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Abstract

Astaxanthin (ASTX), a xanthophyll carotenoid, has a unique structure featured 
by the presence of polar moieties on both end of its polyene chain. This structural 
property of ASTX confers a great antioxidant activity and allows it to align in the 
cell membrane for various biological activities. ASTX has been suggested to have 
health benefits for the prevention of inflammatory diseases, diabetes, cardiovascular 
disease, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, which are 
the major obesity-related health problems in the developed countries. This review 
discusses the chemical properties of ASTX and its metabolism. It also addresses the 
current knowledge on the mechanisms for the protective effects of ASTX against 
oxidative stress, inflammation, insulin resistance as well as the development of the 
aforementioned metabolic diseases.

ABBREVIATIONS: AP-1: Activator Protein-1; apoE-/-: 
apolipoprotein E knockout, ASTX: Astaxanthin; CVD: Cardio 
Vascular Disease; COX-2: Cyclooxygenase; CYP: Cytochrome P450; 
DEN: Diethylnitrosamine; GSH: Glutathione; H. pylori: Helicobacter 
pylori; HDL: High-Density Lipoprotein; 8-OHdG: 8-hydroxy-2-
doxyguanosine; iNOS: inducible Nitric Oxide Synthase; IκBα: 
Inhibitor of NF-κBα; IRS: Insulin Receptor Substrates; IL: 
Interleukin; Keap1: Kelch-like ECH-associated protein 1; LDL: 
Low-Density Lipoprotein; LPS: Lipopolysaccharide; MMP: Matrix 
Metalloproteinase, NO: Nitric Oxide; NAFLD: Non Alcoholic 
Fatty Liver Disease; NASH: Non Alcoholic Steatohepatitis; NRF2: 
Nuclear Factor E2 related factor 2; NF-κB: Nuclear Factor kappa 
B; PPAR: Peroxisome Proliferator-Activated Receptor; PI3K: 
Phosphatidylinositol 3-kinase; PGE2: Prostaglandin E 2; PTECs: 
Proximal Tubularpithelial Cells; ROS: Reactive Oxygen Species; 
SR-BI: Scavenger Receptor class B, type I; SHR: Spontaneously-
Hypertensive Rats; SOD: Superoxide Dismutase; TNFα: Tumor 
necrosis factor α; UV: Ultraviolet; VLDL: Very Low-Density 
Lipoprotein.

INTRODUCTION
Astaxanthin (ASTX) is a xanthophyll carotenoid abundant in 

marine animals such as salmon, crab, and crustaceans that live 
on ASTX-containing planktons and microalgae [1]. It is the main 
carotenoid found in wild salmons, conferring its unique dark red 
color [2,3]. Haematococcus pluvialis (H. pluvialis), a single-celled 
green alga, is believed to have the highest capacity to accumulate 
ASTX in nature under environmental stresses such as starvation, 

high salt, elevated temperature, or irradiation [4,5]. ASTX 
produced from H.pluvialis is a primary natural source of ASTX for 
human consumption.

Humans and other mammals cannot synthesize ASTX [6]. 
The natural sources of ASTX are algae, bacteria and fungi [7]. 
Animals, such as salmon, lobster, shrimp and trout, acquire 
ASTX by consuming ASTX-containing algae or bacteria, and the 
accumulation of ASTX in their flesh, skin or exoskeleton gives 
pinkish or reddish appearances [8]. Therefore, ASTX is also used 
as a feed ingredient for seafood farming, especially salmon, trout 
and shrimp, to give their unique reddish color [3]. By consuming 
ASTX-containing seafood or dietary supplement, either synthetic 
or extracted from H. pluvialis, humans are able to obtain ASTX [8].

ASTX is well known for its strong antioxidant capacity 
[9], which presumes to largely contribute to its diverse 
protective properties against inflammation, ulcer, cancer, 
neurodegeneration, diabetes, and cardiovascular disease (CVD) 
as well as hepato-protective effects [7]. Therefore, use of ASTX as 
a dietary supplement for optimal health has been rapidly growing 
in recent years. In this review, current knowledge of health-
promoting properties of ASTX is discussed with focuses on its 
effects on the prevention/therapy formetabolic diseases such as 
diabetes, nonalcoholic fatty liver disease (NAFLD), nonalcoholic 
steatohepatitis (NASH), and CVD.

CHEMICAL PROPERTIES OF ASTX
ASTX (3,3’-dihydroxy-beta,beta-carotene-4,4’-dione) belongs 

to a xanthophylls carotenoid subclass, which is characterized by 
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the presence of oxygen molecule in their structures (Figure 1). 
ASTX structure is similar to β-carotene and other xanthophylls, 
such as lutein, canthaxanthin and zeaxanthin, in that they share 
a common semi-symmetric layout with two terminal carbon 
rings flanking an extended double-bond hydrocarbon chain, also 
referred to as the polyene chain [3]. However, ASTX is distinctive 
in its structure from other carotenoids due to the presence of 
hydroxyl and keto moieties on both ends. The polar-nonpolar-
polar structure of ASTX allows it to align in the phospholipid 
bilayer of cell membrane [10] and to expose both hydrophilic 
ends to aqueous environment [11]. Free form of ASTX is sensitive 
to oxidation [9]. Therefore, in nature, ASTX primarily exists as a 
protein-conjugated form such as in exoskeleton of crustaceans, 
or a fatty acid-esterified form, i.e., monoester or diester [11]. The 
predominant form of ASTX in H. pluvialis is monoester [12].

