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INTRODUCTION
Improving periconceptional folate status reduces the risk of 

neonatal neural tube defects.  Therefore, increased folate intake 
is recommended before and during the early stages of pregnancy 
through folic acid supplements or fortified foods.  Folates also 
have a role in prevention of other diseases such as Cardiovascular, 
Cancers, Alzheimer [1]. Folates exist in a variety of forms related 
to the parent compound folic acid (pteroylglutamic acid, PGA) and 
each possesses different biological activity.  Folic acid is produced 
synthetically and is only found in fortified foods and supplements 
[2]. The most common forms of naturally occurring folates 
found in foods are 5-methyltetrahydrofolic acid (5-MeTHF), 
tetrahydrofolic acid (THF) and 5-formyl tetrahydrofolic acid 
(5CHOTHF).  Of these 5-MeTHF is the predominant folate vitamer 
found naturally in foods [3].

Folic acid, found in fortified foods, lacks coenzyme activity 
and must be reduced to the metabolically active tetrahydrofolate 
form with in the cell [1].  

5-MeTHF, the predominant natural folate found in food 
and blood, is the folate form that is transported into peripheral 
tissues to be used for cellular metabolism.  Studies have found 
that 5-MeTHF and folic acid have comparable physiological 
activity, bioavailability, and absorption at equimolar doses [1]. 
However, intake of 5-MeTHF may have advantages over intake 
of folic acid in terms of  reducing the potential for masking of 
vitamin B12 deficiency and interaction with drugs that inhibit 
dihydrofolate reductase [1].  Consequently, there is a need to 
provide a database on 5-MeTHF form of folate in food products, 
in addition to more frequently reported total folate content.
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The existing data for folate content in foods is based on 
the microbiological assay, which provides an estimate of total 
folate content and not of the individual folate compounds.  High 
Performance Liquid Chromatography (HPLC) methods allow 
for determination of individual folate (including 5-MeTHF) in 
a variety of difficult sample matrices [4-9,2,3,10].   HPLC data 
are, however, not well represented in the U.S. food composition 
databases.  This is due to the elaborate nature of the sample 
extraction techniques, complicated purification and enrichment 
schemes, and the need for validated techniques optimized for 
varied sample matrices. The use of solid phase extraction (SPE) 
columns for selective purification have gained popularity as they 
are relatively inexpensive, show promise for trace enrichment 
and when used carefully, yield adequate sample purification and 
quantitative recovery of target compounds [8,11].

The objective of this study was to develop an optimized HPLC 
method to quantify 5-MeTHF in food samples and report values 
of 5-MeTHF in selected food samples.

MATERIALS AND METHODS
Samples

A variety of dairy products (American and Swiss cheeses, 
Carnation non-fat dry milk), Frozen vegetables (Green Giant  
mixed vegetables, green pea, broccoli), Ready-to Eat cereals 
(Cheerios, Kellogg’s Product 19, Kellogg’s Special K), and dry 
pasta (enriched macaroni, enriched spaghetti) were purchased 
from a local grocery store.  RTE cereal samples and flours 
representing a variety of cereal grains and used in a previous 
inter-laboratory collaborative study were also assayed [12].   
Dried samples were ground with a mortar and pestle.  Cheese 
and frozen vegetables were ground using a food processor.  All 
food samples were stored at –18 °C in airtight containers until 
analysis.  

Preparation of Standard

5-MeTHF standard was obtained from Dr. Schirck’s 
Laboratories (Jona, Switzerland).  A stock standard solution of 5- 
MeTHF was prepared by dissolving five milligrams of 5- MeTHF 
in 100 ml of 0.1 M sodium acetate containing 10% (w/v) sodium 
chloride and 1% (w/v) ascorbic acid in a volumetric flask. 
Working standard solutions of 1.25, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 
17.5, 22.5, and 25.0 ng/mL were obtained through serial dilution 
of stock solution. All standard solutions were stored at -18 °C to 
minimize degradation.  

