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Abstract

Graphene is an extremely thin material which has received a huge interest in many areas of science and technology owing to its unique physical, chemical, 
mechanical and thermal properties. The more challenging aspect of synthesizing graphene in a low-cost and environmental friendly method is a big task. There 
are various methods to synthesis graphene but the chemical synthesis is considered as the best method because of its advantages like scalable, facile, and 
inexpensive method. Mostly, the chemicals used for the synthesis of graphene is toxic, corrosive and hazardous. Therefore, in the recent years researchers have 
been using various eco-friendly/green materials to manufacture a functionalized graphene. Moreover, the green reducers used for the synthesis of graphene is 
plant extracts, juices and biomolecules. In addition, graphene based nanomaterials (GBNs) have been extensively explored in the most recent years as a novel 
nanocarrier for the loading of variety of bioactives and these materials is used for the treatment of chronic disease. This chapter gives a brief outline of the 
green reduction of graphene oxide to graphene and its applications in the nutraceuticals area.

INTRODUCTION
Graphene is a two-dimensional sheet of hexagonally arranged 

carbon atoms which is isolated from the three-dimensional parent 
material graphite and it exhibits electronic, mechanical, optical 
and magnetic properties. These properties made graphene as an 
outstanding material with great potential for various applications 
range from energy storage to biomedical. The most fascinating 
material of the recent and most upcoming nanotechnology 
based applications is graphene based materials (GBNs) [1]. This 
promising material is used in almost all industries starting from 
electrical & electronic [2], thermal [3], aviation [4], polymer 
[5], pharmaceutical [6,7], biomedical [8], drug delivery [9], 
bioengineering [9], food and nutraceuticals [10-12]. It is more 
efficiently used in very recent times for the biological applications 
such as bactericidal [13], antiviral [14], theranostics (disease 
diagnosis, delivery, biosensing) [15], stem cell based tissue 
engineering [16], neural cell proliferation [17], differentiation 
[18], drug delivery [19], cancer cells imaging, targeting [20], and 
nutraceutical agents delivery [21], and treatment of disease [21]. 
Hence, the selection of appropriate material from the graphene 
family of materials is very important to use these materials in 
biological applications. Moreover, the reduced graphene oxide 
(RGO) is the widely used material for the bio and nutraceutical 

delivery because of the use of environmental friendly reducing 
agents (plant extract/biomolecules) [22]. 

The general method of preparing the eco-friendly RGO is 
briefed here. The dispersed GO suspension and the eco-friendly 
reducing agents are mixed together to produce a reaction solution. 
Then, the reaction solution is kept under controlled temperature 
for duration of a time. In the previous studies, it is mentioned that 
the reaction temperature and the concentration of GO is about 80-
95oC and 0.5-1 mg/ml. Therefore, it is very important to maintain 
the concentration, temperature, time and pH of reduction of GO. 
The reduction is possible in both the acidic [23], and alkaline pH 
[24,25]. The chemicals used to regulate the pH of the solution 
are HCl [23,26-28], NH4OH [29-31], and dilute NaOH [32]. In a 
study by Merino et al. [33], they said that the alkaline condition 
of the reaction is able to reduce the time of reduction, could able 
to deoxygenate GO sheets and stimulates strongly the colloidal 
durability of GO. Bosch et al.[34], also examined the effect of pH 
on GO sheets. They revealed that the acidic pH is responsible 
for the defects with sheet aggregation which leads to reduction 
in size of the layers [35]. Thus the acidic pH changes the sheet 
like structure into other nano forms of graphitic forms such as 
fullerene, nanoonions and multiwalled carbon nanotubes. Their 
study proves that for the production of defect less graphene it 
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is important to use alkaline pH. After reduction, the GO solution 
turns into brownish yellow colour to black and by filtration 
[27,32,36], or centrifugation [37], the graphene sheets are taken 
out. After centrifugation or filtration, the product should be 
washed and recentrifuged several times with water to remove 
all the unreduced graphene, excess reducers and reaction by 
products (Figure 1) [38,39]. 