Due to the presence of two hydroxyl groups, several 
stereoisomers of ASTX exist. Depending on the configuration 
of hydroxyl group on the chiral centers in C-3 and C-3’, three 
ASTX isomers, i.e., two enantiomers (3S, 3’S), (3R, 3’R) and 
one mesomer (3R, 3’S), can be formed. (3S, 3’S) isomer is the 
predominant form of natural ASTX. During artificial synthesis of 
ASTX, the S and R orientation occur equally on each chiral center 
of ASTX [13]. As (3S, 3’R) isomer is identical to (3R, 3’S) isomer, 
the mesomer accounts for a half of total ASTX, whereas (3S, 3’S) 

and (3R, 3’R) enantiomers account for ~25% each in synthetic 
ASTX [4]. In addition, as ASTX has a polyene chain consisting of 
multiple double-bonds, geometrical cis- or trans- isomers of ASTX 
also exist. Trans-ASTX esters predominantly present in nature, 
whereas cis-ASTX esters are thermodynamically less stable but 
still detectable [14]. ASTX in H. pluvialis is composed of 3:1 ratio 
of trans-ASTX to cis-ASTX [15]. Studies have shown ASTX isomers 
may have different bioavailability in humans [16-18]. This aspect 
is described in detail below.

METABOLISM OF ASTX
Digestion, absorption, and transport of ASTX

Due to low solubility in aqueous environment, xanthophyll 
carotenoids have lower bioavailability than other dietary lipids 
such as triglyceride [19]. However, due to the presence of polar 
ends in free ASTX, it can be absorbed better than other non-polar 
carotenoids, e.g., lycopene and β- carotene [20]. As ASTX is largely 
present as fatty acid-esters in nature, the ASTX esters need to 
be hydrolyzed to free ASTX and subsequently incorporated 
into micelles to get access to intestinal cells for absorption as 
do dietary lipids. Cholesterol esterase is a likely candidate to 
hydrolyze ASTX esters [21,22]. The presence of dietary fat is 
known to affect the degree of ASTX absorption in the small 
intestine [23]. In humans, incorporation of ASTX into a lipid-
based formulation, composing of lipophilic glycerol monooleate, 
dioleate and an emulsifier polysorbate 80, can enhance ASTX 
absorption [24]. Furthermore, the absorption of ASTX may be 
influenced by the type of oil that is consumed with ASTX. ASTX 
absorption was higher when it was emulsified with olive oil than 
with corn oil in rat duodenum [25]. 

The entry of ASTX into enterocytes has been thought 
to occur primarily by simple diffusion [19]. However, 
alternatively, facilitated diffusion may also play a role in the 
absorption of ASTX. Scavenger receptor class B, type I (SR-BI) 
has been shown to mediate the absorption of β-carotene and 
xanthophylls, including β-cryptoxanthin, lutein and zeaxanthin, 
into enterocytes [26,27]. As ASTX shares several structural 
similarities with these carotenoids, SR-BI may also mediate the 
intestinal absorption of ASTX. Evidence has suggested that ASTX 
isomers may be absorbed at a different degree. In humans, after 
oral administration of a mixture of all-cis-ASTX and all-trans-
ASTX at a ratio of 1:14, the isomers appeared in the plasma at 
~1:2 ratio [18]. The observation suggests that all-cis-ASTX may 
be preferentially absorbed or selectively accumulated in the 
circulation. Additionally, in the subjects who consumed farm-
raised salmon for 4 weeks, plasma levels of (3S, 3′S) ASTX isomer 
accounted for ~80% of total ASTX in the circulation despite the 
fact that (3R, 3’S) ASTX mesomer was predominantly present 
in the salmon [28]. Therefore, mechanisms for the selective 
absorption of ASTX isomers may exist in enterocytes. Future 
studies are needed to determine whether SR-BI plays a role in 
facilitating intestinal ASTX absorption and whether each ASTX 
isomer can be absorbed at a similar extent.

Free, but not esterified, ASTX is detected in all lipoprotein 
fractions of human plasma, including chylomicron, very low-
density lipoprotein (VLDL), low-density lipoprotein (LDL) and 
high-density lipoprotein (HDL), after the consumption of ASTX 

Figure 1 The molecular structure of all-trans-ASTXwith polar-nonpolar-polar 
nature.

Figure 2 Summary of the effects of ASTX on the prevention of metabolic 
diseasesand underlying mechanisms. Chronic metabolic disease such as 
type 2 diabetes, NAFLD and CVD are closely related with oxidative damage, 
inflammation, insulin resistance, and dyslipidemia. ASTX consumption may 
provide health benefit effects by preventing oxidative stress via the activation 
of NRF2-mediated endogenous antioxidant system; inhibiting inflammation 
by inhibiting NF-κB pathway and subsequent repression of pro-inflammatory 
cytokine production; increasing insulin sensitivity; inhibiting dyslipidemia;and 
improving vascular health.



