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ABBREVIATIONS
PE: Preeclampsia; CTLA4: Cytotoxic T-Lymphocyte-Associated 

protein 4; F2: the coagulation factor II; FV: the coagulation 
factor V; SERPINE: Serine Peptidase Inhibitor 1; LEPR: Leptin 
Receptor Gene; NAD(P)H: Methylenetetrahydrofolate Reductase; 
WG: Weeks of Gestation; hCG: human Chorionic Gonadotropin; 
hPL: human Placental Lactogen; PlGF: Placental Growth Factor; 
VEGF: Endothelial Growth Factor; sFLT1: Soluble fms-Like 
Tyrosine Kinase 1; LXRα: Liver X Receptor Alpha; PAPP-A: 
Pregnant-Associated Plasma Protein A; PP13: Placenta Protein 
13; sTWEAK: soluble TNF-Like Weak Inducer of Apoptosis; SDE: 
Serum Derived-Exosomes; CD: Cluster of Differentiation; NGAL: 
Neutrophil Gelatinase-Associated Lipocalin; MAP: Mean Arterial 
Pressure

INTRODUCTION
Preeclampsia (PE) is a serious placental disorder 

characterized by the onset of hypertension and the presence of 
either proteinuria or other severe features during pregnancy in 
previously normotensive woman [1-3]. In the absence of medical 
care, this obstetric disorder can lead to multiorgan dysfunction, 
eclamptic crisis and maternal death [4-6] and is thereby one of 
the important causes of maternal and perinatal mobidity and 
mortality. PE affects 2 to 10% of pregnancies and occurs more 
frequently in low-income countries [7-9]. The clinical symptoms 
appear after 20 weeks of gestation and can in fact be detected as 
late as 4-12 weeks postpartum [10-13]. Risks are also important 
for the fetus and newborn. These include increased morbidity 
and mortality, associated with uterine growth retardation and 

iatrogenic premature childbirth [4,14]. Each year, 10 million 
pregnant women develop PE around the world. Worldwide, 
about 100,000 pregnant women and 500,000 babies die each 
year from preeclampsia. 99% of these mortalities occur in 
low and middle income countries [15]. Management of PE is 
limited to treatment of symptoms and in severe cases, require 
early childbirth to prevent deterioration of the condition of the 
mother and the fetus. Early diagnosis of PE would be helpful 
for careful monitoring of pregnant women and preventive 
strategies. Research efforts in the last ten years have improved 
our understanding of the pathophysiology of PE. Indeed, it is 
now accepted that this obstetrical disorder is the consequence 
of poor placentation [16-23]. Therefore, important efforts have 
been made for the identification of biomarkers or risk factors 
associated to PE. This has further led to the development of new 
algorithms combining clinical risk factors with biomarkers for a 
good prediction of PE [24-29]. 

Since PE is a multifactorial pathology, a single marker is likely 
not to be sufficient in terms of diagnostic value [30]. To improve 
early PE diagnosis, researchers are thus seeking to develop 
multiparametric models including biochemical, molecular and 
genetic markers, body-mass index, mean arterial blood pressure, 
presence of nulliparity or previous preeclampsia and Doppler 
parameters [31-36]. Markers of fetal, placental or renal origin 
and specific markers of oxidative stress have been included in 
these studies [37].

MOLECULAR AND GENETIC MARKERS
Although important discoveries have been made with 
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respect to PE and its origins, the pathogenesis of this disorder 
still remains mostly obscure. Meta-analysis has been used to 
identify specific genes that are associated to preeclampsia or 
severe preeclampsia. Among these, the Angiotensin-Converting 
Enzyme, Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA4), 
the coagulation factor II (F2, also known as prothrombin), the 
coagulation factor V (FV), Lipoprotein lipase and SERPINE Serine 
Peptidase Inhibitor 1 genes have been shown to be associated 
with preeclampsia [38]. Furthermore, Fong et al., showed that 
coagulation factor V gene (proaccelerin) polymorphism, leptin 
receptor gene (LEPR) polymorphism, mutated coagulation factor 
II (thrombin) and the thrombophilic gene group polymorphism 
(including F2, FV and Methylenetetrahydrofolate reductase 
(NAD(P)H genes were associated to severe preeclampsia [39].

Several studies have demonstrated that cell-free DNA could 
also potentially be used as PE markers [40-44]. But these studies 
are very heterogeneous and it is difficult to make a precise 
conclusion about the statistical and clinical relevance of these 
findings. Recently, the search for PE biomarkers and therapeutic 
molecules led to the identification of several microRNAs 
(miRNAs), which expression are dysregulated during PE [45-
51]. miRNA are noncoding RNAs that modulate the expression 
of various target genes through complementary annealing to 
targeted mRNA. Interestingly, these miRNAs are detected in 
maternal serum. In 2015, using qRT-PCR, Murphy et al., have 
shown an increase in levels of miR-98, miR-222, miR-210, miR-
155, miR-296, miR-181a, and miR-29b in the blood of severe 
PE pregnant women [51]. More recently, Zhang et al., showed 
a decrease of miR-942 prior to 20 weeks of gestation (WG) in 
the plasma of PE women [52]. This recent result is interesting 
as this reduction in miRNA abundance was observed before 20 
WG unlike other identified miRNAs, where the variation in levels 
were detected at childbirth. Combined together, these studies on 
miRNAs show promising advances in the identification of plasma 
PE biomarkers but more studies are needed to confirm that 
miRNAs can be used as early PE marker.

