

Research Article

Antifungal Activity of Antidepressant Sertraline against *Candida* Species *In vitro*: A Potential Beneficial Association with Fluconazole

Ana S. Oliveira^{1*}, José Martinez-de-Oliveira^{1,2}, Rita Palmeira-de-Oliveira^{1,3,4}, and Ana Palmeira-de-Oliveira^{1,3}

¹Health Sciences Research Center, University of Beira Interior, Portugal

²Child and Woman's Health Department, Centro Hospitalar Cova da Beira, Portugal

³Labfit—Health Products Research and Development (HPRD), Portugal

⁴Pharmacy Department, Centro Hospitalar Cova da Beira EPE, Portugal

Abstract

Among vaginal infections, vulvovaginal candidosis (VVC) is the second most frequent vaginal infection and is one of the most common clinical diseases caused by *Candida* spp. VVC is usually treated very effectively with azoles. However, complicated episodes require more intense and prolonged therapeutic approaches and even multidrug regimens.

Different studies reported an *in vitro* antimicrobial activity of selective serotonin reuptake inhibitors (SSRIs) antidepressants against several fungi including *Candida* spp. Thus, the main goal of this study was to determine the antimicrobial activity of the SSRI sertraline, alone and in combination with fluconazole, against twenty-nine *Candida* spp. strains.

Sertraline MIC and MLC values ranged from 4.9 to 78 μ g/ml and 9.8 to 78 μ g/ml, respectively. For the majority of the strains (23 from the 29 enrolled) the result corresponded to a fungicidal effect (MIC=MLC), while for the remaining strains the MLC value was twice the MIC value.

The combination of sertraline with fluconazole showed a synergic effect in yeast growth inhibition for the majority of the enrolled strains (FIX values between 0.07 and 0.28). In the resistant strains that showed a response to the synergistic effect, the fluconazole MIC value decreased up to 64-fold.

These results reinforce the potential of SSRIs to be used, alone or associated with conventional antifungal, as a new strategic therapeutic approach to treat resistant VVC.

INTRODUCTION

Vaginal infections represent one of the most frequent reasons for women to seek medical consultation. In fact more than 70% of adult women did have a vaginal problem and have used vaginal products to treat infections [1].

Among vaginal infections, vulvovaginal candidosis (VVC) is the second most frequent vaginal infection and is one of the most common clinical diseases caused by *Candida* spp. [2]. *Candida albicans* is the predominant cause of VVC, accounting for 50% to 70% of cases. However, the epidemiology of *Candida* infection has changed in recent years [3].

VVC is usually treated very effectively with azoles, including short-course topical treatments, in sporadic or uncomplicated cases, with no azoles resistance suspected [4].

Complicated episodes, reported in 10% of patients, require

more intense and prolonged therapeutic approaches, often combining topical and oral therapies, or even multidrug regimens [5].

Since the first antimicrobial activity was described for a psychotropic drug, almost sixty years ago, a number of non antibiotic drugs have been shown to have some influence on the physiology and on the viability of microorganisms [6]. One group of these non antibiotic drugs is third generation antidepressants, the selective serotonin re-uptake inhibitors (SSRI). Specifically, sertraline has proven to have a significant antimicrobial activity, mainly against Gram positive bacteria [6].

The potential antifungal activity of this antidepressant was first observed in a clinical setting where three patients with premenstrual dysphoric disorder (PMDD) and VVC were treated with sertraline. Interestingly, VVC related clinical symptoms disappeared during the sertraline therapy but recurred after the treatment was stopped [7].

In accordance with these clinical findings, some studies reported the *in vitro* antimicrobial activity of this drug against *Saccharomyces cerevisiae*, *Aspergillus spp.*, *Candida spp.* and *Cryptococcus neoformans*. However, the studies enrolled a small number of strains and the conclusions regarding the interest of this drug as a future antifungal agent were contradictory [8–11].

Thus, the main goal of this study was to determine the antimicrobial activity of the SSRI sertraline alone and in combination with fluconazole, against a significant number of *Candida spp.* strains in order to expand the knowledge regarding the possible usage of this drug as an antifungal, especially in the most difficult clinical cases.