Central

Lee (2013)
Email: ji-young.lee@uconn.edu

J Hum Nutr Food Sci 1: 1003 (2013) 3/11

esters [17,18]. Therefore, it is likely that enterocytes can package 
a free form of ASTX into chylomicron for secretion into the 
lymphatic system. Bioavailability and a half-life of ASTX likely 
depend on its esterification status. 

After one-time oral administrations of 100 mg free ASTX, 
the maximum plasma levels of ASTX were 1.3 ± 0.1 mg/L with 
a half-life of 21 ± 11 h in humans [17]. In contract, ingestion of 
100 mg of ASTX diesters resulted in plasma ASTX levels of 0.28 
± 0.12 mg/L with extended half-life of 52 ± 40 h [18], implicating 
the additional hydrolysis step of ASTX esters may slower ASTX 
absorption rate. Although absorption rate is slower for ASTX 
esters than free ASTX, whether the amount of absorbed ASTX 
would differ between two ASTX forms is not clear. Consumption 
of ASTX capsules with a daily dosage of 1 mg for 4 weeks elevated 
plasma ASTX levels to ~7.3 ± 5.6 µg/L, whereas the levels reached 
11.3 ± 5.8 µg/L as intervention was extended to 12 weeks [29], 
suggesting plasma ASTX levels can be increased by long-term 
consumption. 

Although there is no information available on ASTX tissue 
distribution in humans, studies have demonstrated ASTX is 
present in various tissues. In chickens, the highest ASTX was 
found in the intestine, followed by adipose, spleen, liver, heart, 
kidney, skin and muscle [30]. In mice, high levels of ASTX were 
accumulated in the liver, whereas it was also detectable in the 
heart and the brain [31]. At the cellular level, the hydrophobic 
nature of ASTX suggests that it may reside in the lipid droplets 
[32] or phospholipid bilayer [33], as are the other carotenoids. 
However, the polar groups in ASTX allow it to expose to 
hydrophilic environment on the membrane surface, whereas 
non-polar carotenoids, such as β-carotene and lycopene, tend to 
be located within the hydrophobic core of phospholipid bilayer 
membrane or lipid droplets [33]. Theoretically, ASTX may also 
exist in other intracellular membranes, i.e., mitochondria and 
endoplasmic reticulum, yet studies on cellular localization of 
ASTX are very limited. One study has shown that in chicken liver, 
most ASTX was found in the microsomal fraction with minor 
proportion being detected in the mitochondria and nucleus [30]. 
However, the ASTX distribution in different cellular organelles 
may be different between species. As cellular localization can 
provide distinctive cellular activities, further study is necessary 
to determine ASTX distribution in cells.

METABOLITES OF ASTX

ASTX can be metabolized into 3-hydroxy-4-oxo-β-ionone 
and 3-hydroxy-4-oxo-7,8-dihydro-β-ionone in primary rat 
hepatocytes [34]. However, enzymes that catalyze synthesis 
of the metabolites and their potential biological functions have 
not been elucidated. ASTX has been shown to increase the levels 
of cytochrome P450 (CYP) enzymes in the hepatocytes [34,35]. 
However, incubation of ASTX with isolated microsomes containing 
CYPs did not generate ASTX metabolites and furthermore the 
induction of CYP activity by ASTX pretreatment did not increase 
generation of the metabolites in hepatocytes [34]. Therefore, the 
CYP enzymes are not likely to be responsible for the production 
of ASTX metabolites. ASTX metabolism occurs through currently 
unknown mechanisms and future investigation on how ASTX is 
metabolized and what the functions of its metabolites are needed. 

SAFETY OF ASTX
ASTX has been demonstrated safe in multiple animal studies 

and human trials [4,36]. In a randomized, double-blind and 
placebo-controlled trial that gave daily supplementation of 6 
mg of ASTX from H. pluvialis to healthy adults for 8 weeks, there 
were no significant changes in blood pressure, plasma metabolic 
panels and blood cell blood count whereas ASTX supplementation 
slightly increased serum levels of calcium, total proteins and 
eosinophils within healthy ranges [36]. Moreover, administration 
of a single dose of 100 mg ASTX in middle-aged male [17], daily 
dose of 40 mg for 4 weeks in patients with functional dyspepsia 
[37], or daily dose of 4 mg for 12 months in subjects with macular 
degeneration [38] did not induce any adverse side-effects. To 
date, no adverse side-effects of ASTX supplementation have 
been reported in humans. In 2010, the U.S. Food and Drug 
Administration acknowledged the “generally recognized as safe 
(GRAS)” status of ASTX extracted from H. pluvialis [39].

