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Many neurodegenerative disorders like Alzheimer’s, 
Parkinson’s, prion and polyglutamine diseases are caused by 
gain-of-function mechanisms in which the disease-causing 
protein accumulates in the form of insoluble protein aggregates 
or inclusion bodies [1,2]. Whether these aggregated proteins 
directly cause neurodegeneration is still controversial; however, 
it is widely believed that soluble form of the proteins and/or 
micro-aggregates are more toxic than the larger inclusions. 
Spinocerebellar ataxia 1 (SCA1) is one such protein aggregation 
disease, characterized by loss of motor coordination due to the 
degeneration of cerebellar Purkinje cells (PCs) and brain stem 
neurons [3]. In SCA1, the expanded mutant ataxin-1 protein 
aggregates into nuclear inclusions (NIs) [4]. However, before 
the appearance of NIs, SCA1 PCs exhibit cytoplasmic vacuoles 
rich in astroglial derived S100B protein, which is exclusively 
expressed in Bergmann glia (BG) of the cerebellum [5]. These 
S100B containing cytoplasmic vacuoles appear as early as 16 
days postnatally in PCs of the asymptomatic SCA1 transgenic 
(Tg) mice. No S100B vacuoles were seen in wildtype animals and 
A02 Tg line with normal CAG repeats [5]. 

Astrocytes play a crucial role in the regulation of synaptic 
formation and function by ensheathing axon–dendrite 
connections [6]. BG of the cerebellum form rosettes around PCs 
in the cerebellar cortex, encasing their dendrites and synapses to 
maintain and regulate their structure and function [7,8]. However, 
abnormalities in BG cause degeneration of PC dendrites and 
impair motor coordination [9]. Furthermore, BG involvement in 
SCA1 pathogenesis is also supported by a recent report on SCA1 
knockin (Ki) mice, which suggests that the functional deficiency 
of BG may contribute to PC pathology in SCA1 [10]. In the mouse 
model of polyglutamine disease SCA7, the mutant ataxin-7 
expression restricted to BG, not the target PCs caused striking PC  
loss [11] suggesting a non-autonomous role of mutant proteins 
prone to form aggregates.

Further, in our SCA1 studies, immunohistochemical and 
specialized silver stain analysis revealed that vacuolar formation 
is associated with alterations in the morphology of dendritic 
spines of PCs [5]. In addition, we found that PC pathology is 
preceded by an increase in the cerebellar S100B mRNA levels 
in asymptomatic SCA1 mice [5]. Furthermore, our cell culture 
experiments indicated that S100B may directly influence toxicity 
or solubility of the ataxin-1 protein [5,12]. Our recent data 

demonstrated that S100B may be associated with oxidative 
damage pathway in SCA1 [13]. To determine if the pathology 
observed in the mouse model of SCA1 also occurs in the human 
disease, we immunostained human cerebellar tissue sections 
for S100B. Interestingly enough, surviving PCs of SCA1 patients 
showed S100B containing cytoplasmic vacuoles [5,14].

Gene expression profiling of 2 wk old wildtype and SCA1 
heterozygous mice cerebella using Affymetrix microarrays 
showed a dysregulation of genes involved in BG-PC cell 
interactions, especially cell-cell adhesion and signaling 
[unpublished data; 15]. We believe that two-way communication 
between PCs and BG is essential for normal functioning of the 
cerebellum during development and throughout adult life. These 
bidirectional interactions are prerequisite for the survival of 
either cell-type in the cerebellum. 

Currently, there are no specific or effective treatments to 
delay or halt the progression of SCA1. Thus, the identification 
of promising therapeutics and methods to target potential 
pathogenic pathways is vitally important to developing 
treatments for SCA1 and other cerebellar ataxias. Motivated by 
the limitations of current therapeutics, our long-term goal is to 
develop a therapeutic approach that can overcome the challenges 
of blood brain barrier (BBB) delivery and can target and inhibit 
specific pathogenic pathways. We are presently using SCA1Tg 
and Ki mouse models to evaluate the efficacy and safety of 
therapeutic interventions prior to clinical trials. To combat the 
neuronal damaging effects of S100B in SCA1, we have designed a 
therapeutic polypeptide, which consists of a thermally responsive 
polypeptide, a TRTK12 S100B inhibitory peptide and a cell 
penetrating peptide, SynB1, to enhance intracellular delivery. The 
peptide TRTK12 has been shown to have a high binding affinity 
for S100B with the capability to block S100B interaction with 
S100B target proteins [14,16,17]. Previously, we have shown 
that the TRTK12 peptide is therapeutic to SCA1 mice, where 
animals given TRTK12 displayed a significant improvement in 
ataxic behavior [12]. We believe that the genetically engineered 
polypeptide based technology has a great potential to thermally 
target therapeutics to the cerebellum and possibly other areas 
of the brain to treat multiple CNS disorders, especially the 
cerebellar ataxias. 
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