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Abstract

Chlorpyrifos (CPF) is one of the widely used organophosphate which is one of the few discovered chemicals to be the developmental neurotoxicant as it
targets the critical period of developmental maturation of brain and targets the behavioral development. Many noncholinergic and cholinergic mechanisms are
involved commencing the disrupted cell replication, axogenesis and the differentiation leading to neurobehavioral impairments with a number of developmental
disabilities which are diagnosed in children at an alarming increasing rate. These persistent decrements in developmental abilities may well presage later
development of neurodegenerative disease thus may lead to neurodegenerative diseases. All these above-mentioned mechanisms ultimately lead to enhanced
oxidative stress. Therefore during the pregnancy, the natural antioxidants which are reported to have no side effects can be investigated as the treatment
against CPF intoxication protecting the developing fetus brain. Apart from the above discussed antioxidants, certain Ayurvedic products having no side effects
during the pregnancy and on the neural growth and development should be investigated and explored against CPF intoxications. There are certain such natural
products discussed which can be the treatment against neurodegenerative effects in developing brain. Therefore, these natural products must be investigated
for their therapeutic potential against CPF intoxication in developing brain leading to adverse neurobehavioral impairments and neurogenerative ailments.

INTRODUCTION

The relation between the pesticide exposure,
neurobehavioral and neurodevelopmental effects is an
emergingareaofgreatconcern.Thisfactisevidentlyreported
by the study of [1], where the endpoints examined included
neurobehavioral, affective and neurodevelopmental
outcomes amongstoccupational (both adolescentand adult
workers) and non-occupational populations (children)
exposed to the neurotoxic pesticides. This creates the
urge to explore more about the neurotoxic effects of
pesticides across the lifespan. Of among 200 chemical
neurotoxicants, many are developmental neurotoxicants
[2]. Developmental neurotoxicity causes brain damage
that is too often untreatable and frequently permanent.
The consequence of such brain damage is impaired CNS
function that lasts a lifetime and might result in reduced
intelligence, as expressed in terms of lost IQ points, or
disruption in behaviour. Disorders of neurobehavorial
development affect 10-15% of all births [3]. Subclinical
decrements in brain function are even more common
than these neurobehavioral developmental disorders. All
these disabilities can have severe consequences [4], they

diminish quality of life, reduce academic achievement,
and disturb behaviour, with profound consequences
for the welfare and productivity of entire societies [5].
Developmental neurotoxicity studies have been reported
by the epidemiological data showing that prenatal
exposure to chemical neurotoxicants may be associated
with an increased risk of pervasive developmental
disorders, delays in cognitive development, and attention
deficits. These developmental neurotoxicants have such
an adverse effect on the fetal brain as it undergoes rapid
growth and development, leaving them susceptible to
long-term effects of these neurotoxic OPs. Many studies
suggest the associations of developmental exposures to
OPs and neurological deficits such as in IQ [6-8], increase in
degenerative disorders like autism spectrum [9], attention
deficit-hyperactivity [10,11], and pervasive developmental
disorder [8-12]. Motor skill acquisition in infancy is another
neurobehavioral end point that provides a foundation for
downstream cognitive and socio-emotional development
in childhood [13], and serve as an early benchmark of
healthy neurological development [14]. Chlorpyrifos is
one of the organophosphate insecticides which is the
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highest selling insecticide across the world [15]. Due to
its lipophilic nature, chlorpyrifos can cross the blood
brain, placental and lactational barriers which induces
the developmental neurotoxicity resulting in long lasting
neurobehavioral alterations [16]. CPF has the wide ranged
effect on the critical period of developmental maturation
and its target on brain and behavioral development is quite
vulnerable for the embryonic development [17]. This has
been evidently proved by the in vitro studies involving the
dose administration of higher concentration levels resulted
in the reduced neuronal growth exhibiting destruction of
noncholinergic and cholinergic mechanisms commencing
from the neurological disruptions such as cell replication,
axogenesis and the differentiation [18]. These neurological
disruptions during the sensitive developmental period in
the fetal brain has been suggested to be associated with a
number of developmental disabilities (learning disabilities,
attention-deficit hyperactivity disorder, dyslexia, sensory
deficits, mental retardation, and autism spectrum
disorders) which are diagnosed in children at an alarming
increasing rate [19-21]. These neurobehavioral disorders
further can be broadly studied to be composed of a large
group of behavioral impairments seen in association with
neurodegenerative disease (e.g., stroke, multiple sclerosis,
dementia, and neuro-oncological conditions), transient
as well as permanent brain impairments (e.g., metabolic
and toxic encephalopathies), injury (e.g., trauma, hypoxia,
and/or ischemia) and motor skill development [22]. The
persistent decrements in intelligence documented in
children, adolescents, and young adults exposed in early
life to neurotoxicants may well presage later development
of neurodegenerative disease thus may lead to Parkinson’s
Disease (PD), Autism spectrum disorders and Alzheimer’s
disease as a result of developmental exposures to the
neurotoxicants [23]. The mechanism of action of CPF as
developmental neurotoxicant leading to neurobehavioral
impairments including cholinergic, noncholinergic
mechanisms and also as genotoxicant lead ultimately to
imbalance of ROS and antioxidants in brain creating the
oxidative stress. This oxidative stress in brain is evidently
proved to be responsible for altered neurodevelopment
leading to neurobehavioral alterations having long lasting
effects as various impairments and disorders in later
stages [24]. Therefore, to target this oxidative stress and
imbalanced ROS it can be suggested that antioxidants can
have modulatory effects as they can scavenge the free
radicals [25]. So, natural antioxidant such as vitamin C,
E, polyphenol compounds such as flavonoids, alkaloids,
curcumin without any side effects in pregnancy can be
suggested to prevent CPF induced neurodevelopmental
toxicity = thus ameliorating the neurobehavioral
impairments and related disorders.

