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Abstract

RNA sequencing (RNAseq) of postmortem tissues may provide insights into disease pathogenesis. We carried out paired-end RNA sequencing (RNA-seq) 
and single-end small RNA-seq of total tissue RNA in postmortem nervous tissues of neurodegenerative disease (NDD) subjects (or controls, CTL) from individuals 
who died with amyotrophic lateral sclerosis (ALS, cervical spinal cord, mRNA only), Alzheimer’s disease (AD, frontal cortex, mRNA and miRNA), or Parkinson’s 
disease (PD, ventral midbrain, mRNA and miRNA). Gene expression levels and miRNA counts were averaged and standard deviations (s.d.) calculated to assay 
NDD/CTL mean ratios and gene or miRNA variances (variance = standard deviation2), respectively.

We observed a wide spectrum of gene expression variances across our populations. Median, 25th, and 75th percentile gene expression variances 
in all three NDD populations were several fold greater than in CTL samples. For all three NDD’s, mRNA and miRNA variances in the NDD and CTL groups 
demonstrated power law relationships (log-log plots were ~linear).

Our findings support the hypothesis that NDDs result in heterogeneous gene expression (mRNA) patterns. Variances of mRNA’s and miRNA’s in both NDD 
and CTL tissues appeared to have a power law relationship with each other, suggesting that chaos mathematics influences gene and miRNA expressions.

INTRODUCTION
In spite of decades of research, processes underlying sporadic 

neurodegenerative disease (NDD) pathogenesis remain unclear. 
Rare, autosomal variants of each NDD exist, but account for a 
minority of cases and still require reaching adulthood for clinical 
expression [1-3].

RNA sequencing (RNAseq) is a powerful technological com-
ponent of “next generation sequencing” (NGS) that has become 
accessible in pricing with publicly available alignment (https://
ccb.jhu.edu/software/tophat; https://ccb.jhu.edu/software/
hisat2) and quantitation (http://cole-trapnell-lab.github.io/cuf-
flinks) (https://sourceforge.net/projects/mirdeepstar/) algo-

rithms and is increasingly reported in the scientific literature. A 
major unsolved dilemma relates to the biological interpretation 
of RNAseq data that can be easily acquired with the necessary 
economic, technological and computational resources. 

Much effort to this point has involved the separation of 
“differentially expressed genes” (DEG) from the larger group 
of non-differentially expressed genes, taking into account the 
problems of defining differential expression in the setting of 
multiple sampling [4]. Various corrections for multiple sampling 
have been used, with a currently popular approach being the 
use of “False Discovery Rate” cutoffs. However, these statistical 
manipulations, while important, do not necessarily help the 

https://ccb.jhu.edu/software/tophat
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biologist or clinician concerned about disease pathogenesis and 
progression. 

Various artificial intelligence clustering programs have been 
developed that utilize both gene family over-representation 
approaches [5-8] or “biologically blind” mathematical clustering 
[9] with post-hoc biological analysis of clustered groups. Both 
approaches ultimately require curating of genes into biological 
families, with all its attendant biases and imperfections.

The above problems are increased in postmortem studies 
of human CNS tissues from individuals who died from/with 
NDD phenotypes. By the time such persons die, typically several 
years have passed with the individual exhibiting progressive 
phenotype deficiencies that can reflect neuronal losses of the 
disease-vulnerable populations. One also does not know to 
what degree the gene expression changes observed represent 
adaptive changes in “survivor” neurons or “survivor” changes 
in surrounding cells (ie., astrocytes). Should one focus on 
changes in individual neurons (or other cell types), now that 
RNA amplification strategies allow “single cell RNAseq” [10]? 
Or should the total cellular milieu be sampled, as in whole tissue 
RNAseq?

