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Abstract

Microglial activation is one of common pathological findings in the lesions of 
many neurodegenerative diseases. In the 1980’s immunohistochemical studies, using 
anti-major histocompatibility complex class II (MHCII) antibodies identified activated 
microglia in postmortem brains of neurodegenerative diseases. Microglial activation 
in the brains of patients with neurodegenerative diseases has been demonstrated 
since 2000 by positron emission tomography studies employing PK11195. Moreover, 
activated microglia have also recently been implicated in endogenous psychiatric 
disorders, such as schizophrenia and mood disorders, where common pathological 
findings had never before been identified. However, the exact functional states of 
microglial activation in neuropsychiatric diseases remain to be clarified, since an 
increase in expression of a microglial marker MHC II or PK11195 is not necessarily 
an indicator of classical inflammatory microglial activation. Accumulating evidence 
shows that both antidepressants and antipsychotics attenuate the classical activation 
of microglia, suggesting that such an action may be associated with their therapeutic 
effects. It is clearly desirable to establish reliable markers that would identify specific 
microglial activation states in neuropsychiatric diseases.

ABBREVIATIONS
COX, cyclooxygenase; D2R, dopamine 2 receptor; EAE, 

experimental autoimmune encephalomyelitis; GFAP, glial 
fibrillary acidic protein; IFN, interferon; IL, interleukin; iNOS, 
inducible nitric oxide synthase; LPS, lipopolysaccharide; MHC II, 
major histocompatibility complex class II;NF-kB, nuclear factor-
kB; NO, nitric oxide; PET, positron emission tomography; PHOX, 
NADPH oxidase; PKA, protein kinase A; SSRI, selective serotonin 
reuptake inhibitor; TCA, tricyclic antidepressant; TNF, tumor 
necrosis factor

INTRODUCTION
Microglial activation is a common pathological finding in 

lesions of a broad spectrum of neurodegenerative diseases. 
In the 1980’s seminal studies by the McGeer group, using 
immunohistochemistry with anti-major histocompatibility 
complex class II (MHC II) antibodies, identified activated 
microglia in the postmortem brains of Alzheimer disease [1,2], 
Parkinson disease [2], multiple sclerosis [3] and amyotrophic 
lateral sclerosis [3]. From 2000 onward, the microglial activation 
in the brain of patients with various neurodegenerative diseases 
has been demonstrated by positron emission tomography 
(PET) studies employing PK11195, a tracer of peripheral 

benzodiazepine receptors [4]. Moreover, activated microglial 
have also recently been implicated in endogenous psychiatric 
disorders, such as schizophrenia and mood disorders, where no 
common pathological findings had previously been identified. 
Immunohistochemical studies have shown an increase 
in MHCII expression in the postmortem brains with both 
schizophrenia and affective disorder [5,6], while PET studies 
have demonstrated increased binding of PK11195 in brains of 
schizophrenia patients [7,8]. In a way, these studies appear to 
verify “the macrophage theory” proposed by Smith in 1990’s that 
argued that dysregulation of innate immune and inflammatory 
processes caused by activated macrophage/microglia may 
be involved in the pathogenesis of schizophrenia and major 
depression [9,10]. However, the exact functional states of 
microglial activation in neuropsychiatric diseases must still be 
clarified, since increases in expression of the microglial marker 
MHC II and PK11195 are not necessarily indicators of classical 
activation [11]. Accumulating evidence suggests that inhibitory 
effects on the classical inflammatory activation of microglia 
may be associated with therapeutic actions of psychoactive 
drugs, such as antidepressants (reviewed in [12-14]) and 
antipsychotics (reviewed in [15,16]). This mini-review discusses 
anti-inflammotoxic properties of the neuroleptics and nature of 
microglial activation associated with neuropsychiatric disorders.
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ACTIVATION STATES OF MICROGLIA AND 
NEUROPSYCHIATRIC DISORDERS

Recent studies imply that microglial response is heterogeneous 
and that microglial activation states are more complicated 
than originally described by Del Rio Hortega almost a century 
ago [11,17]. Del Rio Hortega defined “activation” of microglia 
based on their morphology, in which ramified microglia in the 
healthy brain are supposed to be in a resting state and, upon any 
potential danger signal, these cells morph into an amoeboid or 
macrophage-like shape [18,19]. It has now been suggested that 
there are, at least, three different states of microglial activation.