MATERIAL AND METHODS

Drugs

Among antidepressant drugs we chose sertraline hydrochloride, which was generously provided by Bluepharma Pharmaceutical (Coimbra, Portugal). A stock solution with 2,500 µg/ml in de mineralized water was prepared at room temperature, according to the manufacturer's instructions. From the stock solution, serial 1:2 dilutions were prepared using RPMI medium (Biochrom AG Germany) immediately at the beginning of the test.

Fluconazole (Sigma-Aldrich, Sintra, Portugal) stock solution was prepared in DMSO (Sigma-Aldrich, Sintra, Portugal) at a concentration of 512 µg/ml. 1:2 dilutions were prepared using RPMI medium, as described [12].

Yeast strains

Twenty-nine *Candida* strains were included in this study corresponding to two American Type Culture Collection strains (*C. albicans* ATCC 10231 and *C. albicans* ATCC 90028) and twenty-seven clinical isolates distributed as follows: seven *C. albicans*, six *C. tropicalis*, four *C. glabrata*, two *C. krusei*, two *C. guilliermondii*, one *C. sphaerica*, four *C. Parapsilosis* and one *C. lipolytica*. *Candida* isolates were characterized to species using molecular identification and API 32C testing (bio- Mérieux, Vercieux, France).

The strains were kept frozen in brain heart infusion broth (Difco Laboratories, Detroit, MI) with 5% glycerol (Sigma-Aldrich, Sintra, Portugal) at -70°C. Prior to testing, samples were thawed at room temperature and subcultured twice on SDA to assess their viability in culture.

Antifungal activity

Sertraline and fluconazole anti-*Candida* activity was assessed according to the CLSI reference M27-A3 microdilution method [13]. Minimal inhibitory concentration (MIC) for sertraline was assessed after 48h of incubation under aerobic conditions at 37°C. MIC corresponded to the lowest concentration of the drug that prevented yeast growth, assessed by visual inspection of the microplates. Strains were grown in the absence of the drugs (positive control) and in pure non inoculated media (sterility control) under the same incubation conditions [14]. Minimal lethal concentration (MLC) was determined according to the previous described methods by Canton et al. [14]. In order to

evaluate the effect of combining sertraline and fluconazole, the MIC value for fluconazole was also assessed. For this drug the MIC was defined as 50% reduction of the yeast growth by spectrophotometric evaluation at 530 nm, as described in the CLSI protocol [12]. The association effect of these two drugs in the yeast growth inhibition was assessed using the checkerboard technique [15]. Briefly six strains of *C. albicans* were placed in a two-dimensional microplate with 50 µl of each drug and incubated at 37°C for 48h under aerobic conditions. The interaction between both compounds was calculated using the fractional inhibitory concentration (FIC) and fractional inhibitory index (FIX). FIX interpretation defines a synergic effect as values ≤ 0.5, additive effect as values between 0.5 and 4.0, and antagonism when ≥ 4.0 [15].

All experiments were performed in duplicate and repeated in three independent experiments.

RESULTS

The antifungal effect of sertraline against the twenty-nine tested *Candida* strains is presented in Table (1), expressed in MIC and MLC values. Depending on the tested concentrations, the drug showed a fungistatic or fungicidal activity against all tested strains. In fact, the MIC and MLC values match for the majority of the strains (23 of the 29 strains tested), with exception of two *C. albicans*, one *C. glabrata*, one *C. tropicalis*, one *C. sphaerica* and

Table 1: Antifungal activity of SSRI Sertraline against *Candida spp.*

Strain	MIC (µg/ml)	MFC (µg/ml)
<i>Candida albicans</i> ATCC 102	78	78
<i>Candida albicans</i> ATCC 9800	39	39
<i>Candida albicans</i> MP14	39	78
<i>Candida albicans</i> MP25	78	78
<i>Candida albicans</i> MP26	78	78
<i>Candida albicans</i> AP25A	39	39
<i>Candida albicans</i> AP26B	39	39
<i>Candida albicans</i> MP27	9.8	19
<i>Candida albicans</i> MP24	9.8	9.8
<i>Candida glabrata</i> MP7	39	39
<i>Candida glabrata</i> MP8	39	39
<i>Candida glabrata</i> MP28	39	78
<i>Candida glabrata</i> MP29	39	39
<i>Candida guilliermondii</i> MP1	39	39
<i>Candida guilliermondii</i> MP2	19	19
<i>Candida krusei</i> MP16	39	39
<i>Candida krusei</i> MP17	39	39
<i>Candida sphaerica</i> AP35B	4.9	9.8
<i>Candida tropicalis</i> MP4	78	78
<i>Candida tropicalis</i> MP5	78	78
<i>Candida tropicalis</i> MP37	78	78
<i>Candida tropicalis</i> MP38	78	78
<i>Candida tropicalis</i> MP39	78	78
<i>Candida tropicalis</i> MP36	78	78
<i>Candida parapsilosis</i> MP34	39	39
<i>Candida parapsilosis</i> MP32	39	39
<i>Candida parapsilosis</i> MP9	9.8	19
<i>Candida parapsilosis</i> MP12	78	78
<i>Candida lipolytica</i> MP40	19	19