This review sheds light on the role of antioxidants as the
modulatory treatment against these neurodevelopmental
alterations and outcomes induced via Chlorpyrifos induced
neurobehavioral impairments and related disorders due
its exposure in developmental period.

CHLORPYRIFOS AS A
NEUROTOXICANT

DEVELOPMENTAL

Chlorpyrifos is one of the widely used organophosphate
pesticide, it represents a paradigmatic example of
developmental neurotoxicant as it elicits developmental
neurotoxicity at exposure levels below the threshold
for systemic toxicity, such that adverse effects can occur
in pregnant women and children Ricceri et al. [26], try
changing general factual references to the latest years.
Experimental studies in rodents indicate that pre- or
postnatal exposure to chlorpyrifos affects various cellular
processes (e.g. DNA replication, neuronal survival, glial cell
proliferation), noncholinergic biochemical pathways (e.g.,
serotoninergic synaptic functions, the adenylate cyclase
system), and causes various behavioral abnormalities (e.g.
locomotor skills, cognitive performance) (Ricceri et al
[27], add more references). These findings, together with
results of biomonitoring studies that indicate exposure
of children, particularly in inner cities and in farming
communities, to organophosphates [28], have led to
regulatory restrictions on the residential use of certain
OPs (e.g, diazinon, chlorpyrifos), and to heightened
concern for their potential neurotoxic effects in children
[29,30]. CPF has the wide ranged effect on the critical
period of developmental maturation and its target on
brain and behavioral development is quite vulnerable
for the embryonic development [17]. This has been
evidently proved by the in vitro studies involving the dose
administration of higher concentration levels resulted in
the reduced neuronal growth exhibiting destruction of
noncholinergic and cholinergic mechanisms commencing
from the disrupted cell replication, axogenesis and the
differentiation [18], reported to have children with
neurobehavioral impairments [8]. Some of the evidences
clearly indicate this neurobehavioral impairment due to
CPF intoxication such as Alvin et al. [31], demonstrated that
the rats injected with CPF subcutaneously (dose range, 2.5-
18 mg/kg b.wt.) for 30 days there was decrement in water
maze hidden platform task and certain reflex activities
like grasping, open field activity indicating the decline in
neurobehavioral impairments. Few rodents studies so
far have focused on the behavioral effects of CPF in early
developmental phases such as in preweaning rats righting
reflexes and cliff avoidance like reflex activities were
found to be altered after repeated low level CPF exposure
during late gestation and deficits in reflexes were observed
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in female pups after PND 1-4 exposure [32]. Therefore
CPF neurotoxicity after prenatal and postnatal exposure
and developing organisms appear more controversial as
most of animal studies indicate that CPF exposure below
threshold can lead to disruptive effects on CNS and neuro-
behavior [33,34].