Conversion of microglia into the pro-inflammatory phase as an 
innate immune response is one of the initial functional outcomes 
of the activation process and has been defined as “classical 
activation”. This microglial state is associated with the production 
and release of pro-inflammatory cytokines (e.g., tumor necrosis 
factor (TNF)-a, interleukin (IL)-6, IL-1b), proteases (e.g., matrix 
metalloproteinase-9), chemokines, superoxide anion, nitric oxide 
(NO) and reactive oxygen-nitrogen species [20-23]. Although 
cytoactive agents released during classical activation are aimed 
at tissue defense and the destruction of pathogens, they also have 
potency to induce inflammotoxic response of host tissue [11].

Classical activation is followed rapidly by an anti-inflammatory 
and repair phase that ideally leads to wound healing and the 
return of tissue homeostasis, the ultimate outcome of a successful 
innate immune response [11]. This anti-inflammatory and repair 
function of microglial activation includes “alternative activation” 
and “acquired deactivation” [24,25]. When stimulated with IL-4 
and/or IL-13, microglia demonstrate alternative activation, with 
decreased expression of pro-inflammatory mediators, including 
inducible nitric oxide synthase (iNOS) and TNF-a mRNA, and 
an increased expression of repair genes, such as arginase I and 
mannose receptor [26,27]. Acquired deactivation is induced by 
exposure to IL-10, transforming growth factor-b and/or apoptotic 
cells [25,28-30]. After engulfment of the apoptotic phospholipid 
phosphatidylserine, microglia reduces their generation and 
release of superoxide anion, NO and TNF-a [31, 32]. Alternative 
activation and acquired deactivation both down-regulate innate 
immune responses and show similar, but not identical, gene 
profiles, even though many investigators mix them up [17]. 

Several antigenic markers have commonly been established 
to indicate microglial activation states. For example, CD45/ MHCII 
and mannose receptor/CD163 are conventionally used as typical 
makers for classical activation and for alternative activation, 
respectively [17,22]. However, recent studies have revealed 
that CD45 expression represents a down-regulation of pro-
inflammatory and neurotoxic activation of microglia [33,34] and 
that increased expression of MHCII is also observed in alternative 
activated microglia [11]. Although microglial activation in 
brain of patients with neuropsychiatric disorders has been 
demonstrated by PET studies using PK11195, the mechanism 
by which the mitochondrial peripheral benzodiazepine receptor 
directly regulates classical microglial activation is unknown. 
Therefore, it is obvious that single microglial marker cannot 
provide enough information to identify the specific activation 
states of microglia, and that microglial activation states in lesions 
of neuropsychiatric diseases have yet to be elucidated. It is likely 

that lesions contain heterogeneous activation states of microglia 
in various neuropsychiatric disorders, since Wynn et al. [35] 
defined chronic inflammation as the coexpression of alternative 
activation and classical activation. Although the exact states of 
microglial activation associated with neuropsychiatric diseases 
are still unknown, growing evidence indicates that the common 
antidepressants and antipsychotics have inhibitory effects on the 
classical inflammatory activation of microglia. 

