, fractal and half-integer 
Hall effects [5-11], have secured its coronation as a revolutionary 
material of the post-silicon era [12]. Despite all the intriguing 
features, the only dispute that restricts the industrial revolution 
of making graphene based nano devices is its zero band gap. 
However, several attempts have been made to overcome this 
drawback [13-19]. As a historical note, the story of graphene was 
initiated by German mathematician Johannes Kepler [20], in the 
seventeenth century. He proposed only 13 different possibilities 
that a structure can be constructed from regular polygons and 
identical vertices to which these polygons adjoin [21]. Hexagonal 
structure graphene is a crystalline form of one of those 
possibilities. Furthermore, Balaban [22] proposed the theoretical 
existence of other two dimensional (2D) carbon materials with 
different complex hybridizations. In a recently study on different 
graphene allotropes, Enyashin et al. [23], have studied the 
stability and electronic properties of 12 such configurations. 
Graphyne [24], and graphdiyne [25], are two particular examples 
of such graphene allotropes that were experimentally realized 
[26-29]. Another member of the family of Kepler nets [20], 

comprises both squares and octagons have also motivated the 
researchers [23,30, 31]. Liu et al. [32], have recently named the 
structure as tetragonal graphene or T graphene (TG) and have 
unravel its structural and electronic properties in the framework 
of density functional theory (DFT) study. The planar TG sheet 
exhibits metallic nature and is thermodynamically more stable 
than any other graphene allotropes including experimentally 
achieved graphyne and graphdiyne. Another buckled form of 
TG was predicted [32], to be stable in the high temperature, but 
subsequently opposed by Kim et al., [33]. Moreover, Kotakoski 
et al. [34] have experimentally obtained a small part of the 
narrowest armchair planar TG nanoribbon (NATGNR) with the 
help of electron beam irradiation on graphene. Motivated by all 
these, Ye et al. [35], have decorated the TG sheet with Li atoms to 
explore that it can serve as a good reversible hydrogen storage 
material. Liu et al. [36], further added that Li decorated TG exhibits 
a high sensitivity to carbon monoxide (CO). Therefore, it can be 
used in CO sensor devices. Besides, TG analogous tetragonal 
carbon-boron-nitrogen (CBN) and boron-nitrogen (BN) sheets 
exhibit semiconducting nature [37], which is essential for device 
applications. The characterizing Raman fingerprints of TG sheet  
has been explored [38], using variable cluster approach [39]. 
Furthermore, Chowdhury et al. [40], have investigated the effect of 
transition metal atoms doping on TG and explored that Mn doped 
system possess highest magnetic moments. In addition, they 
have also observed that the magnitude of the magnetic moment 
increases with increasing atomic weight. It is worthy to note that, 
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the same structure has also been investigated as octagraphene 
[41,42], and planar c4 sheet [43]. The metallic nature of TG sheet 
also restricts its possibilities in device application. Therefore, 
Bandyopadhyay et al. [44], have switched on external localized 
magnetic fluxes and tuned the band gap with different choices of 
magnetic fluxes linked with two different rings of TG sheet and 
the NATGNR [34]. Additionally, the width dependent electronic 
transport properties of TGNRs have been calculated by Dai et 
al. [45]. Similar to the TG structure, there exist many other 2D 
materials [46-50], with the possibility of different structure 
dependent opto electronic properties.

In our previous work [44], we have critically evaluated some 
of the optical properties of the TG sheet and the NATGNR in the 
secure of DFT. However, the complete description of optical 
responses are yet to be reported. Here, our primary aim is to 
address the frequency dependent complex refractive index, 
optical absorption spectra and optical conductivity in the long 
wavelength limit. This paper is organized as follows. In the next 
section, the methodology adapted for this study is explained, 
followed by different results related to the optical behaviour of 
the TG sheet and the NATGNR and finally conclusions are drawn 
at the end.

