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INTRODUCTION-CERVICAL CANCER
In developing countries which lack both primary and 

secondary preventive programmes, cervical cancer (CxCa) 
continues to be a major cause of morbidity and mortality in 

women [1,2]. Poor prognosis of CxCa is primarily because 
majority of the cases present with advanced disease, which 
requires systemic treatment. Presently, the treatment for CxCa is 
concurrent platinum-based chemo-radiotherapy [3]. In patients 
with early stage CxCa (IB-IIB), chemo-radiation has been found 
to offer a 10-15% increase in survival at 5 years post-treatment 
compared to radiotherapy alone [4,5]. Survival statistics for 
the International Federation of Gynecology and Obstetrics 
(FIGO) stage I patients treated by surgery can be excellent: 
5-year survival is 96, 95 and 80–93% in the UK, Germany and 
the USA, respectively [6]. However, more advanced cancers 
viz. FIGO stages II, III and IV, which are treated with platinum-
based chemo-radiation, have lower 5-year survival rates [6]. 
Overall survival and prognosis of patients of stage IIIB CxCa in 
India is about 50% [7,8]. Also, current chemotherapy regimens 
offer response rates of only 35% to 50%, highlighting the need 
for bettering treatment strategies [9,10]. Hence there is a need 
for conceptualizing effective therapeutic vaccines against the 
disease [11], since this would help prevent about 5 million deaths 
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Considering that majority of patients with cervical cancer (CxCa) present with advanced 
disease, current five-year survival statistics of the disease is low; and chemo-radiation forms the 
mainstay of treatment. Immune tolerance as a hallmark of established tumors has come to stay; 
with a consequent renewal of interest in immunotherapy. Additionally, since >90% of CxCa is HPV 
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in women with carcinoma breast on anti-estrogen therapy. Also, in exvivo experiments, Selective 
Estrogen Receptor Disruptors (SERDs) were found to inhibit the function of tumor infiltrating 
regulatory T cells, Myeloid Derived Suppressor Cells and carcinoma associated fibroblasts 
derived from CxCa. Anti-estrogen therapy could therefore act as a checkpoint inhibitor in CxCa 
targetting locally produced estrogen in the TME. Here we review the potential immunomodulatory 
activity of aromatase inhibitors/SERDs which could pave the way for drugs interfering with 
estrogen signalling, some of which could be repurposed for better management of CxCa.
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that would occur in the next 20 years in women who are already 
infected with HPV [2].

THE TUMOR MICROENVIRONMENT
Solid tumour tissues can be divided into two distinct poorly-

demarcated regions viz. the parenchyma (the tumour bed) and 
the stroma (the Tumor Microenvironment - TME). The tumor 
microenvironment is a hypoxic, acidic, and immune/inflammatory 
cell–enriched milieu that plays a crucial role in tumor 
development, growth, progression, and therapy resistance. The 
latter is a pathologically active niche that shapes tumor evolution 
and response to anticancer therapy including immunotherapy 
[12-16]. The TME encompasses a diverse spectrum of non-
malignant cells viz. endothelial cells of blood and lymphatic 
vessels, mesenchymal stem cells, cancer-associated fibroblasts 
(CAFs), pericytes and infiltrating immune cells belonging to both 
the innate and adaptive arms of the immune system, along with the 
extracellular matrix and secreted soluble factors [12]. Exhaustive 
studies on the various components of the TME and their crosstalk 
with tumor cells have aided development of unique therapeutic 
strategies for improving outcomes in cancer. The vast landscape 
of intratumoral immune cells can broadly be divided into 
two groups. One is the protumorigenic / immunosuppressive 
populations of cells which play a major role in disrupting the 
capacity for the immune control of cancers: the major players 
being regulatory T cells (Tregs), Myeloid derived suppressor 
cells (MDSCs), the M2 polarized tumor associated macrophages 
(TAMs) etc. The other group comprising antitumorigenic/
effector cells capable of driving potent anti-tumour responses 
encompasses natural killer (NK) cells, dendritic cells and effector 
T cells (e.g. CD8+ Cytotoxic T lymphocytes - CTLs and CD4+Th1 
cells, etc.). While both effectors and suppressors colocalize in the 
microenvironment, the immune scale in established cancers gets 
tilted towards immunoevasion [13]. Besides immunosuppressive 
cells, immunosuppressive co-inhibitory receptors like cytotoxic 
T lymphocyte–associated antigen-4 (CTLA-4), and programmed 
cell death ligand 1 (PD-L1); and immunosuppressive cytokines 
like IL10 and TGFβ are also active players in the battlefield [14].