Many of the scientists developed different types of 
reducing agents to convert GO into graphene [40-42]. Some 
of the chemical reducing agents such as hydrazine [43-45], 
sodium borohydride [46,47], hydroquinone [48], and dimethyl 
hydrazine [49] are found to be the toxic agents. These chemicals 
could adsorb on the surface of nanoparticles which leads to 
toxicity. Most recently, green synthesis of graphene have been 
extensively explored to decrease the use of toxic chemicals and 
to increase the biocompatibility for using these materials in 
biomedical applications. Recently, the researchers developed 
a green reducers to prepare reduced graphene sheets from 
GO [50]. The green reducers such as [51], amino acids [52], 
bacteria(Escherichia coli) [53], yeast [54], plant extract [51], 
several biological materials [55-57], wild carrot root [58], E. 
fergusoni [59], Pseudomonas aeruginosa [60], and the humanin 
peptide [57], cellulosic compounds [61], or metal powders [62] 
and they are free from corrosion, carcinogenicity and toxicity. 
It is reported that the green reducers acts as both reducing and 
stabilizing agents for synthesis of graphene. The organisms used in 
graphene synthesis includes prokaryotic systems and eukaryote 
(Escherichia coli  ) [63]. The synthesis of nanomaterials using 
plants for biological applications has received more attention 
as a right alternative to chemical methods [64]. Plant extracts 
may serve as both reducing and capping agents in synthesis of 
nanoparticle. Generally, plants contain many biomolecules such 
as polysaccharides, alkaloids, vitamins, proteins, amino acids, 
alcoholic compounds, polyphenols and enzymes [40]. 

The biomolecules reduced graphene based materials could be 
relevant for biological applications in particular for the delivery of 
nutraceuticals and the research in this area is exploring recently. 
There are natural antioxidants which includes amino acids and 

vitamins to reduce graphene oxide and to functionalize the 
material. These biomolecules not only acts as a reducing agents 
and also it produces added value to the RGO [65]. It has been 
shown that dextran and tea polyphenols increases the colloidal 
stability and biocompatibility of RGO. Furthermore, it was found 
that these green reducing agents have aromatic structures 
which could not only acts as reductants but also functionalize 
the graphene sheets by π-π attachment of reductant molecules 
onto the surface of RGO. Lately it was found that the green tea 
polyphenol functionalized RGO sheets decreases the reactive 
oxygen species (ROS) which is generated in the cell culture media 
whereas the chemically reduced graphene sheets (Hydrazine-
RGO) induces more ROS generation [66].

In the previous studies it is reported that the graphene 
produces cytotoxicity and geno toxicity at low concentrations 
of about ⁓ 10µg/ml. Therefore, further works are necessary to 
incorporate these materials in biological applications especially 
in cancer therapy, drug and nutraceuticals delivery. It was 
shown recently that the functionalised graphene exhibits no 
or very less cytotoxic effects [67]. Regarding the biomedical 
applications of GBNs, it is reported that binding capability 
(Covalent/Noncovalent), physical and chemical properties 
could influence the biological responses of cells. GBNs can be 
either benevolent or toxic to cells and the biological responses 
depends on layer number, lateral size, surface functionalization, 
stiffness, hydrophobicity and dose [68,69]. A study by lee et al., 
suggested that GBNs can be used as biocompatible, transferable, 
and implantable platforms for stem cell culture [70]. In this 
chapter we explain the green synthesis method for the delivery 
of nutraceutical agents and its biocompatibility.

GREEN REDUCTION OF GRAPHENE
There are many methods have been established which 

includes hydrothermal dehydration, solvothermal, chemical, 
catalytic, photo catalytic and photo reduction. By comparing 
all these methods, chemically reduction method is the most 
considered method and capable of producing graphene 
nanomaterials in large scale. The main disadvantages of chemical 
reduction method is it may lead to aggregation of graphene 
layers due to the Vander Walls forces between the layers [71]. 
In addition, other disadvantage of reduction route is highly toxic 
nature of reducing substances like hydrazine, hydroquinone and 
dimethylborohydride. These chemicals are toxic and hazardous 
in nature leads to detrimental effect particularly for biological 
applications. Therefore, the development of eco-friendly green 
synthetic routes for the reduction of GO is necessary to overcome 
the above mentioned disadvantages. In this connection, 
easily scalable biosynthetic and most promising methods for 
the synthesis of GBNs is getting higher. Recently, green and 
environmental friendly methods were used for the synthesis 
of GO and RGO by means of different biomolecules. Apart from 
the use of less hazardous chemicals, the salient feature of green 
technology is that it operates in the mild condition which makes 
it cost effective and affordable. Nevertheless, the important role 
of these biomolecules in improving the functionality of the RGO 
as nanocarriers is to be explored. Moreover, it is very important 
to understand the chemistry associated with biomolecules and 
graphene oxide in order to improve the reduction efficiency. 