one *C. parapsilosis* strain. For these six strains the MLC value was twice the MIC value.

Generally, MIC values ranged from 9.8 to 78 μ g/mL. Only for *C. sphaerica* a lower value was observed (MIC of 4.9 μ g/ml), being the most susceptible *Candida* specie. In contrast, the most resistant specie was *C. tropicalis* with all strains presenting the same MIC value of 78 μ g/ml.

Interestingly, and contrary to *C. tropicalis*, different MIC values were obtained for different strains from the same species.

Regarding the phenotypic classification of the six *Candida albicans* strains concerning their susceptibility to fluconazole, the obtained results were expressed in MIC values and are presented in Table (2). The results were interpret using CLSI M27-S4 criteria specific for *Candida albicans* specie[12]. Of the six strains enrolled in the test, five were resistant (R) and presented MICs between 16-128 μ g/ml. Regarding the one sensible dose-dependent (S-DD) strain, the obtained MIC was 4 μ g/ml.

The checkerboard technique was used to determine the effect of different concentrations of sertraline and fluconazole on the growth of six *Candida albicans* strains. Table (3) represents the MICs obtained for the two drugs, both alone and in combination. A synergistic effect was observed on five of the six tested strains with FIX values ranging from 0.07 to 0.28. All of the five strains were resistant to fluconazole. An additive effect was observed for the remaining strain, the only one with S-DD profile (FIX=0.50). When the drugs were used in combination, the fluconazole MIC for resistant strains decreased up to 64 fold. For all six strains, sertraline MIC decreased between 4 and 32 fold when tested in combination.

DISCUSSION

The need for novel antifungal regimens prompted this study regarding sertraline antifungal activity, which has already shown to exhibit antifungal activity towards *Candida spp.* [9,10,16]. In the current study the MICs assessed ranged from 4.9 to 78 μ g/ml, which are comparable with the previous reported values (MICs between 6.3 and 32 μ g/ml). The higher range of MIC concentrations here reported is probably related with the higher number of strains included.

Drug combination has been one consistent strategy to overcome antimicrobials limitations and the potential association of sertraline and fluconazole was been previously reported, though with different results [9,11].

In the present study, a synergistic effect resulted from the combination of these drugs upon all five fluconazole resistant strains. This synergism was more evident when the combined concentrations were far below the MICs for each compound (Table 3). It was also found that, for all tested strains, increasing one of the compounds concentrations (reaching MIC values) while maintaining the concentration of the second compound at a low value, resulted in a shift from a synergistic to an additive effect (data not shown).

With regard to the S-DD strain tested, an additive relationship was evident.

Contrarily, Zhai et al., reported an antagonism between fluconazole and sertraline in six *Candida* strains. These apparently contradictory results are due to a different analysis methodology used on the two studies. In fact, when the same analysis method is

Table 2: Phenotypic classification of six *Candida* strains based on their susceptibility to fluconazole.

Strain	Fluconazole MIC-2 ^a	Phenotype ^b
<i>Candida albicans</i> ATCC 10231	16	R
<i>Candida albicans</i> MP14	64	R
<i>Candida albicans</i> MP25	64	R
<i>Candida albicans</i> MP26	128	R
<i>Candida albicans</i> AP25A	4	SDD
<i>Candida albicans</i> AP26B	32	R

^aMIC-2: Drug concentration that caused a 50% reduction in turbidity compared to the growth control.

^bS-DD: Susceptible Dose Dependent; R, resistant.

Table 3: Effect of sertraline and fluconazole alone and in combination against *Candida albicans* strains^a.