IMMUNE INFILTRATES in CxCa
We had earlier reviewed the literature on immune infiltrates 

in cervical cancer [17]. Hence in this review, a brief discussion 
on immune infiltrates in CxCa would be restricted to cover 
published work only from June 2009 onwards, with an emphasis 
on Tregs. A large body of data demonstrates that CD4+ FOXP3+ 
Tregs are a strongly immunosuppressive subset of T cells which 
are a boon for the maintenance of immunological homeostasis 
and tolerance in infection, transplantation and autoimmunity but 
a bane for antitumor immunity [18-21]. Natural Tregs (nTregs) 
are phenotypically CD4+CD25hiCD127lo and express the lineage 
specific transcription factor FOXP3 - a master regulator which 
presides over the development, differentiation, maintenance 
and function of Tregs [22]. Increased frequencies of Treg cells 
in the TME appear to limit effector immune responses within 
the tumor, thereby preventing tumor control [23]. The TME of 
squamous cell carcinomas (SCC) of the cervix is marked by an 
immunoregulatory environment with increased expression of 
IDO1, immunosuppressive cytokines TGFβ and IL10; increased 

ratios of Kynurenine:Tryptophan; various types of Tregs – 
(both FOXP3+ and FOXP3 negative); reduced ratios of CD4+/
FOXP3+ cells and CD8+/FOXP3+ cells; low ratios of M1/M2 
subsets of TAMs, Myeloid Derived Suppressor Cells (MDSCs) 
and anergic Langerhans cells [17,24-31]. Furthermore, such 
an immunosuppressive TME represented by high numbers of 
Tregs and PD-L1 expressing TAMs were found to permeate into 
metastatic lymph nodes (LNs), forming an immune-suppressive 
cordon around the tumour cells, enabling metastatic spread 
thereby resulted in a poor disease-free survival [32,33]. 
Additionally, exvivo experiments in our laboratory indicated 
that under the influence of the secretome of cervical CAFs 
(C-CAFs) naïve T cells differentiated into Tregs, while their 
differentiation into Th1, Th2 and Th17 subsets was inhibited 
(unpublished observation). Hence suppressing Treg cells 
in cancer immunotherapy is crucial for better prognosis. 
Additionally, considering the intrinsic antigenicity of CxCa, the 
prominence of Tregs as a therapeutic target is indisputable. 
Research studies have indicated that chemotherapeutic agents 
like cyclophosphamide exhibit anti-Treg properties and hence 
overall has an improved anticancer effect [34].

The advent of checkpoint inhibitors has heralded a 
rejuvenation of the field of anti-cancer immunotherapy since the 
latter boosts the ability of the immune system to recognize and 
destroy cancer cells, thus remarkably improving the prognosis of 
patients. Immune checkpoint inhibitor therapies targeting CTLA-
4 and PD-1 / PD-L1 enhance antitumor immunity by depleting 
CD4+ FOXP3+ Tregs and reducing their expansion in the TME. 
This may be one of the many other mechanisms that favour 
development of anti tumor immune responses [14,35-37]. One 
of the earliest targets used for decreasing intratumoral Tregs 
was CD25 – the IL2 receptor, a constitutive marker on many Treg 
subtypes [30]. In this model of CxCa, animals receiving anti-CD25 
monoclonal antibody before receipt of the E7/Hsp70 DNA vaccine 
had higher numbers of E7 specific CD8+ T cells and more efficient 
control of tumors [30]. A resultant proliferation of CD8+ T cells, 
cytokine production and increase in the ratio of CD8+/Tregs 
has been recorded. These observations supported by results 
from several preclinical and early phase clinical studies formed 
the basis of Treg cell–targeted cancer immunotherapy [38,39]. 
Ipilimumab and tremelimumab, are two anti-CTLA4 antibodies, 
the former was the first to be approved by the FDA for the 
treatment of metastatic melanoma [40]. Likewise, Pembrolizumab 
and Nivolumab are monoclonal antibodies against PD-1 [41-43]. 
Currently Phase I/II clinical trials evaluating effects of anti-PD-1 
therapy in CxCa are in progress [44-47]. Hence, based on the 
evidence that HPV positivity correlated with increased PD-L1 
expression, checkpoint inhibitors are considered as a second line 
of treatment in cervical cancer [48]. Pembrolizumab has been 
approved by the FDA during or after chemotherapy for patients 
with recurrent or metastatic CxCa with progressive disease [48].