Further compounding the problem are the relative 
inaccessibility of the CNS, compared to peripheral sites, and the 
presence of advanced disease in those who donate tissues for 
postmortem storage. Work-around to these problems include 
induced pluripotential stem cells (iPSC’s) and their neuronal 
derivatives [11-13], generated from living persons with disease 
phenotypes at early presentations. A more contemporary 
approach involves the isolation and RNAseq analysis of small 
pieces of cells, called “exosomes”, that break off from living and 
dying cells, are small enough to pass across the blood-brain 
barrier and appear in blood and other bodily fluids [14,15]. 

Research involving iPSC’s and their derivatives suffer from 
the problem of “youngness”, with recent attempts to “age” these 
cells for more adult genotypes [16]. Research into utility of 
exosomes is still in early stages.

We have previously published papers describing our work on 
postmortem samples of cervical spinal cords from persons dying 
with amyotrophic lateral sclerosis (ALS) [17], frontal cortex 
from persons dying with Alzheimer’s disease (AD) [18] and 
ventral midbrain from persons dying with Parkinson’s disease 
(PD) [18]. In each of these analyses, we found gene expression 
changes involving many different genes and biological groups. 
Qualitatively, these results also characterize the experiences of 
others.

In the present study we have examined the hypothesis 
that heterogeneity of gene expression is present in human 
postmortem CNS tissues and is of greater magnitude in samples 
from persons dying with a NDD compared to CTL tissue samples.

METHODS
To test this hypothesis, we aligned our sequencing files to 

the most current version of the human genome (hg38, released 
in 2014). Tissue demographics have previously been reported 
[17,18]. Our sequencing files were generated from tissue total 
RNA, using the Illumina paired-end, multiplex approach and 

>60 million reads/sample. ALS (and CTL) cervical spinal cord 
samples were aligned with TOPHAT2, AD (and CTL) frontal 
cortex, PD (and CTL) ventral midbrain samples were aligned 
using HISAT2. Cufflinks was used for quantitation of gene 
expression. miRDEEP* was used for miRNA identification and 
quantitation (https://sourceforge.net/projects/mirdeepstar/). 
All graph construction, curve fitting and statistical analyses used 
GraphPad Prism (v 8.0.2).

RESULTS

Gene expression variances in NDD show a normal 
(Gaussian) distribution around Disease/CTL ratios 

Figure 1 (ALS, CTL (ALS)); 2 (AD, CTL(AD)); and 3 (PD, 
CTL(PD)) show plots of individual gene expression variances 
(=standard deviation2) VS NDD mean FPKMs/CTL mean FPKMs 
gene expression ratios (graphs on left), while graphs on right 
show Gaussian fits of expression variances VS gene expression 
ratios. The vertical lines on left-hand graphs indicate NDD/CTL 
ratios of 1.0 (ie, equivalent expression). In all NDD and CTL 
tissues, gene variances VS. NDD/CTL expression ratios showed 
distributions that fit normal curves of Gaussian distribution 
(Figures 1-3), right-hand graphs). 

Figure 1 Gene expression variances VS gene expression ratios are normally 
distributed. (left) Plots of gene expression variance (= standard deviation2) VS 
gene expression ratios, based on FPKM values (FPKM = fragments per kilobase 
of exon per million reads) obtained from RNA sequencing of total RNA derived 
from cervical spinal cord sections of ALS (upper) or CTL (lower) subjects. The 
vertical line in each plot represents expression ratio of 1.0. (right) Plots of 
distribution of gene expression variances VS expression ratios for ALS (top) and 
CTL (bottom) samples, fit to Gaussian distribution using Prism.

https://sourceforge.net/projects/mirdeepstar/
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Figure 2 Same as for Figure 1 except for AD and CTL frontal cortex..

Figure 3 Same as for Figure 1 except for PD and CTL ventral midbrain.

We next defined the distributions of gene variances. Table 1 
showed that for all NDDs, gene variance medians and 25th and 
75th percentile limits were several fold higher than variances for 
CTL tissues analyzed at the same time. 

We then examined relationships among individual gene 
variances in NDD and respective CTL groups. We plotted log10 
of variances (NDD) vs log10 of variances (respective CTL) for 
individual genes (or miRNAs) of samples obtained from ALS, AD or 
PD subjects. We found (Figures 4,5) ~linear log-log relationships 
that suggest a power law relationship of the variances. 