Prenatal developmental toxicity

CPF exposure during the pregnancy period is vulnerable
to the developing fetus and is area of major concern. The
last trimester of pregnancy is the period of major window
period for the neurogenesis and formation of other
neuronal systems [35]. Major brain region formation occur
in this period and it is considered as the period of intense
activity of cerebrum and hippocampus thus attributing
the developing fetus with the sensorimotor and physical
development parameters [17]. The prenatal CPF exposure
to developing fetus occurs through the placenta due to its
lipophilic property [36]. Many investigatory studies have
exposed the relation of dam exposure and toxicity effects in
the neonate due to placental transfer by detecting the CPF
levels in the umbilical cord and detecting its impact on the
development of brain in children in later stages or during
their growth period [11]. Exposure to mother to the toxic
dose of CPF brings about increased fetal absorption, low
birth weight along with visceral and skeletal abnormalities
of the embryo [18]. CPF prenatal exposure invoked the
negative effects on the development of locomotory,
behavioral and cognitive abilities of infants. Prenatal
exposure to organophosphate pesticides is negatively
affecting the child neurobehavioral performance including
abnormal reflexes in infants [8], mental and psycho
motor development delay in toddlers [11,12], and lower
intelligence levels and cognitive impairments in school
children [6,7]. Several evidences have been reported to
cause neurobehavioral impairments due to prenatal CPF
intoxication such as in Table 1.

Postnatal developmental toxicity

Many studies proved that the CPF exposure in
early postnatal stages to result in the inhibition of
acetylcholinesterase signifying it to be important
component of development toxicity [15]. The development
of major regulatory systems underlying behavior and
physiology in neonates is primarily determined by the
dam, the primary source of nutrition, grooming, and
warmth required for immediate survival [40], thereby
playing a crucial role in the postpartum development of
the architecture of the brain. Chlorpyrifos can easily cross
the blood brain barrier [41], therefore after passing down
through lactation in neonates can easily target the brain
developmental processes thus producing structural or
functional changes thatresultin behavioral changes such as
lower cognitive abilities, neuromotor and neurobehavioral
activities [42-44]. These significant effects could be due to
degradation of lipids and proteins after exposure of CPF
in brain leading to generation of free radical species [45],
creating the oxidative stress in brain. There are changes in
antioxidant status leading to altered activities of cellular
enzymes [46,47], exerting its effect on neurotransmitter
signaling pathways [18]. The postnatal CPF intoxication
and its resultant altered neurobehavioral effects are
evidently reported by many experimental studies as in
Table 1.

CHLORPYRIFOS INDUCED DEVELOPMENTAL
NEUROBEHAVIORAL DEFICITS AND DISORDERS
IN NEONATES

Pesticides alter the levels of neuroproteins that
are important for normal brain development and thus
neurobehavioral abnormalities are manifested as altered
adult spontaneous behavior. The neurotoxic behavioral
effects persist several months after the initial testing,
indicating long-lasting or even persistent irreversible
effects which confirms the long lasting changes in
behavior when exposed during a critical period of brain
development [48]. These neurobehavioral disorders
further can be broadly studied to be composed of a large

Table 1: The summary of experimental studies reported to have neurobehavioral effects in neonates due to CPF prenatal exposure.

Model System Dose and Roudt:n(iiEXposures mn Time of Exposure Neurotoxic Effects References
Reduced motor behavior
CD 1 mice Oral dose of 6 mg/kg b.wt. GD 14-17 Hypereflexia (Hind limb grasping) Venerosi et al., 2009 [32]
Delay sensorimotor activities
Foraging maze test results:
ND 4 mice 1 or 5 mg/kg/day in DMSO; subcutaneous GD 17-20 Decreased spatial learning Haviland et al., 2010 [37]
Decreased memory
16 arm radial maze test results:
SD rat 1 or 5 mg/kg/day in DMSO; subcutaneous GD 17-20 Decreased spatial learning Levin et al,, 2002 [38]
Decreased memory
ICR mice 1 or 5 mg/kg/day in DMSO; subcutaneous GD 13-17 Memory impairment Chenetal, 2012 [35]
Wistar rat 0.01, 0.01, 10 mg/kg/day b.wt.; oral GD 14-20 Anoxigenic and anxiety like behavior Silvaetal, 2017 [39]
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group of behavioral impairments seen in association with
neurodegenerative disease (e.g., stroke, multiple sclerosis,
dementia, and neuro-oncological conditions), transient
as well as permanent brain impairments (eg., metabolic
and toxic encephalopathies), and/or injury (e.g., trauma,
hypoxia, and/or ischemia) [22]. There is growing concern
that chronic or sub-chronic low-level exposure to OPs may
affect neural patterning during embryonic development,
and may contribute to various neurobehavioral disorders
such as autism, anxiety, depression, and attention deficit
hyperactivity disorder (ADHD) [11-49]. Various studies
reported that the developmental exposures to CPF have
drastic outcomes on the development of brain leading
to the neuronal impairments at the exposures below the
threshold for causing the systemic toxicity [50]. Further
there are various experimental studies which showed that
any stress occurring in early developmental stages have
long term influences and changes in gene expressions
in brain leading to behavioral impairments [51]. Many
studies have been conducted to reveal such behavioral
alterations in neonates due to Chlorpyrifos developmental
exposure to dams such as in Table 2.