Other immune checkpoint targets under clinical trials are 
LAG-3, TIM-3 and CCR4 [44-45,49-52]. Antibodies to TIM 3 have 
an added advantage in anticancer therapy

– they specifically target tumor infiltrating Treg cells 
or tumor-associated dendritic cells with little action  on 
extratumoral  Tregs  [42,43,47,49,53]. However, the response 
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rates with existing check-point inhibitors which are majorly 
based on data from patients with metastatic disease [48], are low: 
only 20-30%; reflecting a need to undertake clinical studies on 
patients with early disease and explore novel targets for reversal 
of immunosuppression in the TME of CxCa.

ESTROGEN AND CANCER CERVIX
The uterine cervix is an estrogen (E2) responsive part of the 

female reproductive tract, the epithelium of which proliferates 
and differentiates physiologically under the influence of 
hormones during the menstrual cycle. Estradiol has been 
reported to use both the genomic and nongenomic pathways to 
signal a cell - by interacting with various receptors viz. Estrogen 
Receptor alpha (ERα), ERβ, membrane ERα, G protein coupled 
receptor (GPER), etc. In the canonical pathway, subsequent to 
binding to ERs, ligand- receptor complexes get translocated to 
the nucleus and ER interacts with estrogen responsive elements 
(ERE), on the DNA, following which epigenetic modifications and 
downstream gene activation ensues. The receptor thus functions 
as a transcription factor which regulates the expression of genes 
involved in cell survival and proliferation. The net outcome of 
these series of events is physiological alterations across various 
estrogen responsive tissues [54]. The non-genomic action is due 
to molecular crosstalk with growth factor pathways e.g. insulin 
growth factor, epidermal growth factor and fibroblast growth 
factor. Besides having a direct growth promoting action, in some 
tumors E2 is also pro-tumorigenic by virtue of its capability to 
modulate various cells of the TME [55].

HPV has long been recognized to be required but not sufficient 
to cause CxCa [56]. Of the various co-factors incriminated in 
cervical carcinogenesis E2 has been hypothesized to play a 
prominent role. Firstly, a series of pooled analysis of several case 
control studies have indicated that long-term use of exogenous 
estrogens in the form of hormonal contraceptives is associated 
with an increased risk of CxCa [57-61]. Likewise, several studies 
conducted in different continents indicated that exposure to 
endogenous estrogens by way of multiparity too increases the risk 
of squamous cell carcinoma of the cervix in HPV-infected women 
[57,60,62-63]. Various hypotheses explaining the observed 
relationship between estrogens, HPV and CxCa have been 
succinctly reviewed earlier [58]. While a marginal association 
between use of combined oral contraceptives (COC) and risk of 
acquisition of new HPV infections has been observed, evidence 
on COC likely promoting HPV persistence remain divided [58]. 
While physiological concentrations of E2 has been shown to 
induce expression of HPV oncogenes in cervical cancer cell lines 
[64-67], and promote the proliferation and inhibit apoptosis 
of cancer cells [58]; the phenomenon appears to be dose 
dependent – with high concentrations of the hormone as seen 
during pregnancy, stopping translation to promote apoptosis 
[68,69]. Secondly, both E2 and ERα were proven to be necessary 
to induce CxCa in the K14HPV16 transgenic mouse model of 
cervical carcinogenesis; and as a corollary Selective Estrogen 
Receptor Modulators (SERMs), were effective in controlling the 
development of cancer [70-74]. Thirdly, in an HPV18 transgenic 
mouse model, E2 was found to induce increased expression of 
HPV E6 and E7 oncogenes, - major driving force for cervical 
carcinogenesis [75]. Paradoxically though, in human disease, 

epithelial ERα expression, consistently declines with disease 
progression through cervical intraepithelial neoplasia (CIN) to 
invasive CxCa - both at the RNA and protein levels [76-82].