Figure 1 Schematic representation of green reduction of graphene 
oxide.
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The chemical interactions will be helpful to develop the exact 
mechanism to destroy the bacterial and cancer cells [65]. 

From the literature, it was found that the seed, leaf, plant, root 
and juice extracts of Gingko Biloba [72], Camellia Sinensis [73], 
Mesua Ferrea Linn [51], Colocasia Esculenta Leaf [51], Prunus 
Serrulata [74], Daucus Carota [58], Ceratophyllum Demersum 
[75], Potamogeton Pectinatus [75], Lemna Gibba [75], Cyperus 
Difformis [75], Amaranthus Dubius [76],Coconut water [77], Rose 
water [78],Citrus Sinensis [51], Pomegranate juice [71], Hibiscus 
Sabdariffa L [79], Spinacia Oleracea [80], Terminalia Chebula 
[42], Grape seed extract [81], Cherry leaf extract [82], Chlorella 
vulgaris [83],  Eichhornia crassipes (Mart.)Solms [84],Vicia faba 
L [85], Asian red ginseng [86], gluconobacter roseus [87], were 
used in the green synthesis of reduced graphene oxide. The 
biomolecules used in the synthesis of reduced graphene oxide are 
sucrose [88], glucose [89], fructose [88], starch [90], L-cysteine 
[91], pyridoxine [92], Riboflavin[93], citric acid [94], L-mallic 
acid [95], L-arginine [96], L-carnosine [97], L-glutamic acid [98], 
L-histidine[99], L-phenylalanine [100], L-tyrosine [101], vitamin 
C [102], L-glutamine [103], melatonin [104], glycoseoxidase 
[105], quercetin [106], and bovine serum albumin [107]. The 
main advantages of the green reduction by phytoextracts and 
biomolecules are i) efficient method for reduction ii) cost 
effective, iii) bulk production, iv) increased stability v) prevents 
agglomeration, vi) acts as nano carriers for drug delivery, 
delivery of bioactive components and biomedical applications 
[86]. Mostly, the plant extracts contains different types of 
polyphenols and they are converted into oxidised quinone in 
the presence of reactive oxygen and these have the potential to 
reduce GO [41,108]. In the near future, this green technology 
could be the most promising technology because GBNs products 
will be available at low-cost.

PLANT ACTIVE CONSTITUENTS DELIVERY OF GO
There are various nanomaterials such as metal, metal oxide 

nanoparticles, polymeric micelles, liposomes, dendrimers and 
carbon nanotubes have been explored as nanocarriers for 
the delivery of therapeutic agents. Among them, GBNs have 
recently emerged as a novel delivery system potentially applied 
for systemic, targeting and local delivery systems [109]. The 
GBNs properties are relevant for active components delivery 
and biological applications which includes surface area, layer 
number, lateral dimension, surface chemistry and purity. The 
GBNs have higher surface area (2600 m2 g-1) is four magnitudes 
higher than the surface of any other nanomaterials [110]. A 
monolayer of graphene allows higher loading capacity compared 
with other nanomaterials. If there are large number of layers it 
will reduce the surface area and therefore increases the rigidity 
of the nanocarriers required for cell penetration [111,112]. This 
is the important parameter in maintaining the structural integrity 
of carriers and if it is too rigid, they could damage the cell. Hence, 
it is important to reduce the rigidity of GBNs because it may be 
an obstacle for delivering active constituents. GBNs have size 
limitations related to cell uptake, renal clearance, blood brain 
barrier transport, biological degradation and other biological 
properties dependent on particle dimensions but they do not 
have an effect on lateral dimensions. GBNs have a unique 2-D 
shape with planar morphology whereas this shape is different 
from spherical nanoparticles and carbon nanotubes [113].