HEALTH BENEFITS OF ASTX

Antioxidant properties of ASTX

Oxidative stress has been identified as one of the major 
underlying causes of aging, CVD, NAFLD, and carcinogenesis 
[40]. Free radicals and reactive oxygen species (ROS) are highly 
unstable and react quickly with adjacent molecules to obtain 
electrons, initiating chain reactions. Excessive accumulation 
of reactive radicals and ROS can trigger oxidative damages to 
nucleotides, proteins or lipids, eventually deteriorating cellular 
activities and causing cell injury and death [41]. Free radicals 
and ROS are produced in normal metabolic process and quickly 
neutralized by body’s antioxidant defense system, a complex 
network consisting of endogenous and exogenous antioxidant 
molecules and enzymes [42]. However, oxidative stresses from 
smoking, exposure to ultraviolet (UV) light and obesity can 
increase ROS production while they decrease body’s antioxidant 
defense system, consequently damaging cells and tissues [9,43].

Studies have demonstrated functions of ASTX in scavenging 
a broad-spectrum of reactive radicals and oxygen species. ASTX 
showed higher scavenging capacity against peroxyl radicals and 
hypochlorous acid than that of α-tocopherol, lutein, lycopene, 
and β-carotene [44,45]. It also exhibited the highest capacity 
in scavenging hydroxyl radicals comparing to lutein, lycopene, 
and β -carotene [45]. Moreover, in an in vitro membrane model, 
ASTX maintained the membrane integrity and effectively 
repressed lipid peroxide formation, whereas lutein and β 
-carotene disrupted the membrane structure and increased the 
levels of lipid hydroperoxides [46]. These results suggest that 
the antioxidant activity of ASTX is superior to other carotenoids 
and α-tocopherol. The potent antioxidant capacity of ASTX is 
at least partially attributed to its unique chemical structure. 
Carotenoids can capture singlet reactive oxygen and shuttle it 
along the double-bond polyene chain, thus terminating the chain 
reaction [47]. In addition, comparing to non-polar carotenoids, 
such as lycopene and β-carotene, ASTX contains polar ends that 
can react with phospholipid head groups or water in the aqueous 
environment, quenching radicals from the surface of or inside the 
lipid bilayer [48]. It has also been proposed that ASTX locates in 
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a proximity to vitamin C that is present in aqueous environment 
[49]. Vitamin C may serve as a sink to accept radicals and restore 
the electron-transferring capacity of ASTX, allowing ASTX for 
continuous scavenging activity. 

Strong antioxidant effects of ASTX have been documented in 
cell models exposed to various oxidative stresses. ASTX effectively 
prevented ultraviolet A (UVA) or UVB radiation-induced photo-
oxidation and cytotoxicity in human dermal fibroblast [50] and 
keratinocyte [51]. Furthermore, ASTX repressed ROS production 
and increased antioxidant enzyme expressions in retinal cell 
[52], neuron [53,54], immune cells [55-57], and hepatocytes [58]. 
As such, due to its potent antioxidant property, ASTX prevents 
oxidative damages caused by different stimulants and restores 
normal cellular functions. Due to the antioxidant effects of ASTX 
in protecting cells in skin, nervous system, immune system and 
vital organs, it may have preventive activities in the pathogenesis 
of multiple diseases mediated by oxidative stress in human body. 

In addition to the activity of ASTX to scavenge radicals and 
quench reactive species, studies also suggest that ASTX can 
enhance nuclear factor E2 related factor 2 (NRF2)-mediated 
endogenous antioxidant defense system [59]. Activation of 
NRF2 pathway improves endogenous antioxidant defense 
by increasing the expression of antioxidant enzymes, such as 
glutathione peroxidase, glutathione S-transferase and heme 
oxygenase 1 [60,61]. Moreover, NRF2 enhances antioxidant 
capacity of glutathione (GSH), a crucial antioxidant molecule 
maintains cellular redox status, by upregulating the expression 
of glutathione reductase, an enzyme that restores the reduction 
capacity of GSH [62]. Under basal conditions, NRF2 is bound 
to Kelch-like ECH-associated protein 1 (Keap1) in cytosol, 
inhibiting NRF2 activity and facilitating its ubiquitination for 
proteosomal degradation [63]. Upon exposure to chemicals or, 
oxidative or electrophilic stress, NRF2 dissociates from Keap1, 
translocates into the nucleus, and initiates the transcription of 
the aforementioned downstream targets [64]. We previously 
reported that in apolipoprotein E knockout (apoE-/-) mice fed 
a high fat/high cholesterol, 0.03% ASTX supplementation for 
4 weeks significantly elevated the hepatic expression of NRF2 
and its downstream antioxidant enzymes with a concomitant 
decrease in glutathione disulfide, an oxidized form of GSH 
[59]. The similar protective effect of ASTX was also reported 
in the liver of Sprague Dawley rats that were treated with 
cyclophosphamide, an alkylating agent that disturbs antioxidant 
balance [65]. ASTX treatment for 3 days prior to or for 10 days 
after cyclophophamide treatment improved NRF2 activation 
in the rats under oxidative stress. The studies suggested that 
antioxidant effects of ASTX may be partly mediated through 
the up-regulation of NRF2 pathway. Future studies are in need 
to elucidate the underlying mechanism for how ASTX activates 
NRF2 pathway.