Sample extraction and purification

An extraction/purification method for 5-MeTHF in food 
samples was optimized based on published methods [9,13,8,11].  
All extraction and purifications steps were conducted under gold 
fluorescent light to minimize destruction of folate.  Two grams 
of the ground food sample was mixed with 20 ml of Hepes/Ches 
buffer, pH 7.85 (50 mM Hepes and 50 mM Ches), containing 2% 
(w/v) sodium ascorbate and 10 mM 2-mercaptoethanol in a 50 
ml centrifuge tube.  After mixing with a vortex mixer, all the tubes 
were placed in a boiling water bath for 10 minutes, cooled rapidly 
in an ice-bath, and then homogenized using a tissue homogenizer 
(Biospec Products, Bartlesville, OK) for 1 minute.  The contents 

of the tubes were then subjected to a trienzyme treatment.  This 
included inoculation of each tube with 0.5 mL of rat plasma 
folate conjugase and 1 mL of α-amylase and incubation at 37°C 
for 4 hours, followed by inoculation with 2 mL of protease and 
incubation at 37°C for 1 hour.  At the end of enzyme treatments, 
the tubes were heated in a boiling water bath for 5 minutes, 
cooled in an ice-bath, and centrifuged at 5000 x g for 10 minutes 
at 5 °C.  The pellet was re-dissolved in 5 ml of extraction buffer 
(HEPES/CHES buffer) and re-centrifuged at 5,000 x g for 10 
minutes at 5°C.  The supernatants were then combined together, 
mixed well, and stored at 4°C until further purification. 

A 3-mL strong ion exchange column – SPE (Bakerbond SPE, 
catalogue No.7091-3, J.T. Baker, NJ) was used to purify and 
concentrate the sample extracts using a Baker vacuum manifold.  
Three milliliters each of hexane, methanol, and de-ionized water 
were sequentially used to activate each cartridge.  The cartridge 
was then equilibrated with 10 ml of 0.01 M phosphate buffer 
containing 0.1 % 2-mercaptoethanol (pH 7.0 conditioning buffer).  
A 3-mL aliquot of sample extract was diluted with 6-mL de-ionized 
water, and 15 µL of 2-mercaptoethanol before application on to 
the SPE column. The mixture was slowly passed at 33-35 drops 
per minute flow rate through the SPE column using the vacuum 
manifold set for 10 KPa.  The column was then washed with 3 
ml of conditioning buffer, and the folate compounds were eluted 
with 3 ml of 0.1 M sodium acetate containing 10% (w/v) sodium 
chloride and 1% (w/v) ascorbic acid.  The final eluate was mixed 
vigorously using a vortex mixer and refrigerated at 4°C until 
HPLC analysis.  

HPLC Separation and Analysis

An isocratic HPLC separation similar to that reported by 
Day and Gregory (1981) was employed.  Separation of 5-MeTHF 
analysis was performed on a system consisting of a Waters 
515 HPLC pump (Waters Corporation, Milford. MA), Rheodyne 
injector (Model 7125, Upchurch Scientific, Inc., Oak Harbor, WA), 
equipped with 100 µl injection loop, a Jasco Model 82 1-Intelligent 
Spectrofluorometric detector (JASCO, Japan, Ex=290nm & 
Em=356nm, Gain= 100) and a Model 3390A Integrator (Hewlett 
Packard Co., Avondale, PA). The analytical column used was 
a Genesis C18 column with 250 x 4.6mm i.d., and 4 µm particle 
size (Jones Chromatography, Lakewood, CO) protected by a 1-cm 
× 4-mm guard column (Genesis C18 , 4-µm particle size, Jones 
Chromatography, Lakewood, CO).  The column was operated 
at ambient temperature, using an isocratic mobile phase of 6% 
acetonitrile and 94% of 33 mM phosphoric acid (pH 2.3) and a 
flow rate 1.0 ml/min (this condition was selected for the best 
possible separation at a reasonably short retention time which 
is18-21minutes).  All samples were filtered through a 0.45 µm 
filter (Millipore Corporation, Bedford, MA) prior to HPLC analysis.  
Quantification was based on an external standard method in 
which the peak area was plotted against the concentration of the 
standard and using the equation given below.  Calibration plots 
using least-squares regression analysis were also prepared for 5- 
MeTHF standard in the concentration range of 1.25, 2.5, 5.0, 7.5, 
10.0, 12.5, 15.0, 17.5, 22.5, and 25.0 ng/ml.  Working standard 
solutions were prepared fresh by diluting stock solutions on the 
same day that samples were prepared.  
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RESULTS AND DISCUSSION