There are three important parameters to successfully design 
GBNs in applications of bioactive components delivery. Firstly, 
surface modification is required to build an efficient nanocarrier 
with optimised active moiety loading capacity. Secondly, 
to improve or to confirm the biocompatibility and toxicity, 
preclinical and clinical studies should be undertaken. Thirdly, we 
should design a system which could able to release the actives in 
a controlled manner at a targeted site with an optimum dosage 
form. To address these issues there are limited number of in vitro 
and in vivo studies has been reported with promising results 
[112,114].

GBNs have been extensively explored in the recent years as a 
novel nanocarrier for the loading of variety of bioactives such as 
anticancer agents, poorly soluble compounds and the molecules 
which has low bioavailability [115,116]. Multi drug delivery is 
also applicable for GBNs because of the large specific surface 
area. Surface modification and conjugation strategies improves 
in vivo biocompatibility and circulation. Some of the examples 
from this research will be presented to show the application of 
GBNs for targeted, controlled and simulated delivery systems. 
By physisorption method (π-stacking), hydrophobic molecules 
are loaded in GBNs with selective killing of cancer cells. The π-π 
stacking and electrostatic interactions of GBNs can assist in high 
loading of poorly soluble components without compromising its 
efficiency [117,118]. 

GBNS FOR BETTER NUTRIENTS AND THERAPEU-
TICS DELIVERY (FOOD)

The effectiveness of nutraceutical products in preventing 
diseases depends on the protection and effective delivery of 
the active ingredients that should be bioavailable. There are 
innovative technologies which focus in the formulation methods 
to increase the bioavailability of active molecules. However, 
there are number of challenges associated with the nutraceutical 
functional food formulation in disease prevention and 
supplementing a food. Before formulating the food nutrients into 
the nanocarrier, it is important to measure the physiochemical 
and physiological characteristics (solubility, bioavailability, 
chemical stability, melting point) of the bioactives. For instance, 
the interdisciplinary research is needed in the area of drug 
delivery scientists and food engineers for the development of 
new nutrient delivery systems [119]. The development of food 
grade delivery system offers the possibility to manufacture 
products to protect, control and target the release of the bioactive 
ingredient in its desired location. Mostly, the key methodologies 
such as entrapment, encapsulation, coating etc. which protects 
the nutraceuticals from the environment and release the active 
components in a controlled manner. Moreover, they can also be 
delivered by wide range of formulations such as tablets, granules, 
micro/nanoparticles, emulsion, suspensions as per the recent 
developments in the area of drug delivery research [120,121]. 
The European commission (EC) recommends that a nanomaterial 
can be defined as the fullerenes, graphene and single wall 
carbon nanotubes with one or more external dimensions below 
1 nm should be considered as nanomaterials. By using GBNs 
as a delivery vehicle, it is possible to provide or enhance the 
optimal characteristics of a nutraceutical component which 
includes stability, incorporation of hydrophobic and hydrophilic 
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substances, high loading capacity and suitable for various routes 
of administration such as oral, pulmonary and topical application. 
GBNs gained a considerable interest in the scientific community 
due to their superior physico-chemical properties, large surface 
area which is available for interaction with biologically active 
agents, low cost and ability in crossing biological barriers [10].

Like drugs, the efficacy of food and food components is the 
primary function of the bioavailabity. By changing the size 
of materials into nanoscale, solubility and stability of active 
molecules of food is enormously improved. The research in the 
field of developing food based delivery system is an emerging 
stage [12,122]. Recently, the nutrients are encapsulated and 
entrapped in the GBNS for the effective delivery and increased 
bioavailability. The GBNs are generally mentioned as “rolled up 
structures” with one or more layers of graphene sheets which 
increase their chemical stability, thermal stability and mechanical 
strength. The bioactive compounds involve the association of non 
bioactive moieties GBNs and polymers which can be dissociated 
within the body. Thus, they have been shown to enhance the 
potency and dose efficiency of both hydrophobic and hydrophilic 
molecules [123]. The bioactive compounds are grafted by means 
of functionalization reactions or by adsorbing onto the surface 
for the delivery of food components, proteins, vitamins and 
minerals. In a recent study they have shown that GBNs exhibits 
strong antimicrobial activity by destructing the cell membrane in 
direct contact. Application of using GBNs as building blocks for 
antimicrobial materials opens a new way to be utilised in food 
safety area [64]. The GBNs have been tailored for the efficient 
and fully controllable release of flavours, nutrients and other 
food bioactives. The functionalised GBNs could find acceptance in 
food market because of the new developments of more available 
production. The GBNs have shown many advantages allowing to 
carry off water or fat insoluble nutrients to the blood stream and 
make them available to cells [124]. 