Strain	MIC STR (μ g/ml)	MIC STR comb (μ g/ml)	MIC FLC (μ g/ml)	MIC FLC comb (μ g/ml)	FIC STR	FIC FLC ^b	FIX ^c	Effect
<i>Candida albicans</i> ATCC 10231	78	2.4	16	4	0.03	0.25	0.28	Synergistic
<i>Candida albicans</i> MP14	39	4.9	64	2	0.13	0.03	0.16	Synergistic
<i>Candida albicans</i> MP25	78	4.9	64	2	0.06	0.03	0.09	Synergistic
<i>Candida albicans</i> MP26	78	4.9	128	2	0.06	0.01	0.07	Synergistic
<i>Candida albicans</i> AP25A	39	9.8	4	1	0.25	0.25	0.50	Additive
<i>Candida albicans</i> AP26B	39	2.4	32	2	0.06	0.06	0.12	Synergistic

^aSRT: Sertraline; FLC: Fluconazole; Comb: Combination Of The Two Drugs.

^bFIC: Fractional Inhibitory Concentration

^cFIX: The Sum of the FIC for SRT and that for FLC.

applied and the FIX indexes are recalculated for Zhai et al. results, an additive effect is present for some concentration ranges.

Also, Heller et al., reported an antagonist effect of sertraline when combined with itraconazole [11]. These different results are consequence of a different FIX scale. When the results are reanalyzed using the scale defined by Ernst EJ, the relation between sertraline and itraconazole is, in fact, an additive one [15].

Furthermore, these results are in accordance with other previous studies using sertraline and other SSRIs [17,18] and highlight the importance of including these drugs to inhibit the growth of fluconazole resistant strains.

The evident advantage of combining these two drugs leads us to focus our attention on the underlying possible mechanism of action.

The first mechanism suggested for psychotropic drugs was that they may act as efflux pumps Inhibitors, since they also act on human cells as pump inhibitors [6]. However, the fact that SSRIs not only show antifungal activity against fungi, but also impair a number of processes present in bacteria (slime synthesis, swarming) may indicate that they act on fundamental metabolic processes as protein translation [6,9,19,20].

In addition to sertraline, the anti-*candida* activity of SSRIs has already been reported for other molecule, fluoxetine [17]. When comparing the results of both studies, that are basically identical in methodology and strains, all species with exception of *C. glabrata* showed lower MIC and MLC values for sertraline, which indicated a more potent antifungal activity of this drug when compared with fluoxetine. Moreover, and as previously concluded by T. Young et al., the more lipophilic of the two compounds (sertraline logP=5.06; fluoxetine logP=4.05) was also the most efficient against all *candida* strains [10]. This fact may suggest that a non-specific cytotoxic effect may be involved in the antifungal activity of SSRIs.

Although sertraline's mechanism of action was not elucidated, the fact that the drug exhibits fungicidal or fungistatic effect, depending on the tested Concentrations, points us to a multi factorial approach. Studies regarding the drug's mechanism of action are mandatory to confirm this hypothesis.

Concluding, our results do support the use of combined therapies that allow for a lower required dosage of individual drugs, a decrease in host toxicity and enhanced antimicrobial activity, among others benefits [21,22].

Despite that further studies are needed to elucidate the specific mechanism of action of sertraline and other promising SSRIs like fluoxetine, these results do encourage the potential of SSRIs to be used, alone or associated with classic antifungal drugs, as new strategical therapeutic approaches to resistant candidosis.

ACKNOWLEDGMENTS

We are thankful to Bluepharma Pharmaceutical for the sertraline hydrochloride sample. This work was supported by

Fundo Europeu de Desenvolvimento Regional (FEDER) COMPETE program [POCI-01-0145-FEDER-007491] and the Fundação para a Ciência e a Tecnologia [UID/Multi/00709/2013].