« Anxiolytic effects of CPF using elevated plus-
maze tests [57], open field tests which were included in
thigmotaxic alterations induced due to prenatal exposure
and post-natal exposure [58].

7

« Low frequency of behaviors of locomotion and
rearing in open field tests are indicative of decreased
locomotion and exploration level [59].

« The cognitive ability control and the impulsive
attributes leading to highly aggressive behaviour [60].

7

+  The alterations in sleep index or shift in sleeping
time periods which is known to be the result of synaptic
destruction leading to further, changes in sleep behaviors
including a shift in timings [61].

7

«» Motor agitation and hyperactivity signs. The
model offspring of rats prenatally exposed to the single

dose of CPF had difficulties solving the extrapolation
escape testand showed poorer shortand longterm memory
performance. This confirmed that even pre-pregnancy
chlorpyrifos exposure can cause neurobehavioral
consequences in offspring [62].

KD

«  Manystudies have beenreported to investigate the
gestational pesticide exposure leading to highly reduced
levels in child IQ level [6,7], along with it there have been
many investigations and cohort studies indicating the
prenatal or postnatal exposure through different routes
in the mother can effect the weight of the child. Further
many studies also resulted in the fact that the reduction
in birth weight also relates with the lower IQ as well poor
cognitive functions which showed that the prenatal or
postnatal exposure of chlorpyrifos to the dam can lead
to the decrease birth weight accompanied with many
neurodevelopment impairments in offspring [63,64].

7

s Attention problems associated with alertness,
quality of alert responsiveness, cost of attention and other
potential attention associated measures [65].

Disruptions in emotional, cognitive, and social
behavior are common in neurodegenerative disease and
many forms of psychopathology [66]. The major concerns
related to developmental OP exposure are delayed effects
following high level exposures as well as the impact of low
level exposures during the lifespan which are suggested
to be a risk factor for nervous system chronic diseases
like Alzheimer’s, Parkinson’s, and Amylotrophic Lateral
Sclerosis diseases [67]. Evidently CPF which is one of these
organophosphate insecticide has been reported to cause
various pathologies like excessive microglial activation
and subsequent neuroinflammation leading to neuronal
cell death which are involved in the pathogenesis and
progression of several neurodegenerative diseases such
as Parkinson’s disease [68], induces oxidative stress and
neuronal damage causing Alzheimer’s disease (AD) [69].
Therefore, neurobehavioral impairments after prenatal
and postnatal exposure of CPF in dams it is matter of great
concern as it can further lead to pathologies and disorders
in neonates and adults.

Table 2: The summary of experimental studies reported to have neurobehavioral effects in neonates due to CPF postnatal exposure.

Model System Dose and Rou(;:l:)liExposures m Time of Exposure Neurotoxic Effects References
SD rats 1-3 mg/kg b.wt,, oral PND 11-14 Altered neurobehavioral responses Ricceri et al., 2006 [26]
SD rats 5 mg/kg b.wt.,, oral PND 10-16 lAltered soc.lal 1n.teract%0ns ) Carretal, 2011 [52]
Behavioral alterations including anxiety
SD rats 3 mg/kg/48hr. b.wt,, oral PND 1-21 Reduced neuromotor activities Carretal, 2001 [53]
SD rats 1 mg/kg bawt, oral PND1-4 Reduced neurobehavioral and sensory reflexes Dam et al, 2000 [54]
Wistar rats 1 mg/kg b.wt., oral GD7-PND1 Decreased spatial learning and memor Gomez-

8/Kg bWt P 8 y Gimenez et al,, 2017 [55]

SD rats 6 mg/kg b.wt., oral PND 1-21 Memory impairment, attention and learning deficit. Johnson et al., 2009 [56]
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MECHANISMS INVOLVED IN CHLORPYRIFOS
INDUCED NEUROBEHAVORIAL DISORDERS