RECENT STUDIES OF GBNS IN NUTRACEUTICALS 
DELIVERY

In the functional food category, plant derived polyphenols are 
entrapped in GBNs and it shows high antiproliferative activity 
against colon and ovarian cancer cells (Abdolahad et al., 2013). 
The author unveiled the effect of reduced grapheme oxide in HT29 
and SW48 cells (82% destruction) however, they used 3mg/l 
RGO nanosheet solution and the different methods were adopted 
[125]. In another report, GO loaded SN 38 with a concentration 
of 1mg/ml was used against HCT 116 cell lines [126]. Akhavan 
et al., disclosed that RGO-ginseng properties improved ascribed 
to its higher compatibility, hydrophilicity and the presence of 
ginsenoside molecules acts as a powerful antioxidants on the 
surface of the reduced sheets [86]. 

In this regard, an interesting method involves the reduction of 
GO by polyphenols or plant extracts and concurrent establishment 
of π-interaction between the two species. In our recent work we 
have reported that GBNs with grape seed extract (GSE) shows 
high anti-inflammatory and anti-cancer activity against colon 
cancer cells. GSE contains oligomeric proanthocyanidins (PCs) 
and these PCs are called as polymers of catechin. The PCs contain 
free -OH groups and these groups could act as reactive sites for 

functionalizing and reducing GBNs. The antimicrobial activity 
of RGO with a concentration of about 4-5 μg/ml which proves 
the complete death of E. coli and S.aureus. By AFM analysis, it is 
further substantiated well regarding the cell wall damage (Figure 
2). In our experiments, we have used 100 to 500 μg of RGO-GSE 
and found that they are very effective in killing the cells around 
88% within the span of 24 h and also to prevent the other cells 
from proliferating. In vitro antiproliferative results exhibits that 
the RGO-GSE has shown efficient activity with 500 μg against 
the colon cancer cells and also they act against inflammation 
produced by the cancer cells (Figure 3) [81]. 

Figure 3 Microscopy images of HCT-116 cells with RGO (a) Control 
(b) 100 μg and (c) 500 μg (Figure reprinted from Materials Science 
and Engineering C - Copyright permission).

Figure 2 Atomic force microscopy images (a) S. aureus control (b) 
RGO treated S. aureus(c) E. coli control and (d) RGO treated E. Coli 
(Figure reprinted from Materials Science and Engineering - Copyright 
permission). 
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Abdullah et al., used an eco-friendly and safer reducing agent 
green tea extract (GTE) for the reduction of GO. Green tea have 
been used as a common drink which offers  many health benefits 
such as cancer prevention, heart disease, lowering of high blood 
pressure and lowering of high blood cholesterol levels. Recently, 
green tea attracted a considerable interest for this applications 
in manufacture of nanomaterials. It contains high composition 
of polyphenolic compound which is used as a reducing agent 
because of its ability to donate electron or hydrogen atom. They 
have evaluated the biocompatibility and cytotoxicity of GO and 
RGO-GT against human fibroblast cells (CCD-18Co). The authors 
revealed that RGO-GTE at low concentration, the cell proliferation 
was inhibited (45-60%). The cellular morphology of the cells 
treated with RGO-GTE and GTE were found to be almost similar 
to that of control [66]. 

A bioactive flavonoid, quercetin is one of the most important 
and well known dietary antioxidants used as health supplement. 
Its chemopreventive action is confirmed by strongly inhibiting 
breast, lung, colon and ovarian cancer cell growth. Quercetin has 
low aqueous solubility, instability in intestinal fluids and exhibits 
first pass metabolism before reaching systemic circulation which 
leads to poor oral bioavailability. To avoid these complications, 
it is entrapped/adsorbed into GO nanoparticles and these are 
efficient in crossing permeability barriers. The loading efficiency 
of quercetin over GO sheet was around 44%, it means that 1 g of GO 
is able to release 0.44 g of quercetin. They reported high loading 
capacity compared to the other nanocarriers like liposomes, solid 
lipid nanoparticles, nanostructured lipid carriers, polymeric 
micelles. Their results indicates that no toxicity was observed up 
to the concentration of 120 µg/ml of GO (Figure 4). Therefore, it 
is necessary to study the toxicology in more detail at higher doses 
using different animal models before the clinical applications of 
GO [11,106].