PLACENTAL RELATED BIOMARKERS
Preeclampsia is characterized by the onset of hypertension 

and proteinuria during pregnancy [53] but the factor or 
combination of factors responsible for these disturbances is 
unknown. However, a relevant marker of PE should be linked 
to these symptoms. It is undeniable that this marker, once 
identified and validated, will allow better surveillance and 
pharmacological intervention involving a low-dose of aspirin 
or calcium supplementation to improve PE outcome [54-56]. 
Since PE is intrinsically related to the placenta [16-23,57], a 
good marker could be directly related to its structure and/or 
function. This indispensable organ is composed of various cell 
types, which include extravillous and villous cytotrophoblasts. 
Villous cytotrophoblasts have the ability to differentiate into a 
multinucleated cellular barrier called the syncytiotrophoblast 
that covers the chorionic villi. The resulting overlaying structure 
is in direct contact with maternal blood and plays a crucial role 
for nutrient and hormone exchanges between the mother and 
the fetus as well as producing important soluble factors, such 
as human chorionic gonadotropin (hCG) and human placental 
lactogen (hPL) [58] and pro- and anti-angiogenic factors [59-61]. 

Thus, a defect in the formation of the placenta would result in a 
defect in the production of these soluble factors. 

Ideally, this placenta-associated biomarker must be detectable 
before 20 weeks of gestation (WG) in order for clinicians to 
act early in pregnancy. Several biomarkers associated with the 
placenta have been identified and are considered promising. 
Among them is the Placental Growth Factor (PlGF), a member of 
the vascular endothelial growth factor (VEGF) family that plays a 
role in angiogenesis and trophoblastic invasion [60,62]. Indeed, 
the studies of Tsiakkas et al. (2015), have shown low PlGF plasma 
levels in PE pregnancies before 13 weeks of gestation [63,64]. 
Another promising marker is the soluble fms-Like Tyrosine 
Kinase 1 (sFLT1), a soluble VEGF receptor and antiangiogenic 
protein involved in inhibition of VEGF and PlGF signaling. It is 
known that plasma levels of sFLT1 are significantly higher in 
PE compared to normal pregnancies [65] and several studies 
suggest the use of sFLT1 levels as a biomarker of PE and severe 
PE [66-68].

Decrease in plasma PlGF levels during PE is thought to be 
due to higher release of sFLT1 from the placenta [66] which 
binds to circulating PlGF [69,70]. Combining both sFLT1 and 
PlGF plasma levels could also help predict the occurrence of 
PE in pregnant women. Indeed, several studies showed that 
the sFLT1/PlGF ratio was significantly higher in women that 
were diagnosed with PE or that later developed PE compared 
to normal pregnancies [69,71,72]. The use of sFLT1 and PlGF as 
PE markers is interesting as both proteins are placental-derived, 
and their expression levels in maternal serum presumably reflect 
impaired placentation [25,31,63,66].

As PE is associated with several maternal factors, including 
obesity, it is important to evaluate the accuracy of PE biomarkers 
in different populations of pregnant women. A thorough analysis 
of the use of PlGF as a biomarker in obese pregnant women 
showed lower plasma PlGF levels in early pregnancy associated 
with the later development of PE in obese women but not in 
women with normal body-mass index [73] This study shows 
that obesity influences PlGF plasma levels and consequently that 
this biomarker might rather be specific to certain populations 
of pregnant women. PlGF has further been associated to PE and 
severe PE in pregnant women with established hypertension 
and chronic kidney disease. In several studies, the authors have 
shown that PlGF decreased several weeks before the onset of PE 
symptoms [66,74-76]. PlGF appears to be an early biomarkers 
but might be more related to maternal risk factors-associated PE 
and its single use as biomarker might not identify all PE cases 
[25,76-78].

It has also been suggested that abnormal liver X receptor 
alpha (LXRα) and endoglin might play significant roles in 
the development of PE [79-83]. Studies showed that LXRα 
inhibited cholesterol transport, human chorionic gonadotropin 
and trophoblast invasion [84], while endoglin, a trans-
membrane glycoprotein expressed on syncytiotrophoblast and 
invasive cytotrophoblast, is involved in placental trophoblast 
differentiation and uterus invasion[85]. Endoglin is a co-receptor 
for transforming growth factor−β1 and 3 [82] and is a direct 
target of LXRα on human syncytiotrophoblast [79]. According to 
the role associated to LXRα and endoglin in placental trophoblast 
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differentiation, Wang et al., have tested the relationship between 
LXRα and endoglin levels and occurrence of preeclampsia. 
In their study, they showed that elevated levels of LXRα and 
endoglin was associated with PE pathogenesis and development 
and have suggested that LXRα and endoglin could be used as PE 
biomarker. However, it is important to note that the decrease in 
levels pf these markers was observed at 36 weeks of pregnancy 
[86]. 