COMPUTATIONAL METHODOLOGY
In this work, we have extensively used density functional 

theory (DFT) with generalized gradient approximation (GGA) 
as implemented in SIESTA package [51-53]. The Perdew-Burke-
Ernzerhof (PBE) is used for the exchange-correlation part of 
density functional. The real space mesh cutoff is chosen to be 
300 Ry throughout the calculation. The Brillouin zone sampling 
is performed with 21×21×1 and 21×1×1 Monkhorst-Pack (MP) 
set of k points [54], for sheet and the NRs respectively. A vacuum 
slab of 20Å is used to avoid any interaction between layers. Total 
energy cut off for the self-consistent field (SCF) is fixed at 10−5 eV 
at an electronic temperature 300 K. The most stable configuration 
is achieved by a structural relaxation with convergence criteria 
for maximum force on each atom below 0.001 eV/Å. Optical 
properties are calculated for real interband transitions ie., 
transition between occupied and unoccupied states in terms of 
frequency (ω, in energy unit) dependent dielectric function ε(ω) 
= ε1(ω) + iε2(ω). At first, the imaginary part ε2 (ω) is estimated 
using first order time dependent perturbation theory in the 
dipole approximation in the long wavelength limit (q---->0) [55-
57] given by

2
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Where, Ω, ε0, ⃗u, ⃗r represent volume of the supercell, free 
space dielectric constant, polarization vector of electric field and 
position vector respectively. In this calculation, reasonably large 
number of empty bands (NBANDs =400), have been included to 
avoid inconsistency in the dielectric spectra [58]. Furthermore, 
the real part ε1(ω) has been calculated from the imaginary part 
with the help of Kramers-Kronig (KK) relation. Other optical 
properties, ie., real (n(ω)), imaginary (k(ω)) part of complex 
refractive index (N(ω)), optical absorption (α(ω)) and optical 
conductivity (σ(ω)) are calculated from ε1(ω) and ε2(ω). The 
relations can be expressed as follows.
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In the above expressions c represents the speed of light 
in vacuum. Here it is worthy to mention that, the excitonic 
effects will give no other effect than enhancing the peak values. 
Therefore, excitonic effects are not taken into account during the 
calculations. All the results obtained from the above equations 
are describes in specific sections. In parallel (perpendicular) 
polarization, the electric field is applied along an axis parallel 
(perpendicular) to the plane of the sheet.

RESULTS AND DISCUSSION
The optimized structure of TG sheet consists of two distinct 

bond lengths 1.47 Å (d1) and 1.38 Å (d2), as shown in Figure 1. The 
NATGNR, indicated within the red box in Figure 1 can be achieved 
after cutting the sheet along the x-y direction. As mentioned 
earlier, the detailed descriptions on the structural, electronic 
and some of the optical properties ie., frequency dependent 
dielectric function, reflectivity and electron energy loss spectra 
are already reported in our earlier work [44]. Therefore in this 

Figure 1 Structure of TG sheet. d1 and d2 are two distinct bond lengths. 
The NATGNR is indicated within red box.
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section, we have critically analysed the complex refractive index, 
optical absorption and conductivity spectra of the sheet and the 
NATGNR to get complete description of their optical behavior. 
All the optical responses are calculated for photon energies upto 
30 eV which, gives the relevant information in the ultraviolet 
(UV), visible (VIS) and infrared limits (IR) of the electromagnetic 
spectra. Results are described in the specific subsections.

Refractive index

The real (n(ω)) and imaginary (k(ω)) parts of the refractive 
index have been calculated with the help of Eq.3 and Eq.4. Here, 
n(ω) accounts the refraction, while, k(ω) governs the attenuation 
of EM wave passes through the material. The k(ω) is known as 
the extinction coefficient. These two parameters are related by 
Kramers–Kronig relations.

In the TG sheet, the n(ω) at very low energy (0.06 eV, from 
here interband transition contribute significantly) have the values 
1.31 and 1.08 for parallel and normal incidences respectively. 
It is worthy to note that, these values are invariably smaller 
compared to the static refractive indices of graphene (n∥(0)=2.75 
and n⊥(0)=1.12) [59]. The spectral pattern of n(ω) (depicted in 
Figure 2) is fluctuating in nature which results several intense 
peaks in the k(ω) spectra. This result is a direct consequence of 
the Kramers–Kronig relation between these two parameters. If 
we expose TG sheet under parallel incidence, k(ω) exhibits the 
highest peak for the violet light (at 2.94 eV) of the visible region. 
This peak can be well explained from the anomalous behaviour 

of dispersion curve (n(ω)) near the mentioned frequency. In 
the vicinity of the above discussed energy, there is another 
anomalous dispersion region near 3.56 eV, which results another 
k(ω) peak in the near ultraviolet region. Above this frequency, 
there is a zone of normal dispersion in the frequency interval 
5.28 - 9.92 eV. This indicates practically negligible loss of energy 
of EM wave within this frequency range while passing through 
the sheet. There are some other attenuation peaks in parallel 
incidence. Some of them are as follows. 