Earlier reviews incriminating E2 and ERα in cervical 
carcinogenesis assisted by HPV oncogenes have recommended 
the use of SERMs for treating the disease, arguing both for [83], 
and against the proposition [84]. The pro-apoptotic capability of 
non- physiological concentrations of E2 on CxCa cell line - HeLa 
was recently demonstrated [69]. Around the same time, using 
various receptor antagonists, another elegant study uncovered 
that in HeLa cells, E2 brought about apoptosis in a non-ER/non 
GPER fashion by interacting with phosphodiesterase 3A (PDE3A) 
- infact the latter has gained the distinction of being named as 
a new ER [68,85]. In this article, we review the role of E2/ERα 
in potentiating stromal cells and infiltrating immunosuppressive 
immune cells in cervical carcinogenesis. We earnestly hope that 
the article would provide food for thought for considering the use 
of antiestrogen therapy in the management of CxCa.

The stroma in the normal cervix has been shown to express 
ERα in as high as 93.7% [77], which is independent of changes 
in plasma hormonal concentrations seen during the menstrual 
cycle, perhaps indicating local synthesis [77,79,81,86]. Studies 
done in our laboratory showed that the microenvironment 
of CxCa was rich in the hormone E2, even in the absence 
of raised plasma levels (Figure 1A)- the distribution being 
mainly intracytoplasmic in the tumor epithelial cells and both 
intracytoplasmic and intranuclear in the stromal and infiltrating 
immune cells (Figure 1B) [87,88]. The enzyme aromatase too had 
a parallel distribution in the CxCa tissues thereby indicating that 
the hormone was being synthesized locally within the tumors 
(Figure 1B) [88,89]. In addition to aromatization of substrates, 
one needs to bear in mind that there are other alternative 
pathways of E2 synthesis in the tissues viz. from estrone sulfate 
(E1S), through Estrone (E1) by the actions of steroid sulfatase 
(STS), and 17 beta hydroxysteroid dehydrogenase (17β HSD) 
(Figure 2). This alternative pathway has been demonstrated in 
the cervical cancer cell line HeLa [90,91], although their role in 
the local synthesis of the hormone in clinical cases of CxCa still 
remains to be demonstrated.

About 30 to >50% of stromal cells express ERα in CIN 
and invasive squamous carcinomas of the uterine cervix. The 
distribution of the receptor in the stroma was uneven across 
the tumours, being independent of the stage of the disease and 
was surrounded by ERα-negative tumour cells [79,86-88,92]. 
Both fibroblasts and subsets of lymphocytes were amongst the 
cell types expressing the hormone receptor [87,88]. Raloxifene 
and fulvestrant (ICI 182,780 - ICI), are ER antagonists used in the 
treatment/prevention of human breast cancer and are classified 
under the category of SERMs and Selective Estrogen Receptor 
Disruptors (SERDs), respectively. Both the drugs efficiently 
cleared cancer and its precursor lesions in both cervix and vagina 
in K14E6/K14E7 double transgenic mice [83]. A subsequent 
posthoc analysis on the topic, however, ruled out the possibility 
of long term SERM treatment being useful in the prevention of 
Carcinoma In Situ (CIS) and CxCa in humans arguing that animal 
experiments could not be extrapolated to humans [84]. The 
objection may perhaps have been justified then, since in the mouse 
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Figure 1 Cervical tumours are enriched in oestradiol (E2) and express oestrogen receptor α..
Figure 1A: (i) Concentrations of 17b-oestradiol as determined by ELISA in blood plasma from healthy donors (Pl HD) or patients with CxCa (Pl CxCa) 
as well as in (ii) tissue samples of cervical tumours (CxCa), areas adjacent to the tumours (CxCa adj), and healthy cervices (Normal Cx). Graph shows 
mean values ± SEM of n=30 per group.
Figure 1B. Staining distribution of 17b oestradiol, oestrogen receptor α, and aromatase in a representative tissue section of SCC cervix. Upper 
left image (i) shows haematoxylin and eosin staining of a tumour section; upper right image (ii) shows E2 staining which was predominantly 
cytoplasmic in the tumor and both nuclear and cytoplasmic in the stroma and infiltrating cells; lower left image (iii) shows the nuclear staining of 
ERα in the stromal cells only; lower right image (iv) shows aromatase expression detected in the cytoplasm of the tumour, stroma and infiltrating 
cells. Inset: normal rabbit serum negative control. Symbol T indicates tumour location in each picture; * indicates stroma. Images are representative 
of n=30. (Adurthi et al, Sci Rep. 2017 Dec 11;7(1):17289. doi: 10.1038/s41598-017- 17102-w.)