REFERENCES

1. Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, Martinez-de-Oliveira J. New strategies for local treatment of vaginal infections. *Adv Drug Deliv Rev* 2015; 92: 105-122.
2. Palmeira-de-Oliveira A, Ramos AR, Gaspar C, Palmeira-de-Oliveira R, Gouveia P, Martinez-de-Oliveira J. In vitro anti-Candida activity of lidocaine and nitroglycerin: alone and combined. *Infect Dis Obstet Gynecol*. 2012; 2012:727248.
3. Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among *Candida* species: mechanisms and clinical impact. *Mycoses*. 2015; 58: 2-13.
4. Workowski KA, Berman S. Sexually transmitted diseases treatment guidelines. 2010. *MMWR Recomm Rep*. 2010; 59: 1-110.
5. Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, et al. Guidelines for treatment of candidiasis. *Clin Infect Dis*. 2004; 38: 161-189.
6. Munoz-Bellido J, Munoz-Criado S, García-Rodríguez J. Antimicrobial activity of psychotropic drugs. *Int J Antimicrob Agents*. 2000; 14:177-180.
7. Lass-Flörl C, Dierich MP, Fuchs D, Semenitz E, Ledochowski M. Antifungal activity against *Candida* species of the selective serotonin-reuptake inhibitor, sertraline. *Clin Infect Dis*. 2001; 33:135-136.
8. Lass-Flörl C, Dierich MP, Fuchs D, Semenitz E, Jenewein I, Ledochowski M. Antifungal properties of selective serotonin reuptake inhibitors against *Aspergillus* species in vitro. *J Antimicrob Chemother*. 2001; 48:775-779.
9. Zhai B, Wu C, Wang L, Sachs MS, Lin X. The Antidepressant Sertraline Provides a Promising Therapeutic Option for Neurotropic Cryptococcal Infections. *Antimicrob Agents Chemother*. 2012; 56: 3758-3766.
10. Young TJ, Oliver GP, Pryde D, Perros M, Parkinson T. Antifungal activity of selective serotonin reuptake inhibitors attributed to non-specific cytotoxicity. *J Antimicrob Chemother*. 2003; 51: 1045-1047.
11. Heller I, Leitner S, Dierich MP, Lass-Flörl C. Serotonin (5-HT) enhances the activity of amphotericin B against *Aspergillus fumigatus* in vitro. *Int J Antimicrob Agents*. 2004; 24: 401-404.
12. Clinical and Laboratory Standards Institute. M27-S4 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th informational supplement. 2012.
13. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution AST of Yeasts, approved standard, 3rd ed, M27-A3 2008: CLSI, Wayne, PA.
14. Cantón E, Pemán J, Viudes A, Quindós G, Gobernado M, Espinel-Ingroff A. Minimum fungicidal concentrations of amphotericin B for bloodstream *Candida* species. *Diagn Microbiol Infect Dis*. 2003; 45: 203-206.
15. Ernst EJ. Susceptibility testing methods of antifungal agents. *Methods Mol Med*. 2005; 118: 3-12.
16. Lass-Flörl C, Dierich MP, Fuchs D, Semenitz E, Ledochowski M. Antifungal activity against *Candida* species of the selective serotonin-reuptake inhibitor, sertraline. *Clin Infect Dis*. 2001; 33:135-136.
17. Oliveira AS, Gaspar CA, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Anti-Candida activity of fluoxetine alone and combined with fluconazole: a synergistic action against fluconazole-resistant strains. *Antimicrob Agents Chemother*. 2014; 58: 4224-4226.

18. Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L, Rossi L, et al. Cross-species discovery of synergistic drug combinations that potentiate the antifungal fluconazole. *Mol Syst Biol*. 2011;7: 499.
19. Kumar VS, Sharma VL, Tiwari P, Singh D, Maikhuri JP, Gupta G, et al. The spermicidal and antitrichomonas activities of SSRI antidepressants. *Bioorg Med Chem Lett*. 2006; 16: 2509-2512.
20. S. Muñoz-Criado, J. L. Muñoz-Bellido, M. A. Alonso-Manzanares, M. N. Gutiérrez-Zufiaurre, J. A. García-Rodríguez. Psychotropic drugs inhibit swarming in *Proteus* spp. and related genera. *Clin Microbiol Infect*. 1998; 4:447-449.
21. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. *Nat Chem Biol*. 2008; 4: 682-690.
22. Lehár J, Stockwell BR, Giaever G, Nislow C. Combination chemical genetics. *Nat Chem Biol*. 2008; 4: 674-681.

Cite this article

Oliveira AS, Martinez-de-Oliveira J, Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, et al. (2017) Antifungal Activity of Antidepressant Sertraline against *Candida* Species *In vitro*: A Potential Beneficial Association with Fluconazole. *Med J Obstet Gynecol* 5(1): 1095.