EFFECTS OF ANTIDEPRESSANTS ON CLASSICAL 
ACTIVATION OF MICROGLIA

Animal studies have established the ability of antidepressants 
to suppress the classical activation of microglia in inflamed brain. 
Desipramine, a tricyclic antidepressant (TCA), prevents the 
increase in mRNA expression of the microglial activation markers 
CD11b and CD40, and proinflammatory mediators IL-1b, TNF-a, 
iNOS in the cortex of lipopolysaccharide (LPS)-injected rats 
[36]. Desipramine also diminishes the cortical activity of the 
inflammatory transcription factor nuclear factor-kB (NF-kB) [36]. 
The reduced mRNA expression of proinflammatory molecules 
seems to be at least partially due to attenuated activity of 
microglia, but astrocytes and infiltrated peripheral immune cells 
may also be involved in the LPS-induced cortex inflammation. 
Post-injury intraperitoneal administration of the TCA 
amitriptyline attenuates spinal nerve ligation-induced increase 
in CD11b immunoreactivity and thermal hypersensitivity, 
but does not inhibit up-regulation of immunoreactivity of 
the astrocytic markerglial fibrillary acidic protein (GFAP) or 
mechanical hypersensitivity [37]. Intrathecal pretreatment with 
amitriptyline plus post-injury intraperitoneal injection of the 
same agent suppresses not only CD11b immunoreactivity and 
thermal hypersensitivity, but also GFAP immunoreactivity and 
mechanical hypersensitivity [37]. Preemptive administration of 
fluoxetine, a selective serotonin reuptake inhibitor (SSRI), inhibits 
the increase in the mRNAs for IL-1b, TNF-a and cyclooxygenase 
(COX)-2, and in the immunoreactivities of the microglial marker 
IBA-1 and GFAP in the hippocampus of kainic acid-injected mice 
[38]. These findings suggest that fluoxetine has some power to 
reduce the inflammatory activation of microglia and astrocytes 
in the pathological brain of an epilepsy model. Interestingly, 
fluoxetine also prevents the kainic acid-caused neuronal death 
in the hippocampus and markedly improves kainic acid-induced 
memory impairment [38]. Even after occlusion of the middle 
cerebral artery, fluoxetine treatment inhibits the rise in mRNA 
levels of COX-2, IL-1b and TNF-a in the rat brain of an ischemia 
model [39]. Fluoxetine also attenuates the microglial activation, 
quantified by immunoreactivity for IBA-1 and Mac2, and reduces 
the neutrophil infiltration, shown by enhanced immunoreactivity 
for myeloperoxidase [39]. Moreover, fluoxetine decreases the 
NF-kB activity and infarct volumes in the post ischemic brain. 
The effectiveness of fluoxetine is accompanied by improvement 
of motor impairment and neurological deficits [39]. The in vivo 
studies mentioned above demonstrate that antidepressant 
treatment reduces the increased levels of inflammatory 
molecules and activated microglia in lesions. To interpret the 
data appropriately, it should be noted that the antidepressant-
reduced levels of inflammatory mediators may not be exclusively 
due to inhibition of microglial activation, in spite of the fact that 
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microglia are the main source of inflammatory mediators in the 
central nervous system. Under pathological conditions peripheral 
immune cells, which could produce variousinflammatory 
substances, infiltrate the brain [40]. Ex vivo studies have shown 
that antidepressants decrease the production of proinflammatory 
cytokines in peripheral immune cells [41,42].