Long-term low dose effects of chlorpyrifos exposure
and its mechanism of action are linked to neurobehavioral
diseases [70]. There are different pathways of mechanism
of action of chlorpyrifos causing the neurological
alterations leading to impairments in brain. Inhibition
of enzyme acetylcholinesterase (AChE) is the major
action of CPF neurotoxicity mechanism [71]. The serine
hydrolase (AChE) is majorly present in the synaptic clefts
of cholinergic signaling systems. Its main action in brain
is to transmit the impulses by its hydrolysis at its serine
and ester hydrolytic sites, the inhibitors block these sites
thus inducing the reversible and irreversible inhibition.
CPF capability to curb AChE, leading to hyper activation
of cholinergic neurotransmitter systems [72], incomplete
sentence. CPF alters the gene expression of neurotrophic
factors [73], thus invoking the enhanced oxidative stress
[74,75]. CPF is known to inhibit the antioxidative enzymes
[76],leading to damage at DNAlevels and further enhancing
the Reactive Oxygen Species (ROS) resulting in elevated
levels of oxidative stress. Acetylcholinesterase inhibition
is yet another component in case of developmental
toxicity where it causes alteration in neural development
and induce the negative development when exposed to
chlorpyrifos prenatally or postnatally [36]. CPF induces the
developmental neurotoxicity which curbs the replication
in cell cycle process neural cellular replication [77], which
interfere with the differentiation of cell, interferes with
cellular differentiation [78], invoking the higher levels
of oxidative stress disrupting the neurotransmitter cell
signaling systems which results in neurobehavioral
impairments [75].

The course of action involving the AChE inhibition
is accounted as it crosses the blood brain barrier [41].
As blood brain barrier provides protection to the brain
from stress induced alterations and the other toxicant
compounds that may enter the circulation plays significant
role in stabilizing the constant environment for basic
functioning of brain activities [79]. CPF destructs the blood
brain barrier leading to inhibition of acetylcholinesterase
activity generating reactive oxidative species in brain
thus, increase in caspases activity indicates invoking to
the beginning of higher apoptotic activities suggesting
possible induction of apoptosis. The major transcription
genes which are involved for neural maturation, signaling
receptor synthesis, myelination, neurotransmitter receptor
systems are also elicited by its activity [50-83]. CPF mainly
targets the nuclear and cell signaling transcriptional gene
factors such as cAMP leading to effect on their resultant

actions such as modulations of G-proteins and various
receptor systems related to cAMP pathways. These effects
invoke other downstream processes such as apoptosis,
oxidative stress and the excitotoxic cell death. These
processes clearly indicate the genotoxicity exhibited by
CPF. As per the studies CPF is suspected to be capable of
inducing the DNA crosslinks as it contains two methoxy
groups that act as alkylating agents, further it can induce
the phosphorylation of DNA as the phosphorous moeity
may act as the neucleophilic agents, cell cycle desruption
have also been reported such as blocking of the checkpoints
and transitions in the cell cycle thus, the DNA damage
and the cell cycle alterations (including the upregulation
mRNA genes such as p53) and apoptosis account for the
genotoxicity [84]. The studies concluded that CPF induces
the generation of these free radical species during the
metabolism or due to disruptions in cell cycle leading to
apoptosis or due cell deaths thus leading to alterations or
chemical modifications in DNA bases and sugars. The basic
mechanism of CPF leading to genotoxicity is its targeting
on the mitochondrial membrane and its caspases thus
leading to much increased apoptosis and generation ROS
further causing much DNA damage and the genotoxicity
[85]. Further inducing a clear excitotoxic neural death
[86]. CPF mainly targets the neurotransmitter pathways
in the developing brain [50-87], such as acetylcholine,
dopamine, serotonin, endo-cannabinoid (noncholinergic)
signaling pathways leading to neurodegeneration. CPF
can undergo the mechanism of action by targeting the
expression of NMDA receptor system [88], in brain leading
to alteration in the gene expression of neurotrophic gene
expression [86-89], thus invoking the oxidative stress
[74,75]. The hyperactivation of NMDA receptor can trigger
the neuronal injury which could be lethal reflecting the fact
that it has greater ability to induce calcium influx. The over
activation of these receptors induce glutamate mediated
neurotoxicity called the glutamate induced excitotoxicity
leading to excessive glucose and oxygen and thereby ATP
levels decrease leading to increase in glutamate. Thus,
accumulation of glutamate triggers the calcium influx
further triggering various intracellular cascades and
neural damage [90], as explained in Figure 1.