Figure 2 Diagrammatic representation of biosythesis of Estradiol in the peripheral tissues.
High levels of circulatory E1S (Estrone sulfate) has been reported especialy in post menopausal women. Estrone sulfatase (STS) converts E1S into 
estrone (E1) in the peripheral tissues, which subsequently gets reduced to estradiol (E2) by type I 17β- Hydroxysteroid Dehydrogenase (17, β-HSD). 
Estradiol in the tissues binds to intracytoplasmic or membrane Estrogen Receptors (ER) and carries out its function. Development of STS inhibitors 
and 17, β-HSD inhibitors are in the preclinical stage. E1 - Estrone; E2 – Estradiol; E1S: Estrone sulphate; E1 – STS Estrone sulfatase; E1 ST (Estrone 
sulfotransferase).
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model but not in human CxCa, the tumor epithelium retained the 
expression of ERα. A recent review has discussed both the pro 
and anticancer effects of the steroid hormone in HPV positive 
cancers majorly focussing on the tumor epithelium, with minimal 
reference to the stroma and the immune infiltrates [93]. In an 
interesting observation, Ormeloxifine an oral contraceptive and 
a SERM have been advocated as a promising treatment for CxCa. 
The drug was demonstrated to block multiple signaling pathways 
particularly PI3k and Akt, inducing apoptosis of CxCa cell lines 
both in in vitro experiments and in an orthotopic animal model 
[94]. It would indeed be interesting to investigate the action of 
this SERM on tumor infiltrating immune cells considering that, 
this is also one of the pathways activated by E2 in Tregs amongst 
the many others [95].

The tumor epithelium however, cannot be viewed in isolation. 
A dynamic bidirectional cross talk between the three components 
viz. the HPV infected epithelium, the stroma and immune 
infiltrating cells plays a major role during carcinogenesis [71,96]. 
Drawing from their earlier work and using a sophisticated 
approach of stromal specific deletion of ERα, Lambert’s group 
proved that E2 signaling in the stromal cells drives tumorigenesis 
in the epithelium through paracrine mechanisms [82,97]. 
On similar lines, studies on gene expression profiling of ex-
vivo cultured CxCa Associated Fibroblasts (C- CAFs), showed 
CAFs to express ERα and support tumor growth by promoting 
epithelial cell migration, proliferation, angiogenesis, metabolism, 
epithelial-to-mesenchymal transition and inflammation [87]. 
Further, using two categories of ER antagonists viz. a SERM 
and a SERD, modulation of genes associated with cell cycle and 
metabolism, affecting angiogenesis and cancer progression, was 
seen, proving thereby that the ERα signalling partly controlled 
the function of C-CAF [87]. HPV-dependent, E2-induced stromal 
genes are envisaged to be microenvironmental factors critical 
for cervical carcinogenesis [68,87]. Also, there is now growing 
evidence that molecular crosstalk between various components 
of the TME like CAFs and infiltrating immune cells can influence 
antitumor immunity [16]. Interestingly, as a consequence of all 
this research, stromal ERα singaling has been suggested as a 
therapeutic target for CxCa [98].

ESTROGEN IN INFILTRATING IMMUNE CELLS in 
CxCa

In addition to the direct carcinogenic action of E2 in CxCa, 
an indirect action of the sex steroid hormone, is induction of 
anti-inflammatory and regulatory immune responses which 
could potentiate HPV mediated cervical carcinogenesis [99]. 
Estradiol, is a powerful immunosuppressor and acts by: (i) 
recruiting MDSCs from the bone marrow into the spleen and 
tumor beds [100] (ii) augments the immunosuppressive activity 
of granulocytic MDSCs; via ERα [100] (iii) drives and polarizes 
infiltration of tumors with M2 type TAMs, (iv) promotes VEGF 
expression in them thus further enabling M2 recruitment; (v) 
increases the expression of granzyme B inhibitor - proteinase 
inhibitor-9 which counters the action of granzyme B mediated 
killing by NK cells and CTLs [55]. Pioneering studies in mice 
have proven that E2 administration expanded Tregs and induced 
overexpression of the transcription factor Foxp3 – a signature 
molecule of Tregs [101]. Additionally, a positive feedback loop 

between the hormone and infiltration of certain tumors by M2 
type TAMs has been reported [55].