In line with in vivo studies, a number of in vitro studies 
have also demonstrated that various types of antidepressants 
attenuate classical microglial activation which leads to the 
production of inflammatory molecules and neurotoxicity. 
Although a few in vitro studies imply that antidepressants do not 
affect or even increase microglial expression of inflammatory 
mediators [36, 43], the majority of studies on this subject 
show that treatment of cultured microglia with TCA, SSRI or 
serotonin-noradrenaline reuptake inhibitor before stimulation 
with LPS or interferon (IFN)-g results in reduced microglial 
expression of proinflammatory cytokines, including IL-1b, IL-6 
and TNF-a, at both mRNA and protein levels [44-48]. Such drug 
efficacy is also observed when antidepressants and stimuli 
are simultaneously added to microglial cultures [39, 49, 50]. 
In addition to proinflammatory cytokines, antidepressants 
diminish LPS or IFN-g-induced microglial generation of free 
radicals, such as nitric oxide and reactive oxygen species [44-
46,48-50].In vitro studies using microglia-neuron cocultures 
demonstrate that antidepressants confer neuroprotection against 
LPS- or 1-methyl-4-phenyl-pyridinium-induced microglial 
neurotoxicity [46,48,51]. Interestingly, the antidepressants-
induced neuroprotection is not observed in astrocyte-neuron 
cocultures or neuron-enriched cultures [48,51]. Glutamate and 
D-serine, which acts as a co-agonist with glutamate on N-methyl-
D-aspartate receptors, are secreted from activated microglia 
and supposed to lead excitatory neurotoxicity. The SSRIs 
fluoxetine and citalopram decrease the release of glutamate 
and D-serine from LPS-activated microglia to promote cortical 
neuronal viability [52]. Calcium signaling is implicated in 
microglial activation [53]. A recent calcium imaging study has 
revealed that SSRIs suppress the amplitude of the IFN-g-induced 
increase in the intracellular calcium concentration ([Ca2+]i) of 
6-3 murine microglial cells [45]. On the other hand, neither the 
noradrenaline-dopamine reuptake inhibitorbupropion, nor the 
noradrenaline-dopamine disinhibitor agomelatine, reduces the 
IFN-g-induced [Ca2+]i elevation in 6-3 cells [45].

Molecular targets for the inhibitory effects of antidepressants 
on the classical activation of microglia are yet to be clarified. 
However, the cAMP-dependent protein kinase A (PKA) pathway 
has been suggested as mediating the anti-inflammatory events 
[44,50] and seems to be one of the most plausible for the 
following reasons:

1) Antidepressants have been thought to exert their 
therapeutic effects via activation of the cAMP-PKA cascade [54].

2) Various antidepressants have been shown to up-regulate 
adenylate cyclase activity through enhancing coupling between 
the stimulatory a-subunit of the G protein Gs and adenylate 
cyclase, resulting in elevated levels of cellular cAMP in C6 glioma 
cells [55,56].

3) In a number of cell types, the up-regulated cAMP/PKA 
pathway has been shown to inhibit the activity of NF-kB [57], 

whose up-regulation induces the gene expression of iNOS 
and a wide range of proinflammatory cytokines, such as IL-
1b, IL-6 and TNF-a [58]. In fact, fluoxetine [39,48,49] and the 
TCAs imipramine and clomipramine [46] have been shown to 
attenuate the LPS-induced NF-kB activation in cultured rodent 
microglia. These drugs have also been demonstrated to inhibit 
LPS-evoked phosphorylation of p38, a key upstream regulator of 
NF-kB [46,49].

EFFECTS OF ANTIPSYCHOTICS ON CLASSICAL 
ACTIVATION OF MICROGLIA

Increasing evidence shows that antipsychotics also attenuate 
the classical activation of microglia in vitro. With regard to 
conventional antipsychotics, flupentixol and trifluperidol reduce 
the secretion of TNF-aand NO from LPS-activated rat microglia 
[59]. Flupentixol, trifluperidol, chlorpromazine and loxapine 
reduce IL-1β and IL-2 release from LPS-activated microglia[60, 
61]. The typical antipsychotics spiperone also reduces the release 
of NO and pro-inflammatory cytokines such as IL-1β and TNF-a 
from LPS-activated microglia [62]. Moreover, spiperone has been 
shown to attenuate microglial neurotoxicity in the microglia/
neuroblastoma cell coculture [62]. 