Although cholinesterase inhibition is the main
mechanism in CPF toxicity, recent evidence has implicated
other mechanisms [91]. One of such mechanism associated
with both acute and chronic CPF poisoning is the oxidative
stress. Oxidative stress in pesticide exposure is evidenced
by increased concentration of blood malonaldehyde and
TBARS, changes in antioxidant status and altered activities
of cellular enzymes [46,47]. CPF has been postulated
to have multiple effects on the target cells including
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generation of ROS and induction of intracellular oxidative
stress thereby disrupting normal cellular development
and differentiation [92]. Chlorpyrifos has also been
reported to also induce oxidative stress in different parts
of the brain, liver through increased levels of reactive
oxygen species (ROS), hydrogen peroxide (H,0,), nitrate
(NO*) and nitrite (NO?%) [93]. Accumulation of ROS in all
the region of the brain and other tissues may disturb the
normal physiological function thus aggravating the toxicity
symptoms of CPF. Several studies point to the production
of ROS as a secondary means of toxicity [92]. These include
hydroxyl, peroxyl radicals and hydrogen peroxide that
target and inactivate biological macromolecules eventually
damaging membranes and other tissues increasing the
lipid peroxidation leading to excess oxidative stress as in
Figure 2 [94].

These mechanisms of action can link chlorpyrifos to
many neurobehavioral impairments and disorders
mainly neurodevelopmental and neurodegenerative
disorders as in Table 2

%+ Chronic organophosphate induced
neuropsychiatric disorders (COPIND) occur without
cholinergic symptoms and apparently are not dependent
on AChE inhibition [95,96]. COPIND usually appears with a
delay and persists for a long period possibly suggesting the
permanent damage of the central nervous system [97-99].
The most common symptoms of COPIND include cognitive
deficit (impairmentin memory, concentration and learning,
problems with attention, information processing, eye-hand
coordination and reaction time), mood change (anxiety,

5

l in Brain
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antioxidative defence system

¥ | Oxidative stress

e ==

MDA content increased

Figure 2 Chlorpyrifos and its metabolites leading to oxidative stress
in brain

depression, psychotic symptoms, emotional liability),
chronic fatigue, autonomic dysfunction, peripheral
neuropathy and extrapyramidal symptoms such as
dystonia, resting tremor, bradikynesia, postural instability
and rigidity of face muscles [100-110]. In children exposed
to CPF during developmental period neurobehavioral
impairments were observed [111]. Researches have
suggested that mechanisms other than inhibition of AChE
might also be involved. These alternative mechanisms may
involve other protein targets (such as serine hydrolases,
acyl peptide hydrolase) present in the nervous system
leading to cognitive damage [95-113].

< Chlorpyrifos neurotoxicity correlate well with
neurobehavioral deficits observed consequent to
neurodegenerative diseases.

v' Certain reports have evaluated the effects of the
metabolite chlorpyrifos oxon (CPO) exposed in gestation,
lactational and after weaning period on the development
of Alzheimer’s Dementia later in life in the mouse model
and confirmed that this process may be partially mediated
by inflammation, oxidative stress, acetylcholinesterase
(AChE) inhibition due to amyloid beta accumulation [114].

v' Excessive microglial activation and subsequent
neuroinflammation lead to neuronal cell death which are
involved in the pathogenesis and progression of several
neurodegenerative diseases such as Parkinson’s disease
[68].

v' Pesticides are composed of a parent product, inert
ingredients, and in some cases agonists that enhance the
functionality of the parent compound, and all of these
ingredients may be degraded to metabolites that also
distribute throughout the body. Consequently, chlorpyrifos
and its metabolites might contribute to Autism Spectrum
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Disorder by manifesting various neurobehavioral
impairments by inhibiting AChE, mitochondrial

dysfunction and oxidative stress [115]. Further the other
non-cholinergic pathways (GABAergic, glutamatergic,
serotonergic and dopaminergic systems) [116].

These neurobehavioral impairments manifested
neurodegenerative disorders are due to CPF exposure
the apoptosis, excitotoxicity, mitochondrial dysfunction,
inhibition of AChE and other noncholinergic pathways
which lead ultimately to oxidative stress in brain and
excessive production of ROS [117]. This increased
oxidative stress produced due to developmental exposure
of chlorpyrifos in children through their mother’s body is
a matter of increased pathologies in children. Therefore,
there is need of any natural compound which could be
utilized as treatment in pregnant ladies and is an anti-
oxidative, cross the placental, lactational and the blood
brain barriers thus providing the protective and balanced
environment of ROS in brain.