Optimized Method

Extraction and Purification: Additional peaks other than 
the clearly resolved 5-MeTHF were noted in the chromatogram.  
These peaks were originating in the amylase and protease 
incubation steps but not if only the polyglutamase digestion is 
carried out.  This is graphically demonstrated in figure 3 where 
an extraneous and large post-5-MeTHF eluting peak is noted only 
with the additional amylase and protease treatments.  Figure 3 
also shows that protease and rat plasma polyglutamase enzyme 
incubation are necessary for more complete recovery of 5-MeTHF 
as judged by the chromatogram of milk powder sample.  This is 
consistent with earlier work by others [14-17,9].  Food samples, 
however, are more recalcitrant in yielding their true endogenous 
levels of folate and will benefit from this step.

SPE sample purification step was also observed to be a 
critical step in the analysis.  Sample extract dilution with water 
prior to SPE loading, 1:2 (v/v) as recommended by Vahteristo 
et al (1996) proved to be an effective step in insuring low salt 
concentration and adequate retention of the target compound on 
to the SPE cartridge.  The use of the SPE clean-up was necessary 
for most samples although extraneous peaks which did not 
interfere with the analyte of interest were still noted in the 
chromatograms.  SPE using commercial strong anion exchange 
columns proved to give complete recovery of pure standards.   
We have determined that up to 5 microgram of 5-MeTHF can be 
loaded onto the SPE column and recovered without losses [18].  
This is a considerably larger binding capacity when contrasted 
to the reported upper limit values for folate-binding capacity of 
affinity columns Konings (1999) who recommended a folate load 
of no more than 2.04 µg for FBP affinity columns.  Commercial 
SPE cartridges continue to prove to be effective tools in the 
cleanup of samples prior to chromatography for endogenous 
5-MeTHF determination [18,19].

HPLC: 5-MeTHF peaks were adequately resolved for peak 
quantification.  Retention times for 5-MeTHF on the Genesis 
column varied between 19 and 21 minutes, and this drift did not 
affect peak identification within a given run.  A detection limit of 
0.625ng/mL was noted for 5-MeTHF in a pure standard, with the 
use of a 100-µL injection loop volume.  An isocratic HPLC system 
proved effective.  The occurrence of late eluting peaks after 
5-MeTHF elution (30 minutes) in most samples may warrant a 
gradient separation for speedier clean up and re-equilibration of 
the column prior to the analysis of the next sample.  

Pure standards made up in the working range of estimated 
sample folate concentration and taken through the entire 
analytical protocol showed good linearity as judged by 
high correlation coefficients (R2= 0.9949, figure 1) between 
concentration and fluorescence detector response.  Pure 
standards also showed good recovery, almost 100 %, when 
they were subjected to enzymatic digestion, extraction, and SPE 
purification (figure 2) to simulate sample treatment.  Spiking 
experiments using food samples showed that 5-MeTHF added to 
samples prior to extraction yielded recovery of 98.7, 107.9,103.7, 
101.1, 131.1, and 100.1% for milk powder, frozen mix vegetables, 
Cheerios®, Kellogg’s® Product 19, Kellogg’s® Special K, and 

enriched macaroni, respectively (table 1).   The average recovery 
of added 5-MeTHF was 107.1%.  

MeTHF content of selected foods

The 5-MeTHF concentration in selected cheeses, frozen 
vegetables, milk powder, cereals, and flours are presented in 
table 2.  Frozen green pea, mixed vegetables, and milk powder 
showed higher levels of 5-MeTHF (20.6, 31.3, 31.9 µg/100g) 
when compared to other samples.  Milk powder showed a folate 
content of 31.9 µg/100g.  This value is comparable to 5-MeTHF 
of 15.7 to 29.8 µg/100g reported by Konings (1999) [2] for 
spray dried cow’s milk powder.  5-MeTHF content of cheeses 
ranged between 5 to 9 µg/100g.  RTE breakfast cereals had 

Figure 1 Standard curve of 5-methyltetrahydrofolate .  Fluorescence response 
to 100 microliter injections of standards taken through extraction and clean up 
procedure.