Kakran M et al., developed a GO-ellagic acid (EA) by 
functionalising with hydrophilic and biocompatible pluronic 
F38, Tween 80 and maltodextrin for loading of poorly water 
soluble anti-cancer compound. EA is a polyphenolic compound 
found in many fruits and vegetables, which has antioxidant, 
anticarcinogenic, antiproliferative and chemopreventive 
activities. EA shows low bioavailability because it is less soluble 
in water. Thus, the functionalised GO not only acts as nanocarrier 
but also it helps to increase the solubility and cellular uptake by 
enhancing its ability to target cell membrane. The release of EA 
from GO-EA was found to be pH dependent release by increasing 
order neutral pH < pH 4 < pH 10. The high concentration of 
GO-F38-EA, GO-T80-EA and GO-MD-EA were incubated with 
the MCF7, HT29 cells and observed no significant toxicity. The 
maximum concentration of EA loaded onto the functionalised GO 
was about 500 mg/L which corresponds to the concentration of 
about 200 mg/L. Therefore, GO-F38, GO-T80, GO-MD were found 
to be the ideal nanocarriers and they did not show cytotoxicity. 
The authors found that the antioxidant activities of EA in all the 
three carriers were similar to that of free EA, which indicates that 
nanocarrier GO doesn’t hinder antioxidant activity [127]. 

Suresh et al., disclosed the reduction of GO by spinach leaves 
(Spinacia oleracea) and it consists of rich source of essential 
nutrients such as vitamin A, vitamin C, vitamin K, folate, iron, 

manganese, flavonoids, coumarin, protein and they are found to 
be antioxidant. These significant amounts of antioxidant phyto-
constituents in spinach acts as reducing agent for the reduction 
of GO. They proved that RGO is strong in inhibiting the DPPH free 
radical scavenging activity with IC50 (Inhibitory Concentration) 
of 1590 mg/ml [80]. Geummi L et al., studied seven plant extracts 
such as cherry, magnolia, platanus, persimmon, pine, maple 
and ginkgo and compared for their abilities to reduce GO. They 
disclosed that this environmental friendly reduced GO could be 
used in various areas such as food and biomedical applications 
[82]. 

Barua S et al., synthesized RGO –Ag nanohybrid using 
Colocasia esculenta leaf extract and the material possess good 
cytocompatibility profile in mammalian PBMC and RBC, excellent 
antimicrobial activity and studied the acute dermal toxicity 
study on rats. The histopathological result shows that RGO –Ag 
nanohybrid did not cause any abnormality to the vital organs of 
the host, such as liver, kidney, skin, brain and heart (Figure 5). 
The fine skin sections exhibited well defined cellular structure 
with different epithelial layers. They are biocompatible and it can 
be used as topical ointments and bandages [64]. Agarkhar et al., 
reviewed and summarised the reduction of GO by green methods 
by using biomolecules, plant extracts and microorganisms. They 
have also explained the issues and challenges particularly in the 
area of food, drug delivery, catalysis and biomedical applications. 
Hence, it is important to measure the clinical status of these 
materials and this method is said to be a highly promising for the 
effective use in humans [65]. 

Hatamie S et al., used curcumin as a natural reducing 
agents and it is one of the very effective natural antioxidants. 
It has successfully been used in therapeutic applications like 
antioxidants, anti-inflammatory and anticancer agent. They have 
utilised curcumin for the synthesis and functionalization of RGO 
sheets (exfoliation). The π-π attachment of curcumin molecules 
onto the RGO sheets was studied by spectroscopical methods 
such as Raman and Fourier transform infrared spectroscopies 
(FTIR). They have also found that with concentrations up to 100 
µg/ml exhibits dose dependent action of curcumin functionalised 
graphene sheets against human breast cancer cell lines and a 
normal mouse cell line [128].