TREATMENT

Various mechanisms whether cholinergic and non-
cholinergic are involved in the CPF neurotoxicity effecting
the developing brain due to its prenatal or post-natal
exposure. But all these mechanisms ultimately lead
to enhanced oxidative stress. Therefore, during the
pregnancy, the natural antioxidants without the side
effects can be investigated as the treatment against
CPF intoxication protecting the developing fetus brain.
Antioxidants are compounds or agents that impede auto
oxidation by interposing the formation of free radicals or
by hindering propagation of free radicals such that they
scavenge the species that instigate the peroxidations or
decompose the free radical species. In case of CPF, they can
easily neutralize the increased ROS generated by accepting
or donating electron to eliminate the unpaired condition of
the radical [118].

7

< Vitamins C and E are essential nutrients and
considered the most important antioxidants obtained
through the diet in citrus fruits, almonds, rooted vegetables
etc. The antioxidant actions of vitamin E (the tocopherols
and tocotrienols) lie in their ability to become incorporated
into biological membranes to stablise and protect against
lipid peroxidation [119], while the antioxidant properties
of vitamin C (ascorbic acid) arise because vitamin C acts as
an electron donor, thereby preventing other agents from
becoming oxidised and quenching an overproduction of
free radicals [120].

o

+ Flavonoids are polyphenolic compounds and
have a wide spectrum of biological activity and exhibit

various properties as an antioxidant which is contributed
by its molecular structure which can scavenge the free
radicals such asitis anti-inflammatory in nature [121,122],
anti-apoptotic, anti-cholinesterase activity which is
one of the treatments for mild to moderate Alzheimer’s
and Parkinson’s disease [123,124]. It is considered safe
during pregnancy [125]. Due to its variety of defensive
roles flavonoids can be the treatment for neuroprotection
during developing period against CPF intoxication.

% Alkaloids constitute positive roles in ameliorating
pathophysiology of neurobehaviour or neurological
disorders by functioning as muscarine and adenosine
receptors agonist, antioxidant, anti-amyloid and
acetylcholinesterase and butyrylcholinesterase inhibitor,
dopaminergic and nicotine agonists and NMDA antagonists
[126]. These pathologies are basis of CPF induced
intoxication during development period in children
leading to neurodegeneration and consecutive behavioral
impairments. Berberineisone ofsuchalkaloid extractwhich
is of great therapeutic potential against neurodegenerative
diseases and is known to neuroprotective [127]. It has been
used in Chinese Ayurvedic medicines during pregnancy.
Therefore, it can be explored against CPF intoxication
inducing developmental neurotoxicity.

R?

% Curcumin has an outstanding safety profile
and a number of pleiotropic actions with potential for
neuroprotective efficacy, including anti-inflammatory,
antioxidant and anti-protein aggregating activities [128].
Due to its anti-inflammatory properties, it has been
evidently found to boost brain power in babies [129].
Further these antioxidants and anti-inflammatory effects
notonlybyblockingoxidativestressandneuroinflammation
in neurotraumatic and neurodegenerative diseases by
restoring cellular homeostasis and rebalancing redox
equilibrium [130]. Thus because of its pluripotency, oral
safety, long history of use, inexpensive cost, curcumine
has potential against CPF induced neurodevelopmental
disorders.

Apart from the above discussed antioxidants, certain
Ayurvedic products having no side effects during the
pregnancy and on the neural growth and development
should be investigated and explored against CPF
intoxications. There are certain such natural products
discussed which can be used as a treatment against
neurodegenerative effects in developing brain.

KD

< Kushmanda: In ayurveda, Kushmanda Rasayna
is used during pregnancy for nourishing the mother
and developing a baby. It is likely to be safe to consume
by lactating mothers. There are no adverse effects
reported with use of Kushmanda in lactating mothers and
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breastfeeding babies. It has been reported to improve
the memory, intellect and brain health. It is found to be
effective in dullness in children due to undeveloped brain
and seizures. It is found to be beneficial in autism and other
neurological deficits in children, improves focus, attention,
memory, speech and concentration. It has been reported
to improve neurotransmission and repair of damaged
neurons via enhanced regeneration of nerve synapses via
changes in areas of brain critical to memory and cognitive
abilities. Though its exact mechanism is not yet explored
but it can be investigated effective against CPF intoxication.