Antioxidant effects of ASTX have been demonstrated in 
humans. In healthy male subjects, daily consumption of 4 mg 
ASTX for 3 months lowered the plasma levels of peroxidized 
lipids, including 12- and 15-hydroxy fatty acids, indicating that 
ASTX inhibited lipid peroxidation [66]. Supplementation of 5, 
20 or 40 mg ASTX per day for 3 weeks decreased plasma levels 
of lipid peroxidation markers, such as malondialdehyde and 

isoprostane, comparing to their baseline in healthy smokers, 
[67]. In this study, ASTX also increased plasma concentrations of 
superoxide dismutase (SOD) as well as total antioxidant capacity 
[67]. Overweight and obese subjects who consumed 5 or 20 mg 
ASTX daily for 3 weeks showed reduction in lipid peroxidation 
while antioxidant capacity was increased [68]. These studies 
are supportive of the use of ASTX for the prevention of oxidative 
stress in humans.

Anti-inflammatory effects of ASTX

Chronic low-grade inflammation triggers the development of 
metabolic diseases, such as CVD and type 2 diabetes [69]. Studies 
have shown that ASTX exerts anti-inflammatory properties, at 
least in part, by inhibiting the activation of nuclear factor kappa 
B (NF-κB). NF-κB is a transcription factor that directs cell’s 
inflammatory response by regulating the expression of pro-
inflammatory genes [70]. In a resting state, NF-κB is located in 
the cytoplasm bound with inhibitor of NF-κB α (IκBα), which 
prevents NF-κB translocation into the nucleus. Upon stimulation 
by pro-inflammatory insults such as lipopolysaccharide (LPS), 
IκBα kinase phosphorylates IκBα, facilitating its dissociation 
from NF-κB for degradation by proteasome. Subsequently, NF-κB 
is free to translocate into the nucleus to increase the expression 
of pro-inflammatory cytokines such as tumor necrosis factor α 
(TNFα), interleukin 6 (IL-6) and IL-1β. [71,72]. ASTX decreased 
the production of nitric oxide (NO), prostaglandin E 2 (PGE2) and 
TNFα as well as activity of inducible NO synthase (iNOS) in the 
LPS-stimulated RAW264.7 macrophages [73,74]. Primary mouse 
peritoneal macrophages stimulated by LPS showed increases 
in the production of NO, TNFα and IL-1β, which was ablated by 
ASTX treatment [74]. 

Studies suggest that antioxidant property of ASTX is linked 
to its anti-inflammatory function as well as inhibitory effect 
on NF-κB pathway in various cell models. ASTX decreased 
intracellular accumulation of ROS and inhibited the activation 
of NF-κB with a concomitant decrease in iNOS promoter activity 
in RAW264.7 macrophages that were stimulated by LPS [74]. 
In rat alveolar macrophages, ASTX inhibited the production of 
superoxide anion (O2-), NO, and TNFα [56]. ASTX decreased the 
production of pro-inflammatory cytokines, such and TNFα, IL-
1β, IL-6, iNOS and cyclooxygenase 2 (COX-2) while it increased 
NF-κB phosphorylation in THP-1 human macrophages [75]. 
ASTX also reduced IL-1β, IL-6 and TNFα secretion in hydrogen 
peroxide-stimulated U937 human macrophages. It also inhibited 
ROS-induced production of NF-κB which effectively inhibited 
the production of inflammatory cytokines and restored basal 
level of SHP-l, a negative regulator of immune cytokine signaling 
[76]. ASTX inhibited the expression or formation of NO, iNOS 
and COX-2 and suppressed the protein levels of iNOS and COX-
2 in LPS-stimulated murine BV-2 microglial cells, the resident 
macrophages and immune surveillance cells of the central 
nerve system [77]. UVB exposure is one of the inflammatory 
stimuli for the skin. ASTX significantly decreased UVB-induced 
phosphorylation of NF-κB p65, which could be associated with 
the significantly suppressed levels of PGE2 or IL-8 secretion via 
the down-regulation of COX-2 and IL-8 at the gene and/or protein 
levels in human keratinocytes [51].
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Anti-inflammatory effects of ASTX were also observed in 
vivo. BALB/C mice were treated with ASTX at 40 mg/kg for 12 h 
prior to intraperitoneal injection of LPS [74]. ASTX pretreatment 
decreased serum levels of NO, PGE2, TNFα, and IL-1β. Also, in 
rats with ocular inflammation that was induced by LPS injection 
into footpad, intravenous injection of ASTX at 10 or 100 mg/
kg significantly decreased the number of infiltrating cells into 
anterior chamber as well as the amount of NO, TNFα and PGE2 
in the aqueous humour [78]. The number of activated NF-κB-
positive cells in iris-ciliary bodies was also decreased by ASTX. 