Cervical tumors harbour E2 [86-88], and Tregs (intra tumoral, 
draining LNs or circulating), had the highest intracellular levels 
of the hormone [88]. Estrogen is one of the various factors which 
regulate the functions of Tregs [102]. Probable mechanisms of 
action of estrogens could be modulation by signalling via ERα/
GPER [88,101,103-108]. Hence manipulation of E2 action using 
ER disruptors or modulators may unravel novel approaches to 
treat CxCa.

SERMS VS. SERDS IN THE MANAGEMENT 
CERVICAL CANCER

In ex-vivo experiments on tumor infiltrating and circulating 
Tregs, while SERDs (ICI and RU 58668), totally inhibited 
expression of both ERα and FOXP3 [88], MPP - a SERM, 
downregualted ERα, but failed to alter expression of FOXP3 
(unpublished observation). Although the two SERDs – ICI and RU 
are chemically distinct, upon binding with ERα, the conformation 
of the receptor may be altered such that a similar protein – 
protein interaction surface is presented in both instances. 
Eventually, this may be flagging off the degradation of the ER-
ligand complex by the proteasomal pathway [109]. Considering 
that (i). the conformation or shape of ER is determined by the 
chemical structure of the ligand which binds to it (ii) this binding 
directly affects the nuclear fate and protein turnover of ERα 
independently of its impact on transcription (iii) changes induced 
in the receptor upon binding to the ligand is ligand-specific 
(iv) this conformation is very crucial since it impacts protien 
– protein interactions and hence the ability of the receptor 
to interact with coregulatory proteins (i.e. coactivators and 
corepressors) (v). which eventually is critical to the regulation 
of target gene transcription (vi). locus specific variation in the 
engagement of coregulators has been observed for ERα. Hence 
it is quite likely that different ligands regulate engagement of 
specific ERα coregulators at the promoter of FOXP3 gene, which 
ultimately crucially affects the transcription of FOXP3 and hence 
the function of Tregs. Also, the relative expression of coactivators 
and corepressors, the subtype of ER, and its target gene promoter 
are known to affect the biocharacter of SERMs [110,111].

Therefore, considering the results of the effect of ICI on CAFs 
[87], Tregs [88], MDSCs [100], evidence of the efficacy of ICI in the 
treatment of CxCa in a mouse model [74], and our unpublished 
observation with SERM being ineffective in downregulating 
FOXP3, we opine that there is a strong case for undertaking clinical 
trials on the efficacy of SERDs in the management of CxCa. The 
crucial role played by the E2 pathway in the TME of various solid 
tumors has recently been highlighted [55]. Additional spinoffs of 
the use of ICI could be assisting the cytotoxic and chemo-radio-
sensitization actions of cisplatin [112,113].

SERDs (ICI and RU), majorly act through the genomic pathway 
of ER signaling in cancer cells to inhibit gene function [114]. 
We observed that intratumoral Treg cells also showed a direct 
influence of SERDs (ICI and RU) on the canonical ER signalling 
pathway - thus inhibiting FOXP3 expression and Treg cell 
function [88]. However, how and to what extent E2 influences the 
FOXP3 negative population of CxCa infiltrating Tregs still needs 
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to be explored [25,115]. Additionally, ICI was also seen to inhibit 
the immunosuppressive function of granulocytic MDSCs in exvivo 
studies and orthotopic animal model of MDSCs in CxCa [100].

We also found ERα expression amongst infiltrating immune 
effector cells like CD4+ effectors, CD8+ CTLs in the TME although 
to a lower extent when compared to Tregs [88]. Hence while 
the action of ICI on other infiltrating immune cells also needs 
to be investigated, in all probability, limiting the availability 
of E2 in the TME would also help energize other subsets like 
Th1[103,116] and NK cells [117]. A positive flip side of the action 
of anti-estrogens is that they may also help regain granzyme B 
expression in HPV16-E7 expressing keratinocytes [118].