Figure 2 Chromatograms showing:  (a)  Pure 5- MeTHF standard (27.8 ng/ml, 
Peak Area 3,585,200) .  (b) The same standard taken through the entire folate 
analytical procedure as food  sample had Peak Area 3,687,400.
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Samples      % Recovery Standard Deviation

Milk Powder 98.7 10.6

Frozen Mixed Vegetables 107.9 7.50

Cheerios® 103.7 23.9

Kellogg’s® Product 19 101.1 4.00

Kellogg’s® Special K 131.1 7.8

Macaroni 100.1 8.90

Average Recovery %                          107.1

Table 1:  Percentage recovery of spiked 5-Methyltetrahyrdrofolate in some food 
samples.

concentrations of 5-MeTHF of 4.1 to 10.9µg /100 grams.   Po´o-
Prieto et al (2006) [20] reported content of 5-MeTHF in RTE 
cereals such as Cheerios® and Kellogg’s® Rice Krispies (RTE 
cereal rice) were 12.8 and 2.2 µg/100g.  These two numbers 
were close to our results.  Other grain-based foods analyzed in 
this study had 4.2 to 16.8 µg/100g 5-MeTHF.  Limited published 
information exists on 5-MeTHF content in comparable products 
to allow for direct comparisons.  Pfeiffer and coworkers (1997) 
[9] reported 5-MeTHF concentrations of 8.5, 4.9 and 3.4 µg/100g 

Table 2:  5-Methyltetrahydrofolate content (µg/100g) of Selected Food Products 
(average of 3 samples).

* Samples purchased from the grocery store

Food products 5-MeTHF content Standard Deviation

Swiss Cheese (fresh) *   5.63 0.29

American Cheese (fresh) * 9.53 0.67

Milk Powder (Carnation) * 31.90 2.60

Frozen mixed vegetables* 31.30 4.00

Frozen Broccoli* 17.96 3.18

Frozen Green peas* 20.56 2.66

Enriched macaroni*   5.00 0.70

Cookies (High fat) 15.30 1.30

Cookies (Low fat) 5.14 1.51

Cookies (High fiber) 3.03 0.70

Unfortified white flour 16.78 1.91

Enriched white flour 11.68 1.06

Whole wheat flour   5.22 1.56

Enriched white bread 14.05 1.52

Spaghetti (uncooked) 10.17 4.36

 Enriched pasta 8.45 1.33

Baking mix 19.68 3.08

Corn tortilla 6.39 2.43

Corn Meal 15.32 3.61

RTE cereal-wheat bran 10.89 2.19

RTE Cereal-wheat  4.10 2.31

RTE Cereal-oat 7.61 2.35

RTE Cereal-rice 4.18 0.87

Cheerios®* 8.70 0.60

Kellogg’s® Product 19* 9.20 1.70

Kellogg’s® Special K* 5.70 1.70

Figure 3 Role of folate conjugase enzyme from rat plasma in 5-MeTHF 
measurement.
Chromatograms of 5-MeTHF in milk powder. 

•	 First chromatogram-No use of enzyme
•	 Second chromatogram-Use of rat plasma folate conjugase treatment alone, 
•	 Third chromatogram-Use of trienzyme treatment (alpha amylase, protease, 

and rat plasma folate conjugase enzyme)

for white bread, white rice, and spaghetti, respectively, using 
affinity chromatography and a trienzymic HPLC method.  Other 
values of 5-MeTHF content reported for raw spaghetti, corn 
meal, and corn tortilla (cooked taco shell) were 9.4, 28 and 11.5 
µg/100g respectively [20]. Holasova et al [21] reported 5-MeTHF 
concentrations of 56 µg/100g in raw broccoli. 

CONCLUSION
This study presents an optimized analytical protocol for 

the measurement of 5-MeTHF in processed cereal based foods 
and selected dairy and vegetable products.  5- MeTHF was 
extracted from the sample after trienzymic digestion/incubation, 
purified using strong anion exchange chromatography prior to 
quantification by isocratic HPLC.  The optimized method can 
help chemists quantify naturally occurring 5-MeTHF in different 
food matrices and allow consumers to differentiate between the 
naturally occurring folate forms and added folic acid in food.
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