7

+ Lemon balm (Melissa officinalis): The American
Pregnancy Association list Lemon Balm as ‘likely safe’
for pregnant women when taken in these usual culinary
amounts. Lemon balm is reported to be incredibly nutritive
to the nervous system. It is calming and supports the mood
while also increasing alertness. It helps to increase the
cognitive speed. It is found to protect the aging of brain
which indicates its anti-neurodegenerative property
reference. Therefore, it can be an effective treatment
against degenerative alterations due to CPF.

7

¢ Bacopa (Brahmi): Bacopa monnieri contains
powerful compounds that may be antioxidant effects as it
has been reported to neutralize free radicals and prevent
oxidative stress thus inhibiting the neurodegenerative
deficits such as Alzheimer’s, Parkinson’s and other diseases.
It has myriad of effects due to its antioxidative nature such
as anti-inflammatory, enhancing brain function, spacial
learning and ability to retain information. Though no such
studies have been investigated for its use in pregnancy
but it is found to be safe according to Ayurveda in 3-4
weeks after pregnancy and is found safe during lactating
period. Thus, it is an effective neuroprotective agent and it
can be therapeutically explored for its properties against
neurotoxic effects of CPF.

So these plant extracts are the natural sources
which can be exploited for potential therapeutic use in
pregnancy specifically against CPF induced developmental
neurotoxicity and their consecutive disorders and
behavioral alterations leading to prolonged long term
effect and neurodegeneration.

CONCLUSION

Neurobehavioral impairments and disorders due to
the developmental neurotoxicant exposure during the
postnatal or prenatal period through mother to offspring is
the great matter of concern. Chlorpyrifos is also one of these
neurotoxicants which is largest selling organophosphate
insecticide in the world and is creating great havoc in
generations to generations. It had been evidently proved

that it can easily pass the placental barrier and can pass
down through lactation, thus entering the body of offspring
crossing the blood brain barrier and leading to different
pathologies through various mechanism of actions thus
disruptingthe signaling pathwaysboth cholinergicand non-
cholinergic. This leads to degeneracy of neuronal cells and
cellular damages, apoptosis, excitotoxic pathways. Thus,
creating oxidative stress in brain. This increased oxidative
stress is manifested through various neurobehavioral
impairments such as cognitive impairment, altered
behavioral responses like anxiety, depression, reduced
sleep cycle, low IQ level, reduced motor skills, attention
deficits and they lead to lifelong prolonged disorders
prevalent in childhood stage like Autism, Chronic
organophosphate induced neuropsychiatric disorders
(COPIND). Further due to degenerative processes going on
in brain due to neurotoxicity many degenerative disorders
like Parkinson’s and Alzheimer’s disease in later stages of
life are found to occur evidently. So, there is great need of
treatment against this CPF developmental neurotoxicity
which would be safe in pregnancy, organic and without
side effects. Therefore, many plant extracts which are
antioxidants and are pleiotropic should be explored such
as Vitamin C and E, flavonoids, alkaloids, polyphenols
are such antioxidants add (gems of Ayurveda which
have not yet been explored for their myriad of life saving
properties) which can be utilized against CPF during
pregnancy period and are neuroprotective thus curbing
various neurobehavioral impairments and disorders.

Thus to summarize, there is a need of treatment
against CPF intoxication as it is matter of global health
concern and cause of many neurobehavioral disorders in
children. Keeping in mind the safety of pregnant ladies
and fetus or offspring natural antioxidant compounds
can be the emerging research area for exploring much of
their therapeutic potentials against chlorpyrifos induced
neurobehavioral alterations and disorders in neonates and
their long term effects.

SIGNIFICANCE OF STUDY

Neurobehavioral and neurodegenerative deficits due
to Chlorpyrifos intoxication affecting the developing brain
due to prenatal and postnatal exposure through dam is
the major reason of concern globally. The mechanisms
of neurotoxicity have been investigated so far but still no
treatment without any side effects during pregnancy have
been accounted which can curb the increased intoxicating
effects in developing brain leading to neurobehavioral
alterations and other neurodegenerative deficits in
longterm. Therefore, natural antioxidants could be the
treatment against CPF intoxication during the course of
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pregnancy. As per the study there are some other natural
products lLe. Kushmanda, Lemon balm, Bacopa which
can be of therapeutic potential against this CPF induced

neurotoxicity

leading to different neurobehavioral

ailments and diseases.
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