Increasing evidence also shows pharmacological actions 
of atypical antipsychotics on the inflammatory activation of 
microglia. Olanzapine treatment of murine microglia inhibits 
LPS-induced NO production, but haloperidol and clozapine do not 
reduce the NO production [63]. Risperidone, one of the common 
atypical antipsychotics, decreases the secretion of NO and pro-
inflammatory cytokines such as IL-1β, IL-6, and TNF-α from the 
IFN-γ-activated microglia to greater extent than does haloperidol, 
a typical antipsychotic drug [64]. The atypical antipsychotics 
perospirone and quetiapine also have inhibitory effects on 
IFN-γ-induced classical activation of microglia. Perospirone, 
quetiapine and ziprasidone significantly inhibit the NO release. 
Quetiapine and perospirone decrease the TNF-α release, whereas 
ziprasidone increases the TNF-a secretion [64]. Clozapine exerts 
neuroprotective effects via inhibition of classical activation of 
microglia [65]. Clozapine attenuates NADPH oxidase (PHOX)-
generated ROS production, as well as production of NO and 
TNF-a in LPS-activated microglia [65]. All of above-mentioned 
antipsychotics are antagonist of dopamine 2 receptor (D2R), 
while aripiprazole, a novel unique atypical antipsychotic drug, is 
a D2R partial agonist [66]. Aripiprazole has inhibitory effects on 
thegeneration of NO and TNF-a in IFN-γ-activated microglia and 
suppresses the microglial toxicity to oligodendrocytes[67], while 
quinpirole, a D2R full agonist, has no efficacy [68].

Compared to the number of in vitro studies, fewer in vivo 
studies have shown inhibitory effects of antipsychotics on 
the classical activation of microglia. Ziprasidone, an atypical 
antipsychotic drug, reduces microglial IBA-1 intensity and 
prevents severe loss of neural marker intensity in the infarction 
cortical area caused by middle cerebral artery occlusion in 
rats [69]. Quetiapine decreases the accumulation of activated 
microglia shown by CD11b immunoreactivity and alleviates white 
matter pathology in sites of cuprizone-induced demyelination in 
the mouse brain [70]. Quetiapine diminishes the accumulation 
of microglial cells which are CD11b-positive or CD68-positive, 
and reduces infiltration of T cells in the spinal cord of mouse 
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with experimental autoimmune encephalomyelitis (EAE) [71]. 
Intriguingly, antipsychotic quetiapine dramatically attenuates 
the severity of EAE symptoms and diminishes demyelination 
[71].

It should be noted that certain animal studies demonstrate 
little or no effect of antipsychotics on microglia or even adverse 
effects on the brain. An animal study demonstrates that 
haloperidol prevents neither ketamine- nor phencyclidine-
induced microglial activation quantified by immunoreactivity 
for CD11b in the adult rat cortex [72]. Chronic treatment of 
haloperidol at both low and high doses induces degeneration of 
striatal neurons and myelin, scarcity of microglial macrophages, 
expansion of nuclear intermembranous space, degenerated 
mitochondria, and vacuoles in guinea pigs [73].

Although microglia have various receptors of 
neurotransmitters including D2R [74], the pharmacological 
basis for anti-inflammatory effects of antipsychotics appears not 
to be related to the conventional neurotransmitter receptors. 
Clozapine may inhibit microglial activation of PHOX via 
inhibiting phosphoinositide 3-kinase pathway [65]. Spiperone 
has been shown to repress microglial up-regulation of NF-kB 
and p38 mitogen-activated protein kinase [62]. A full agonist 
of D2R quinpirole has been demonstrated to have no anti-
inflammatory effects, while aripiprazole has anti-inflammatory 
effects with inhibition of microglial [Ca2+]i elevation [68]. 
Accordingly, it is suggested that these antipsychotics exerts their 
anti-inflammatory effects on microglia in a dopamine receptor-
independent manner.

CONCLUSION
It is evident that both antidepressants and antipsychotics 

inhibit classical activation of microglia and exert anti-
neuroinflammatory effects through suppressing microglial 
expression of inflammatory mediators. While the exact states of 
microglial activation associated with neuropsychiatric diseases 
must still be elucidated, it is clearly desirable to establish reliable 
markers that would identify specific microglial activation states 
in neuropsychiatric diseases in order to learn more of the 
pathogeneses of neuropsychiatric diseases and as a guide in 
developing new therapeutic agents.
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