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EDITORIAL
Neurodegenerative diseases are chronic and often fatal 

illnesses that affect the most precious qualities of human beings. 
This group of disorders include highly prevalent diseases such 
as Alzheimer’s and Parkinson’s, and other rarer as Hungtinton’s 
disease, spinocerebellar ataxia, prion diseases (also called 
transmissible spongiform encephalopathies), and amyotrophic 
lateral sclerosis. Despite the diversity in clinical manifestation, 
neurodegenerative diseases share many common features 
including their relationship to aging, the progressive and chronic 
nature of the disease, the extensive, but localized lost of neurons 
and synaptic abnormalities and the presence of cerebral deposits 
of misfolded protein aggregates. Research over the past 20 
years has provided compelling evidence for a key role of these 
aggregates as the culprits of neurodegeneration [1,2]. Each 
neurodegenerative disease is associated with abnormalities 
in the folding, leading to formation of oligomers and large 
aggregates composed of a different protein. In this article, I 
outline the main pending questions related to the involvement 
of misfolded protein aggregates in neurodegenerative diseases. 

Are misfolded aggregates the cause of neurodegene-
ration? 

Despite compelling evidence from genetic, biochemical 
and neuropathological analysis as well as studies with animal 
models, it still remains not completely proven that accumulation 
of misfolded protein aggregates is the underlying cause of the 
disease [1-3]. It is likely that the definitive proof will only be 
obtained if the disease can be successfully treated or prevented 
by elimination of misfolded aggregates. 

What is the identity and structure of the toxic form of 
misfolded aggregates? 

The process of protein misfolding and aggregation results in 
the formation of a continuum of particles of different size and 
structure, ranging from dimmers to very large fibrils [1-5]. The 
majority of the evidence points that small, soluble oligomers 
are the most neurotoxic species in the brain [4-6]. However, it 
is likely that many different aggregates may be toxic, perhaps by 
distinct mechanisms. Moreover, it seems clear that the various 

particles are in a dynamic equilibrium among each other, 
further complicating the study of their specific properties. The 
heterogeneity, interconversion, insolubility and non-crystalline 
nature of misfolded aggregates impose enormous complications 
for elucidation of the atomic-resolution structure of these 
molecules [7-10]. Nevertheless, much progress has been done 
in recent years, especially using short peptide models of protein 
aggregates [9,10]. 

How misfolded aggregates induce neuronal damage? 

It was initially thought that neuronal apoptosis was the 
most important problem in neurodegeneration, however 
recent evidence from different diseases, suggest that extensive 
neuronal death may not be the initial cause of the disease [11-
13]. Indeed, clinical symptoms have been clearly described 
before significant neuronal loss and a better temporal and 
topographic correlation is found with synaptic dysfunction. 
Although the mechanism of neurotoxicity is a topic extensively 
studied and many different hypotheses have been proposed, it 
is still unclear which of the different models operates in vivo 
in the human brain. Some of the pathways proposed include 
(for reviews, see [14-18]) : (i) activation of signal transduction 
pathways leading to neuronal dysfunction; (ii) recruitment of 
cellular factors essential for neuronal functioning; (iii) membrane 
disruption and depolarization mediated by pore formation; (iv) 
impairment of the protein homeostasis machinery in the cell; 
(v) extensive oxidative and endoplasmic reticulum stress; (vi) 
induction of mitochondrial dysfunction; (vii) triggering a chronic 
inflammatory reaction in the brain. 

What is the role of the cellular defense mechanisms 
against accumulation of misfolded aggregates? 

The net accumulation of protein aggregates depend upon the 
rates of misfolding and aggregation as well as the rate of clearance 
of misfolded aggregates. To combat the formation of misfolded 
aggregates, cells have developed complex and complementary 
pathways aiming to maintain protein homeostasis. These 
protective pathways include the unfolded protein response, the 
ubiquitin protease system, autophagy and the encapsulation of 
the damaged proteins in aggresomes [19,20]. Comparatively 



Central

Soto (2013)
Email: Claudio.soto@uth.tmc.edu

J Neurol Transl Neurosci 1: 1010 (2013) 2/4

much more effort has been devoted to understand how 
proteins misfold and aggregate as well as the cellular, genetic 
and environmental factors implicated, than in elucidating the 
role of the natural defense mechanisms. It is likely that better 
understanding of these processes may lead to novel strategies 
for treatment based on boosting the endogenous mechanisms to 
remove misfolded aggregates. 

What is the mechanism responsible for the selective 
neuronal vulnerability of distinct misfolded 
aggregates? 

One of the most puzzling aspects of neurodegenerative 
diseases is that diverse disorders consist on the accumulation of 
misfolded aggregates in different areas of the brain, which affect 
selective populations of neurons [21,22]. The fact that many of 
these proteins express ubiquitously throughout the brain makes 
difficult to understand the selective neuronal vulnerability and 
suggest that expression of other proteins and/or specific changes 
on the milieu of different neurons may be implicated. Although 
several hypotheses have been proposed to explain selective 
neuronal vulnerability in neurodegenerative disease [21-25], 
much more research is needed to address this important topic, 
which likely will contribute to the development of therapeutic 
interventions for neurodegenerative diseases. 