Helicobacter pylori (H. pylori) infection in humans generates 
a state of gastric inflammation, which can progress to chronic 
type B gastritis, peptic ulcer disease, and gastric carcinoma [79]. 
In BALB/cA mice orally inoculated with H. pylori, oral treatment 
with ASTX at a daily dose of 10, 50, or 100 mg/kg for 10 days 
significantly lowered the number of H. pylori in gastric tissue 
and gastric inflammation score [80]. Also, when patients with 
functional dyspepsia and positive to H. pylori were treated daily 
with 40 mg of ASTX for 4 weeks, gastric inflammation score was 
significantly lower than placebo control [81]. In this study, ASTX 
also markedly up-regulated CD4, a T-helper cell marker, and the 
result indicated that ASTX may also enhance humoral immune 
responses. 

Inflammation contributes to the pathogenesis of colon 
cancer [82]. NF-κB is critically involved in the progression 
of colon tumor progression by transcriptionally regulating 
invasion-related factors such as matrix metalloproteinases 
(MMPs), particularly MMP2 and MMP 9, inhibiting apoptosis 
and promoting proliferations of cancer cells [83-88]. Induction 
of apoptosis by ASTX in Wistar rats with colon cancer was 
shown to regulate the expression of NF-κB, COX-2, MMP2 and 
MMP9, proliferating cell nuclear antigen and extracelluar signal-
regulated kinase-2 [89]. ASTX also inhibited inflammation-
related mouse colon carcinogenesis and dextran sulfate sodium-
induced colitis in male ICR mice. Dietary ASTX significantly 
inhibited the occurrence of colonic mucosal ulcers, dysplastic 
crypts, and colonic adenocarcinoma and suppressed expression 
of NF-κB, COX-2, TNFα, IL-6, and IL-1β, inhibited proliferation, 
and induced apoptosis in the colonic adenocarcinomas of ICR 
mice [90].

In addition to NF-κB pathway, several other transcription 
factors, such as activator protein-1 (AP-1), nuclear factor of 
activated T-cells, and signal transduction-activated transcription 
factors, are also known to be involved in inflammation [91-93]. 
Carotenoids including lycopene, lutein, β-cryptoxanthin, and 
β-carotene are known to have an anti-inflammatory effect by 
regulating NF-κB [94-96] and AP-1 [97-102]. Further studies 
are needed to identify transcription factors that mediate anti-
inflammatory effects of ASTX. 

Anti-diabetic effects of ASTX

Type 2 Diabetes is a chronic metabolic disease that is 
characterized by insufficient secretion or action of endogenous 
insulin and hyperglycemia [103]. Several studies have 
demonstrated that hyperglycemia-induced oxidative stress 
promotes insulin resistance and contributes to the pathogenesis 
of diabetes [104-106]. Consumption of antioxidants that 

ameliorate oxidative stress can be used as an effective strategy 
to prevent diabetes and its-associated complications [107]. Anti-
diabetic effects of ASTX have been reported in diabetic animal 
models. When db/db mice, a well-known mouse model of type 2 
diabetes, were fed an ASTX supplement at a daily dosage of 1 mg 
for 12 weeks, non-fasting blood glucose levels were decreased 
and glucose tolerance was improved [108]. In mice with diabetes 
induced by alloxan that promotes oxidative stress, postprandial 
hyperglycemia was suppressed by feeding ASTX at doses of 5 mg/
kg and 10 mg/kg daily for 7 days [109]. ASTX supplementation of 
20 mg/kg for 30 days reversed the elevated lipid peroxidation 
and protein carbonyl groups, indicators of oxidative damage to 
biomolecules, in alloxan-induced diabetic rats [110].

Combination therapy of ASTX with other antioxidants 
has shown to be effective in improving diabetic conditions. In 
streptozotocin-induced diabetic rats, supplementation of ASTX 
(0.1 g/kg) together with α-tocopherol (0.1 g/kg) for 20 weeks 
ameliorated oxidative injury [111]. After 12 weeks of a diet 
containing ASTX and flavangenol, a pine bark extract, at doses 
of 0.1g/kg and 2.0g/kg, respectively, streptozotocin-induced 
diabetic rats showed decreased levels of lipid peroxides in 
plasma, liver and kidney, and of plasma triglyceride [112]. In this 
study, oxidative stress biomarkers, such as lipid peroxidation in 
liver and kidney and level of urinary 8-hydroxy-2’-doxyguanosine 
(8-OHdG), were also reduced by the combination therapy. 