Ongoing studies have shown that Pregnant-Associated 
Plasma Protein A (PAPP-A), a highly glycosylated protein 
produced by developing trophoblast cells [87], and Placenta 
Protein 13 (PP13), a member of the galectin super-family (known 
as galectin 13 and β-galactoside-specific lectins [88] could also 
be potential markers to predict PE [35,89-91]. Unfortunately, 
these preeclampsia biomarkers were shown to have extremely 
variable diagnostic value [35,92-97]. In a pilot clinical study, 
Kayaoglu et al. (2016), showed that soluble TNF-Like Weak 
Inducer of Apoptosis (sTWEAK) could represent a new potential 
marker for preeclampsia. Indeed, they have shown that sTWEAK 
levels decreased in patients with PE, although this decrease was 
detected at 20 WG compared to normal pregnant women [98]. 
Further work is needed to assess the diagnostic value of this 
potential PE biomarker at earlier points during pregnancy.

RETROVIRAL-DERIVED BIOMARKERS
As indicated above, several scientific studies have shown 

that preeclampsia is the consequence of a defect in placenta 
formation [16-18,20-23,57], followed by an exaggerated 
systemic inflammatory response [30,99-112]. Syncytin-2 is a 
protein derived from a human endogenous retrovirus sequence. 
We have recently demonstrated that syncytin-2 is an important 
player in the formation of the placenta [58,113]. It has also been 
strongly suggested that syncytin-2 could contribute in generating 
the immunosuppressive environment needed for proper fetal 
development [111,112]. In addition to its role in maternal-fetal 
exchange, the placenta produces microvesicles called exosomes 
that seem to be endowed with immunosuppressive properties 
[58,114]. We and others have recently shown that syncytin-2 is 
present on the surface of these exosomes and could contribute 
to maternal-fetal immune tolerance [112,115]. Our recently 
published results showed a lower incorporation of syncytin-2 
on the surface of serum-derived exosomes of women with 
preeclampsia [115]. 

Based on these findinds, we have recently initiated a new 
study, in which 450 pregnant women were enrolled at Cotonou, 
Benin, and have monitored the incorporation of syncytin-2 in 
their serum derived-exosomes (SDE) until 25 weeks of gestation. 
This ongoing study shows that the mean ratio of Sync-2/CD63 
(CD63 being an exosome marker) in women who developed 
preeclampsia was significantly lower compared to women 
without preeclampsia between 7 and 13 weeks of pregnancy 
(Lokossou et al., unpublished data). Recent results from our team 
and others thus concur to the possiblity that this protein could 
be a promising PE marker and could be ideal for early diagnosis. 

OTHER BIOMARKERS
Other predictive models for estimating individualized risk for 

onset PE are currently being explored. Among these, Karampas 

et al., have shown that the combination of Neutrophil Gelatinase-
associated Lipocalin (NGAL), maternal clinical characteristics 
and Doppler parameters in the first and/or second trimester can 
be used to identify an important number of PE pregnancies [116]. 
As an alternative, Chang et al. (2016), proposed a new predictive 
model for early-onset PE through quantification of maternal 
serum levels of PAPP-A, PlGF, PP13 and soluble endoglin, 
measurement of mean arterial pressure (MAP) and analyses of 
uterine artery Doppler [117]. It is hoped that the best algorithm 
will eventually detect a larger number of pregnant women at 
risk of developing PE and limit the number of false positives. 
Other biomarkers, such as syncytin-2, will thereby be interesting 
addition to these models to potentially improve their diagnostic 
value, especially at early time points of pregnancy.

CONCLUSION
Significant progress has been made in the understanding 

of the pathophysiology of preeclampsia and suggests that the 
best prediction for PE development during pregnancy may be 
a combination of specific parameters. Given the heterogeneous 
nature of this obstetric placenta-derived disorder, the chosen 
biomarkers should be related to the physiopathology of the 
placenta. It is also important to take into account the capacities of 
low-income countries to appropriately conduct early diagnosis of 
PE and consequently diagnostic tools will have to be easy-to-use 
and bear reasonable costs. Indeed, it would be very difficult to 
consider the use of molecular and genetic markers for the early 
diagnosis of preeclampsia in middle and low income countries. 
In addition, most of these genetic markers were tested in small 
samples. Their representativeness can therefore be questioned. 
For this, serum biomarkers derived from the placenta such as 
PlGF, sFLT1 and syncytine-2 may be good tools for early diagnosis 
of preeclampsia. However, PlGF and sFlt do not seem to allow a 
diagnosis before 20 which is not the case of syncytin-2 which 
could be used between 7 and 13 weeks for early diagnosis of PE. 

Future studies should permit to assess new PE markers 
for early diagnosis and provide such a clinical tools, which will 
greatly improve care of pregnant women showing predisposition 
to PE development.
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