Muthoosamy et al., prepared the mushroom-extract-reduced 
RGO and studied its biocompatibility. They found that RGO did not 
shows antiproliferative effects towards colon and brain cancer 
cell lines because they doesn’t possess selectivity against cancer 
cells. They mention that it is added value because it can be used 
as a tool for gene transfection and as a drug delivery vehicle by 
conjugating anticancer molecule. However, based on their findings 
that the mushroom reduced RGO exhibits good aqueous stability 
and biocompatibility compared to the functionalised ones [129]. 
Gurunathan S et al., utilised Ginkgo Biloba as bioreductant for the 
preparation of graphene. The reduction method used by them is 
very simple, cost-effective, avoidance of toxic chemicals and they 
used a different route for the preparation of reduced graphene. 
Moreover, they have assessed the biocompatibility of synthesised 
graphene in cancer cell lines. And also they have determined the 
cell viability, TUNEL and ALP activity in human breast cancer 
cells. They indicated that the GO shows dose dependent toxicity 



Central
Bringing Excellence in Open Access





Kalarikkal et al. (2018)
E-mail: nkkalarikkal@mgu.ac.in  

JSM Nanotechnol Nanomed 6(1): 1061 (2018) 6/10

Figure 4 (A) Relative cellular viability of A549 cells after 24 h, 48 h, and 72 h treatment with nano GO and (B) light and fluorescent microscopy 
images of A549 cells stained with DAPI; Untreated cells (a), DMSO-treated cells as positive control (b), and nano GO-treated cells (120 µg/mL) (c) 
(data are shown as mean ± standard deviation, n = 6) (Figure reprinted from Colloids and Surfaces B: Biointerfaces- Copyright permission).

Figure 5  Histopathological sections of the Ag-RGO treated Wistar rats (Figure reprinted from RSC Advances- Copyright permission).

whereas Ginkgo Biloba-RGO shows significant biocompatibility 
even at higher concentration (100 µg/ml) [40]. 

Liao R et al., developed tea polyphenols reduced graphene 
oxide (TP-RGO) and they found that TPs were employed as 
an environmentally friendly and highly efficient reducer and 
stabilizer for graphene oxide. The molecular backbone of TPs is 
mainly contains rigid aromatic rings which could lock up particle 
and aggregate the layers through their steric hindrance [41].

Akhavan et al., studied the efficacy of the glucose-reduced GO 
sheets in photothermal therapy of cancer cells. For that, they have 
developed a green method for the reduction and functionalization 
of graphene oxide using glucose. The process of functionalization 
of reduced sheets by gluconate ions produced during the 
reduction by glucose in the presence of Fe catalyst, without any 
PEGylation. Moreover, the GRGO-Fe was used as a biocompatible 
graphene-based nanomaterial suspension for a highly efficient 
NIR photothermal therapy of LNCaP prostate cancer cells in vitro. 
The authors found that the GRGO-Fe with a high concentration 
of 1 mg mL-1 requires only 12 min for complete destruction of 
the cancer cells under irradiation of an 808 nm laser source with 
power density of 7.5Wcm-2. It is an effective NIR photothermal 
nanotherapy of cancer cells [89].

CONCLUSIONS
The reduction of GO by chemical method is found to be a very 

promising technique to produce large scale graphene. The use of 
environmental friendly reducing agents to synthesis graphene 
attains an excessive interest in the scientific community. There is 
continuous increment of research publications in the area of green 
reduction of GO. The green reduction is considered as one of the 
most versatile method and the reagents used here is an alternate 
of hydrazine or other poisonous reducing agents. They are also 
safe to handle and the reaction coproduces are biocompatible. 
Most of the researchers uses the reduced graphene oxide for 
the biological applications and in particular for the functional 
foods and nutraceuticals, they are using this green technology. 
Like drugs, the efficacy of food and food components is the 
primary function of the bioavailabity. The research in the field 
of developing food based delivery system is an emerging stage. 
GBNs as a delivery vehicle, it is possible to provide or enhance 
the optimal characteristics of a nutraceutical component which 
includes stability, incorporation of hydrophobic and hydrophilic 
substances, high loading capacity and suitable for various routes 
of administration such as oral, pulmonary and topical application. 
The replacement of the toxic chemicals will be a big achievement 
and more studies can help to understand the exact reduction 
mechanism of GO using most of the reported green reducing 
agents in the nutraceuticals area. 
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