Parallel incidence: 2.94 eV (maximum), 3.56 eV, 4.54 eV, 
10.14 eV, 11.52 eV, 12.24 eV, 12.98 eV, 13.74 eV, 14.35 eV, 14.98 
eV, 15.64 eV, 16.84 eV, 18.78 eV, 22.24 eV. Besides, for the normal 
incidence, we have obtained relatively low intense peaks in the 
k(ω) spectra. This is due to the relatively smooth nature of n(ω) 
under normal incidence compared to the parallel incidence. In 
this case, n(ω) shows essentially no variation till 10 eV. Therefore, 
all the visible lights and near ultraviolet lights will pass through 
without any attenuation under normal incidence. In the higher 
energy regions however, some attenuation peaks occur which is 
again supported by the anaisotropic nature of n(ω) in this region. 
Some of the appreciable attenuation peaks are listed as follows.

Normal incidence: 13.06 eV, 13.99 eV, 14.73 eV, 17.28 eV, 
18.12 eV, 18.76 eV, 19.96 eV (maximum), 20.86 eV, 21.98 eV, 
22.54 eV, 25.40 eV, 26.64 eV, 27.24 eV etc.

Similarly for the NATGNR, n(ω) fluctuates more rapidly 
in the low energy (higher energy) regions when exposed to 

Figure 2 Real (n(ω)) and imaginary (k(ω)) parts of refractive index, absorption coefficient (α(ω)) and conductivity spectra (σ(ω)) of TG sheet. Blue 
and red lines indicate parallel and perpendicular polarization.
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parallel (perpendicular) incidence as depicted in Figure 3. These 
fluctuations give rise to various k(ω) peaks as mentioned earlier. 
The n(ω) at very low energy (0.06 eV, from here interband 
transition contribute significantly) have the values 1.15 and 1.02 
for parallel and perpendicular polarizations respectively. The 
n(ω) shows attenuation peaks near the following values. 

Parallel incidence: 0.5 eV, 1.84 eV, 2.7 eV, 3.46 eV, 4.16 eV, 
4.92 eV, 5.80 eV (maximum), 10.00 eV, 12.38 eV, 13.24 eV, 14.10 
eV, 14.74 eV, 17.89 eV etc; 

Normal incidence: 13.10 eV, 14.04 eV, 15.08 eV, 16.04 eV, 
16.98 eV, 18.98 eV (maximum), 19.82 eV, 20.50 eV, 21.34 eV, 
27.08 eV etc. Therefore it is clear that, parallel polarized light 
with energy ranging between 6.46 and 6.46 eV will experience no 
attenuation while passing through the NATGNR. Similarly, under 
normal incidence no attenuation occurs below the energy 10 eV.

Optical absorption

Absorption spectra (α(ω)) have been calculated from Eq.5. 
It is found that, the α(ω) spectra is highly anisotropic in nature 
and its peak positions are in well agreement with the ε2(ω) and 
k(ω) spectra. A detailed description of the ε2(ω) spectra have 
been reported in our earlier work [44]. The absorption peaks 
correspond to different intraband transitions in the electronic 
band structures. Under parallel incidence, sheet does not absorb 
EM wave below energy 2.32 eV (Figure 2). Above that, three 
consecutive α(ω) peaks have been observed at 3.00 eV, 3.60 eV 
and 4.60 eV. Further, no absorption region is found within 5.36 

eV and 9.78 eV. Several intense peaks occur above 10 eV, a few 
are listed below. 

Parallel incidence : 10.20 eV, 11.56 eV (maximum), 12.22 
eV, 13.04 eV, 13.62 eV, 14.28 eV, 14.92 eV, 15.52 eV, 16.64 eV, 
17.38 eV, 17.88 eV, 18.88 eV, 20.72 eV, 22.48 eV, 23.48 eV, 24.50 
eV, 25.70 eV, 27.56 eV etc. Besides, there is literally no absorption 
of normally incident EM wave with energy below 10 eV on the 
sheet. TG sheet absorb lights with more energy under normal 
incidence. In this case the peaks are observed at the following 
energies. 

Normal incidence: 13.08 eV, 14.14 eV, 14.54 eV, 17.13 eV, 
18.20 eV, 18.76 eV, 20.02 eV (maximum), 20.86 eV, 21.82 eV, 
22.50 eV, 24.72 eV, 25.46 eV, 26.44 eV, 27.08 eV, 28.62 eV etc.