AROMATASE INHIBITORS IN THE MANAGEMENT 
OF CxCa

Arresting intratumoral E2 production with the use of 
aromatase inhibitors (AI), is a logical alternative to the use 
of SERDs, since in Tregs, E2 has also been shown to act non-
genomically through membrane ER/GPER [95,106]. This was 
corroborated by our exvivo observation: E2 supplementation 
of ICI treated tumor infiltrating Tregs, partially reversed their 
suppressive function [88]. Considering that E2 influences Treg 
suppression by affecting multiple regulatory elements, both 
PD1 dependent, PD1 independent, FOXP3 dependent and FOXP3 
independent pathways [101,103,104], blocking local production 
of E2 may be a more effective therapeutic option in the management 
of CxCa than blocking of ERs by way of using SERMs or SERDs. 
In support of the use of AI, is a recent population based study 
in breast cancer patients proving that long-term anti- estrogen 
use, including AI could reduce the incidence of cervical neoplasia 
[119]. Classically, protection offered against occurrence of high 
grade cervical dysplasia was seen only in women over the age of 
50 years – which once again emphasizes local production as the 
main source of E2 in the tissues [91]. While Anastrozole has been 
shown to suppress the differentiation of naïve T cells into Tregs, 
increase IFNγ, IL12, and reduce IL4, IL10 in animals, Letrozole 
has been proven to be effective in reducing circulating Tregs in 
carcinoma breast patients responding to treatment [120,121]. 
While considering the use of AI, for targeting intratumoral 
synthesis of E2, one needs to consider other possible pathways of 
generation of E2 within the tumor tissues viz. from E1 - which is 
considered a major source of E2 in postmenopausal women [91]. 
This becomes relevant for designing therapeutics against the 
actions of 17−β HSD and STS (Figure 2) [122,123]. Also pertinent 
is the need to study common genetic polymorphism in CYP19A1 
and ESR1 genes which would determine the variation in response 
to AIs and SERDs respectively.

HPV THERAPEUTIC VACCINES
Cervical cancer is etiologically linked to persistent infection 

with high-risk HPV genotypes [124]. Therefore various immune 
based therapies including those targeting the viral oncogenes 
E6 and E7 have shown promising results in clinical trials in 
a spectrum of HPV-associated disease [11,125-128]. Agents 
that modulate the TME have an added advantage of being able 
to increase the efficacy of therapeutic vaccines [2]. There are 
a number of ways by which Tregs could be targeted viz.: by 
reducing their number, inhibiting their function, curtailing 

their influx into the TME and suppressing their generation in 
the periphery. Hence, we envisage that combining anti estrogen 
treatment with HPV therapeutic vaccines would be that magic 
bullet which would serve to be a three-pronged attack. Firstly, 
it would aid in reversing the immunosuppression in CxCa by 
inhibiting the suppressive function of intratumoral Tregs and 
MDSCs. Secondly, the function of CAFs in the tumor milieu would 
be simultaneously altered. Consequently, the specific immune 
response to the vaccines could be enhanced, thus promoting 
better immune control of tumors. Thirdly, AI use would perhaps 
check intratumoral E2 production which would perhaps also 
counter nongenomic signaling in cancer cells too.

We are prompted to classify antiestrogen therapy as a check-
point inhibitor especially so, for CxCa. Whether it deserves the 
right to be called a universal check-point inhibitor for other 
tumors as well remains to be seen.

DISCUSSION & CONCLUSION
The steroid hormone E2 is a well-established pro-tumorigenic 

agent primarily by its direct genomic/non-genomic action on 
tumor cells. Estrogen has been considered a co- carcinogen, at 
least in the early stages of HPV mediated cervical carcinogenesis. 
Local production of E2 in CxCa tissues is partly through 
elaboration of aromatase. We have put forth this perspective 
on E2 being a crucial player in regulating the intratumoral 
immune response in CxCa by controlling the functions of 
CAFs, MDSCs and Tregs. Combining HPV oncoproteins with 
AI/SERD based immunotherapy and/or chemotherapy, on 
similar lines as of combination with chemotherapy/checkpoint 
inhibitors may be effective to counter Treg and MDSC mediated 
immunosuppression and help arrest growth of CAFs within 
tumors which would thereby improve the prognosis of CxCa 
[72,74,97,121,129-131]. Anti E2 treatment could thus become 
a new group of check-point blockade drugs functioning to 
antagonize intratumoral immunosuppression in CxCa. The need 
for clinical trials to evaluate the efficacy of AI and SERDs in the 
management of CxCa hence appears justified. As a prelude to 
clinical trials, comprehensive characterization of expression of 
ERα, aromatase, 17β-HSD, STS in the CxCa TME and their gene 
polymorphisms in large cohorts of patients across continents 
is warranted. In depth studies to understand the translational 
relevance of the proposed inhibitors is the need of the hour 
e.g. post treatment 19 evaluation of pharmacodynamic changes 
including those in the tumor immune infiltrate and associated 
clinical changes.
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