DISCUSSION

There are at least two major findings of our work

First, gene variances VS NDD/CTL expression ratios (based 
on FPKMs) appear to be distributed normally across human 
postmortem CNS tissues in both disease (ALS, AD, PD) and CTL 
cases. The peaks of variances occur near Disease/CTL ratios of 
~1.0, suggesting that apparently equal expression of genes in 
these tissues is an artifact of large variances in gene expressions, 
at least for some genes.

Second, in disease (ALS, AD, PD) cases, we observed potential 
power law relationships among variances (NDD vs CTL) on an 
individual gene basis. This finding suggests that variances (and 
underlying standard deviations that in turn reflect individual 
gene or miRNA expressions) are determined by chaotic process 
(es). 

Our analysis of gene variance distribution showed that the 
median values for gene variances were much higher in NDDs 
than in CTL samples. Taken together, our gene expression data 
in three adult NDDs demonstrated heterogeneity much greater 
than in CTL samples. 

Aging itself appears to increase heterogeneity of gene 
expression [19,20]. Although multiple studies have shown 
the same qualitative phenomenon, underlying mechanisms 
remain unclear. Possibilities include factors that alter gene 
transcription (transcription factor availability, gene modification 
(ie, methylation), blockade of transcription site availability 
(chromatin changes)), and post-transcriptional factors 
(miRNA’s).

These findings beg the question of whether these 
heterogeneities were in any way causal to the NDD processes, 
or instead simply correlated with the NDD processes. That 
question cannot be answered by our data, as we only had access 
to advanced disease cases and not to intermediate or early cases. 

We are also limited in our interpretations by the following:

1.	 All of our NDD cases are from individuals with advanced 
NDD. The resulting gene expression values we obtained 
could represent “survival” responses of remaining 
neurons and/or “survival adaptations” of other CNS cells, 
such as astrocytes, that comprise the bulk of the tissues 
studied.

2.	 Some of the gene expression changes found, particularly 
under-expression in Disease, may simply represent loss 
of neurons in each NDD.

3.	 There are no reliable animal or cellular models of sporadic 
NDD’s. iPSC technology represents “young” neural cells 
(at best), and exosomal analysis, while hopeful, is at too 
early a stage of development.
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Table 1: Distributions of gene expression variances for NDD and CTL 
samples.
  AD CTL (AD) PD CTL (PD) ALS CTL (ALS)

25th 
percentile 1.03 0.43 2.12 0.42 6.74 1.6

median 2.96 1.1 6.68 1.16 28.05 4.79
75th 

percentile 11.61 4.15 28.21 5.03 153.1 20.07

Figure 4 Log10-Log10 Relationship among Gene (mRNA) Expression Variances.

Figure 5 Same as for Figure 4 except for miRNAs. Shown in red are regression 
lines.

In spite of these significant limitations, our findings 
demonstrate that regulation of gene expression is altered in 
NDD tissues, at least at death. Variances are more “scattered” 
relative to CTL tissues, but it is not clear whether this is due to 
transcriptional (ie. gene methylation, histone post-translational 
modifications) or post-transcriptional (ie., miRNA effects, other 
mRNA catabolism) mechanisms. Both types of changes could be 
operative and can be sought in NDD tissues.

Is gene expression a chaotic process (in the mathematical 
sense) that increases with aging and is made more chaotic by 
NDD? One simplistic view of chaotic processes is that small 
changes in input variables can lead to large changes in output 

behavior. From a systems biology/network perspective, small 
changes in expression of a regulatory “driver” gene could have 
major consequences in expression of downstream “passenger” 
genes. If this approach has merit, then one should be seeking 
to identify these regulatory genes that could be present in the 
“low variance” group of each NDD. It remains to be seen whether 
existing clustering algorithms can identify these regulatory 
genes, and it should be considered that the identity of these 
hypothesized regulatory genes might vary across subjects. 
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