Similar to the sheet, the absorption spectra of NATGNR also 
supports the attenuation spectra. Therefore, the energy intervals 
in which attenuation has zero value, absorption have also zero 
value. This supports the fact of unperturbed propagation of 
EM waves with those energies. The maximum peak positions 
of k(ω) and α(ω) coincides for NATGNR under perpendicular 
polarization. However, the maximum peak of α(ω) is blue shifted 
compared to that of the k(ω) peak under parallel polarization. In 
this case, the maximum value of α(ω) is observed near 13.40 eV.

Optical conductivity

The optical conductivity spectra are calculated for both the 
systems with the help of Eq.6. These conductivity spectra closely 
follow the absorption

Figure 3 Real (n(ω)) and imaginary (k(ω)) parts of refractive index, absorption coefficient (α(ω)) and conductivity spectra (σ(ω)) of NATGNR. Blue 
and red lines indicate parallel and perpendicular polarization.
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Coefficient appreciably for both types of polarizations. The 
optical gaps determine the threshold above which considerable 
amount of conduction takes place. The gap is found to be 2.46 eV 
and 6.32 eV for the sheet under parallel and normal incidence 
respectively. Some prominent conductivity peak positions within 
our calculation limits are given as follows. 

Parallel incidence: 2.82 eV, 3.58 eV, 4.58 eV, 10.14 eV, 11.38 
eV (maximum), 12.98 eV, 13.62 eV, 14.22 eV, 14.96 eV, 15.48 eV, 
16.58 eV, 17.12 eV, 18.82 eV, 20.38 eV, 22.30 eV, 23.54 eV, 24.54 
eV, 25.54 eV, 27.46 eV, 29.16 eV etc; 

Normal incidence: 11.72 eV, 13.04 eV, 14.08 eV, 14.48 eV, 
14.96 eV, 17.20 eV, 18.08 eV, 18.70 eV, 19.96 eV (maximum), 
20.80 eV, 21.90 eV, 22.46 eV, 25.54 eV, 26.62 eV, 27.16 eV, 28.50 
eV etc.

It is noteworthy that, the σ(ω) spectra of the NATGNR is 
in well agreement with the α(ω) spectra as shown in Figure 4. 
Therefore it is clear that, the electronic transitions which give rise 
to the maximum absorption of NATGNR also leads to maximum 
conduction. These results will shed light on possibilities of the 
device applications of the TG sheet and NATGNR.

CONCLUSION
In this work, we have critically analysed different optical 

properties of TG sheet and NATGNR calculated from first 
principles study. The following conclusions can be made from 
the above discussions. When the sheet is ex-posed under parallel 
polarization, the lower limiting value of the refractive index is 
observed to be 1.31 and the same for NATGNR is 1.15. However, for 
perpendicular polarization the same have the values 1.08 (sheet) 
and 1.02 (NATGNR). Therefore, sheet always possesses the larger 
value compared to NATGNR. Besides, the oscillatory behaviour 
of all the optical responses is shifted towards the higher energy 
region or UV region under perpendicular polarization. The n(ω) 
spectra of the sheet and ribbon are anisotropic in nature under 
both polarizations and exhibit anomalous dispersion in each of 
the cases. The sheet under parallel polarization shows isotropic 
behavior well above 20 eV and the same under perpendicular 

polarization happens below 10 eV. However, for the NATGNR, 
the isotropic behaviors are observed above 15 eV for parallel 
polarization and below 10 eV. In the later case n(ω) is less 
oscillatory in nature. Each anomalous dispersion corresponds 
to an attenuation peak in k(ω) spectra for all the cases. This is 
simply due to the Kramers–Kronig relation between them. The 
sheet exhibits maximum attenuation of violet light of energy 
2.94 eV among other EM waves with different frequencies. All 
the results mentioned above strongly support the fact that these 
optically active anisotropic materials can be used as birefringent. 
Furthermore, absorption spectra almost mimic the attenuation 
spectra. However, relative peak intensities are modified 
significantly. The maximum peak position of k(ω) and α(ω) 
spectra coincide for both the systems under perpendicularly 
polarized light. However, the maximum absorption peak is 
blue shifted compared to the attenuation peak under parallel 
polarization. In addition, σ(ω) and α(ω) spectra of the NATGNR 
are almost indistinguishable under each type of polarizations. We 
expect, our results will enhance the possibilities of using TG and 
its nanoribbons in future optoelectronic nano devices.
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