Do misfolded aggregates spread in a prion-like 
infectious manner? 

Among neurodegenerative diseases, prion disorders 
are unique because the pathology can be naturally and 
experimentally transmitted between individuals. Strikingly, the 
infectious agent responsible for prion diseases (termed prion) is 
composed exclusively by the misfolded and aggregated form of 
the prion protein [26,27]. Prion replication depend on the auto-
catalytic conversion of the normal prion protein catalyzed by 
small amounts of the misfolded and infectious form of the prion 
protein [27,28]. The conversion of the normal into the abnormal 
prion protein follows a seeding-nucleation mechanism, in which 
oligomers of the misfolded protein bind, induce the misfolding 
and integrate the normal protein into the growing aggregates 
[4,29]. Importantly, formation of misfolded aggregates in all 
other neurodegenerative diseases follow the same seeding-
nucleation mechanism, suggesting their potential to propagate 
as a prion [28,29]. Remarkably, during the last 5 years a 
series of groundbreaking reports have shown that the protein 
misfolding and aggregation, characteristic of the most prevalent 
neurodegenerative diseases, can be experimentally transmitted 
in animal models through a prion-like principle (for reviews, 
see [28,30-33]). These studies have produced a tremendous 
paradigmatic change in our understanding of the molecular bases 
of neurodegenerative diseases. However, it remains to be study 
whether prion-like spreading and transmission of misfolded 
aggregates indeed occur under natural conditions in humans. It 
is likely that, in the same manner as in prion diseases, the prion-
like principle operates in neurodegenerative disorders much 
more frequently in the cellular and tissue spreading of misfolded 
aggregates within an individual, than in the rare cases of inter-
individual transmission. 

Are misfolded aggregates a good target for therapeutic 
intervention? 

Despite dramatic progress in understanding the pathogenesis 
of neurodegenerative diseases, none of these disorders can yet 
be successfully treated. If protein misfolding and aggregation is 
a central event in the pathogenesis of these diseases, a therapy 
directed to the cause of the illness should aim to prevent or even 
reverse the formation of misfolded aggregates. Several approaches 
have been proposed to target the process of protein misfolding 
and aggregation (for reviews, see [1,3,10,34,35]) : 1) decrease 
of the expression of the protein implicated in misfolding and 
aggregation; 2) stabilization of the native protein conformation; 
3) inhibition and reversal of protein conformational changes 
leading to the formation of misfolded aggregates; 4) increase 
the biological clearance of the misfolded protein; 5) prevent or 
correct the downstream deleterious effects of misfolded protein 
aggregates. All these targets have been studied extensively and 
for most of them good results have been obtained in animal 
models of the various diseases. However, most of the few 
drugs tried in human clinical trials have consistently failed in 
producing benefits to the patients. It is very likely that the main 
reason for these failures is that preventing or even reverting the 
accumulation of misfolded aggregates in symptomatic patients 
is probably too late to produce clinical benefit [36]. For these 
diseases, at the time in which patients exhibit clear symptoms 
of the disease and they can be properly diagnosed, the brain is 
largely destroyed. 

Is the sensitive and specific detection of misfolded 
aggregates a promising strategy for early disease 
diagnosis? 

As stated above, pre-symptomatic diagnosis of 
neurodegenerative diseases is a high priority to enable efficient 
therapeutic intervention. Traditionally, diagnosis of these 
diseases is achieved after clear clinical symptoms are evident 
and even then definitive diagnosis is only accomplished after 
postmortem examination of the brain [37,38]. To attempt early 
and non-invasive diagnosis of neurodegenerative diseases, 
many laboratories have been investigating the use of diverse 
neuroimaging approaches and the identification of disease-
specific biomarkers [38-40]. Although, these strategies may well 
achieve the goal, it seems that detection of misfolded aggregates 
is the best option, because of the tight involvement of these 
structures in the disease pathogenesis. The process of formation 
and accumulation of misfolded aggregates begins years or even 
decades before the onset of clinical symptoms [38,41,42] and 
several lines of evidence suggest that soluble misfolded oligomers 
might be circulating in biological fluids (blood, cerebrospinal 
fluid, etc) [43-47]. In recent years there have been several reports 
describing various approaches for imaging-based detection of 
protein aggregates as well as for biochemical detection of these 
molecules in fluids [39,40,48]. These recent developments 
coupled with the large effort from the pharmaceutical industry to 
come out with efficient disease-modifying strategies raises hope 
for the ultimate goal of eradicating neurodegenerative diseases 
by combining a highly sensitive early diagnosis with an efficient 
and safe therapeutic strategy. 
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