Oxidative stress induced by hyperglycemia is one of the 
factors that cause pancreatic β cell dysfunction and disturb 
insulin signaling [113,114]. ASTX enhanced insulin-stimulated 
GLUT4 translocation to the plasma membrane and glucose 
uptake in rat L6 muscle cells whose insulin signaling was 
interfered by fatty acids [115]. In db/db mice, although there 
was no significant difference in pancreatic β cell mass between 
control and ASTX-fed mice, the ability of islet cells to secret 
insulin were preserved in ASTX-fed group [108]. Consumption of 
a high fat/high fructose diet supplemented with ASTX at a dose 
of 6 mg/kg body weight for 60 days ameliorated high fat/high 
fructose diet-induced hyperinsulinemia and insulin resistance 
in Swiss albino mice [116]. In addition, mice fed a high fat/high 
fructose diet containing ASTX at a dose of 2mg/kg body weight 
for 45 days improved insulin sensitivity by decreasing serine 
phosphorylation of insulin receptor substrates (IRS), increasing 
the association of IRS and phosphatidylinositol 3-kinase (PI3K), 
and increasing Akt phosphorylation in the liver [117]. This 
study indicates that ASTX promotes hepatic IRS-PI3K-Akt 
pathway of insulin signaling. Furthermore, when Swiss albino 
mice were fed a high fat/high fructose diet supplemented with 
ASTX at 6 mg/kg for 60 days, ASTX improved hyperglycemia 
and hyperinsulinemia, and decreased plasma levels of TNFα and 
IL-6 [118]. Improved insulin signaling was also observed in mice 
fed ASTX by enhancing IRS tyrosin phosphorylation and GLUT4 
translocation in skeletal muscle. 

Kidney failure is one of the diabetic complications and renal 
dysfunction in diabetes is primarily due to damages of tubular 
epithelial cells by apoptosis [119,120]. Hyperglycemia-induced 
oxidative stress can cause apoptosis in proximal tubular epithelial 
cells (PTECs), deteriorating kidney functions [121,122]. In 
PTECs, ASTX inhibited high glucose-induced lipid peroxidation, 
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production of ROS, iNOS and COX-2, NF-κB nuclear translocation, 
and pro-apoptotic Bax protein, whereas it increased anti-
apoptotic Bcl2 protein levels [123]. The results suggest that 
ASTX may protect against high glucose-induced oxidative stress, 
inflammation, and apoptosis in kidney. Diabetic nephropathy is 
also characterized by the enlargement of glomerular mesangium. 
Consumption of 0.02% ASTX for 12 weeks prevented the 
progression of diabetic nephropathy, evidenced by reduced 
glomerular mesangial area, improved hyperglyceridemia and 
oxidative stress in db/db mice [124]. Also, ASTX supplementation 
decreased the expression of genes involved in the mitochondrial 
oxidative phosphorylation pathway, such as complexes I, III, and 
IV, in primary glomerular cells from the kidney of db/db mouse 
fed 0.02% ASTX for 6 weeks [125].

Taken together, studies have supported that ASTX exerts 
anti-diabetic effects by ameliorating hyperglycemia-induced 
oxidative stress, which can improving insulin sensitivity by the 
activation of IRS-PI3K-Akt pathway in several diabetic animal 
models.

Hepato-protective effects of ASTX against NAFLD 

NAFLD, the hepatic manifestation of metabolic syndrome 
[126], is the most common cause of chronic liver disease in the 
developed countries [127]. A part of NAFLD patients progress 
to NASH, which is characterized by hepatocyte damage, 
necroinflammation, and fibrosis [128,129]. Although the 
pathogenesis of NASH is controversial, lipotoxicity, oxidative 
stress, and inflammation have been suggested as key culprits for 
the progression of benign hepatic steatosis to NASH [130-132]. 
Because ASTX accumulates in the liver at a high concentration 
[31] and it has potent antioxidant and anti-inflammatory 
properties as mentioned earlier, it has a great preventive/
therapeutic potential to prevent the development of NASH. 

The hepato-protective function of ASTX has been 
demonstrated in several animal models. Administration of 
carbon tetrachloride (CCl4), a common chemical inducer of NASH, 
increases fatty acid synthesis and inhibits lipoprotein secretion 
in the liver, ultimately leading to excessive lipid accumulation 
and oxidative stress [133]. Daily oral gavage of 100 mg/kg 
body weight ASTX for 16 days inhibited lipid peroxidation, and 
increased the levels of GSH and the activity of SOD in CCl4-treated 
rats [134]. In high fat-fed ddY mice, stomach intubation of 30 mg/
kg body weight of ASTX per day for 60 days prevented the high fat-
induced increase in body weight, and adipose and liver weights, 
as well as the hepatic triglyceride content without altering energy 
intake compared to control [135]. The study suggests that ASTX 
may exert an anti-obese effect by facilitating energy expenditure 
possibly via increasing thermogenesis and fatty acid oxidation. 
Lower respiratory quotient in ASTX-administered mice supports 
this possibility because ASTX increased the utilization of fatty 
acids, instead of carbohydrate, as energy sources. In addition, 
daily administration of 6 mg/kg body weight of ASTX for 60 
days prevented high fat/high fructose diet-induced obesity and 
hepatic steatosis in albino mice [136]. This study showed that 
ASTX improved the liver morphology by reducing lipid droplets 
and collagen accumulation; and ASTX significantly improved 
antioxidant status in liver, evidenced by increased GSH level and 
antioxidant enzymes activities with a concomitant decrease in 

lipid hydroperoxide levels. Therefore, the studies suggest that 
ASTX has antioxidant and lipid-lowering activities in the liver, 
which may act synergistically to prevent the pathogenesis of 
NAFLD and NASH.

ASTX may be able to prevent the progression of existing 
NASH conditions. Oval cells, or hepatic progenitor cells, undergo 
rapid proliferation and differentiate into hepatocytes in response 
to injury of mature hepatocytes [137]. Excessive differentiation 
of oval cells, however, may increase the risk of neoplastic 
transformations and carcinogenesis [137]. Treatment of 
diethylnitrosamine (DEN), a chemical inducer of hepatocellular 
carcinogenesis, triggers rapid proliferation and carcinogenesis in 
oval cells [138]. Expansion of oval cells is a key event for NASH 
in murine models and humans [139]. When oval cells isolated 
from partially hepatectomized or DEN-treated rats were cultured 
with ASTX, the proliferation of oval cells was significantly 
attenuated by ASTX, suggesting it may have hepato-protective 
properties against deterioration of existing hepatic injury [140]. 
Taken together, ASTX has anti-steatotic, antioxidant, and anti-
carcinogenic properties in the liver, which can prevent key steps 
for the development of NAFLD and liver cancer. 

Health benefits of ASTX for the prevention of CVD

CVD risk factors include hypercholesterolemia, 
hypertriglyceridemia, hypertension, and chronic inflammation 
[141]. Several studies in animal models and humans reported that 
ASTX can reduce the CVD risk. We also previously reported that 
apoE-/- mice, a mouse model of atherosclerosis, fed a high fat/
high cholesterol diet supplemented with 0.03% ASTX for 4 weeks 
showed lower plasma total cholesterol and triglyceride than 
control mice [59]. The hypocholesterolemic effect of ASTX was 
likely due to increased hepatic expression of LDL receptor, which 
facilitates LDL uptake to the liver from the circulation, whereas the 
triglyceride-lowering effect of ASTX was attributed to an increase 
in the expression of genes involved in fatty acid β-oxidation. In 
subjects with mild hyperlipidemia, ASTX consumption reduced 
plasma triglyceride levels but increased HDL cholesterol and 
adiponectin [142]. The underlying molecular mechanisms for 
the hypolipidemic effect of ASTX may be mediated through 
peroxisome proliferator-activated receptors (PPARs). In HepG2 
cells, a human hepatoma cell line, ASTX increased the expression 
of PPARα, yet it downregulated PPARγ, stimulated bile acid 
synthesis pathway, and inhibited cholesterol biosynthesis [143]. 
This study also demonstrated that ASTX can function as a PPARα 
agonist but as a PPARγ antagonist, reducing accumulation 
in HepG2 cells. The role of ASTX on atherogenesis was also 
determined. When Watanabe heritable hyperlipidemic rabbits 
were fed 100 mg/kg of ASTX for 24 weeks, ASTX significantly 
decreased macrophage infiltration in the atherosclerotic plaques, 
improved plaque stability, significantly diminished macrophage 
apoptosis, MMP3 expression [144]. 

Studies have demonstrated ASTX may improve hypertension. 
In a spontaneously-hypertensive rat (SHR), oral administration 
of ASTX for 14 days or 5 weeks at the level of 50 mg/kg reduced 
blood pressure and delayed stroke incidence [145]. Also, 5 mg/
kg of ASTX supplementation reduced plasma levels of nitrite/
nitrates, decreased lipid peroxidation, improved vascular elastin, 
and decreased coronary artery wall thickness in SHR [146,147]. 
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In SHR fed an ASTX-enriched diet at a dose of 200 mg/kg body 
weight, the systolic blood pressure was lowered and endothelial 
function was improved concomitantly with a decrease in oxidative 
stress and an increase in NO bioavailability [148]. Also, vascular 
oxidative damage, hypertension, and cerebral thrombosis were 
protected by 3 week-ASTX supplementation at a daily dose of 
600 mg/kg body weight in stroke-prone SHR [149]. In Zucker 
fatty rats, supplementation of ASTX at doses of 5 mg/kg or 25 
mg/kg for 75 days also decreased systolic blood pressure [150]. 

In summary, mounting evidence supports that the preventive 
effect of ASTX against CVD may be attributed to its hypolipidemic 
effect by functioning as a PPARα agonist to lower plasma 
triglyceride levels, improving oxidative damage, and preventing 
hypertension. 

CONCLUSION
Oxidative stress is a major underlying cause for metabolic 

disorders, such as insulin resistance, CVD and NAFLD. Mounting 
evidence supports that ASTX has a potent antioxidant effect, 
which is largely attributed to its unique chemical structure and 
position in the lipid bilayer of cell membrane. In addition to direct 
removal of free radicals and ROS, ASTX can also regulate activity 
of NRF2 and NF-κB to enhance body’s endogenous antioxidant 
defense system and to inhibit pro-inflammatory response, 
respectively. Although several health-promoting effects of ASTX 
have been demonstrated (Figure 2), future studies are necessary 
for better understanding of the functions of ASTX. In particular, 
it is important to understand mechanisms by which ASTX alters 
signaling pathways and activities of transcriptional factors. 
Also, large-scale, well-designed human clinical trials should be 
conducted to test a therapeutic potential of ASTX to lower the 
risks of diabetes, NAFLD or CVD. 
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