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INTRODUCTION
Breast cancer has been one of the most common diseases 

in the worldwide, and the incidence of breast cancer tends to 
rise especially in the female groups. Recent studies showed that 
mutations with 48% PI3CA genes and 16% PTEN genes occurred 
in invasive lobular carcinoma (ILC), a histologic subtype of 
invasive breast cancer [1-3]. Activated p-AKT plays an important 
role in proliferation, differentiation and survival of cells. There 
were studies showed that high activity of PI3K/AKT/mTOR signal 
induced resistance of chemotherapy and HER2-targeted therapy 
[4]. Therefore, inhibitors targeting EGFR and PI3K/Akt/mTOR 
pathway have emerged as potential treatment for the breast 
cancer [5-8]. Currently, more and more inhibitors targeting 
PI3K/AKT/mTOR pathway have been identified as promising 
drugs alone or in combination with other chemotherapy. So we 
will share our views on the preclinical and clinical results that 
inhibitors targeted PI3K/AKT/mTOR signal pathway in the 
treatment of different subtypes of breast cancer. 

Breast cancer subtypes and its relevance of alterations 
in PAM pathway

Clinically, according to biologic or phenotypic markers, breast 
cancer was divided into the subtypes. Estrogen receptor alpha-
positive (ER+) and/or progesterone receptor positive (PR+) - 
hormone receptor positive (HR+) - breast cancer (70-75%) is the 
most common clinical subtype [4]. Azim, HA., et al., has reported 
that in patients with HR +/HER - metastatic breast cancer had 
mutated PIK3CA (29.2%) [9].  In a recent study by the Cancer 
Genome Atlas Network, PIK3CA mutations were detected in 45% 

and 29% of ER+/HER- and ER+/HER+ subtypes, respectively 
[2]. Another report showed that 15.8% of the primary breast 
carcinomas possessed PIK3CA mutations in either exon 9 or 
exon 20. Also, they referred that PIK3CA mutation was found to 
be a frequent genetic change in all breast cancer subtypes but 
occurred with the highest rate in HR(+)/HER2(-) tumors [10]. 
Extensive evidences have implicated PI3K/AKT/mTOR axis 
aberrations in a series of breast cancer subtypes [11-15]. The 
mutations in the PI3K/AKT/ mTOR pathway induced resistance 
with breast cancer therapy, which gave a strong rational reason 
to develop inhibitors to restore the sensitivity to the traditional 
treatment with different subtypes of breast cancer [9].

PI3K/AKT/mTOR signal transduction pathway

PI3K/AKT/mTOR signaling pathway is mainly composed of 
phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase B 
(AKT) and mammalian target of rapamycin (mTOR) [16]. PI3K is 
a member of lipid kinases family, and it includes a p110 catalytic 
subunit and a regulatory p85 subunit which were encoded by 
PIK3CA gene and PIK3R1 gene respectively. It plays an important 
role in multiple cellular processes, including metabolism, 
differentiation, migration, survival and proliferation [17]. PI3K 
is activated in response to binding of extracellular signals to a 
receptor tyrosine kinase (RTK) such as HER2, epidermal growth 
factor receptor (EGFR) or insulin-like growth factor 1 receptor 
(IGF1R) [18,19] (Figure 1). Once activated, p110 subunit of PI3K 
phosphorylates phosphatidylinositol (3,4) - bisphosphate (PIP2) 
to form phosphatidylinositol (3,4,5) - trisphosphate (PIP3). The 
aforementioned process could lead to activation of the serine/
threonine kinase AKT (protein kinase B) [20]. And the AKT was 
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Phosphatidylinositol 3-kinase (PI3K)/AKT/ (mTOR) mammalian target of rapamycin 
signaling pathway is one of the most important pathways that regulates critical 
cellular functions including survival, metabolism and proliferation. Now many studies 
have shown that mutations or over-activation of this pathway induces tumorigenesis 
and metastasis in various kinds of cancers. Here, we presented the components and 
anti-apoptotic mechanisms of PI3K/AKT/mTOR signaling pathway in cancer cells. We 
also provided a reference data of PI3K/AKT/mTOR inhibitors in pre-clinical or clinical 
trials. All together, we explored the reason why inhibition of the pathway may serve as 
a promising target for cancer therapy. 
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Figure 1 PI3K/AKT/mTOR signal pathway.

fully activated when the Ser473 site was phosphorylated by 
mTORC2 [21]. Since AKT is the central mediator of the pathway, 
it phosphorylated a series of downstream substrates including 
mTOR. Activated p-AKT regulates cell growth through promoting 
survival and anti-apoptosis. One of the downstream substrates, 
Gsk-3β could regulate cellular microtubule dynamics and 
organization [22]. Through inhibition of TSC1/2, p-AKT blocked 
ribosome biogenesis and protein translation by indirectly 
activating mTORC1 [23]. P-AKT promoted cells survival by 
inactivation of pro-apoptotic proteins such as caspase3, Bad/Bax 
[4,24]. In PI3K pathway, mTOR acts as both a downstream effect 
or and an upstream regulator [25-27]. mTOR includes two kinds 
of complex, rapamycin-sensitive (mTORC1) and rapamycin-
insensitive (mTORC2). By inhibition of tuberous sclerosis complex 
(TSC) 1/2 activity, the activated AKT initiate the mTORC1-mediate 
signaling pathway, involving in the phosphorylation of ribosomal 
protein S6 kinase (pS6k), eukaryotic initiation factor 4E (eIF4E) 
and eukaryotic initiation factor binding protein 1(4EBP1), which 
participate in protein translation, ribosome biogenesis as well 
as cell growth [27-29]. The PI3K/AKT pathway is negatively 
regulated by phosphatase and tensin homolog (PTEN), a lipid 
phosphatase that dephosphorylates PIP3 [4,30]. Recent studies 
showed that mutations with 48% PI3CA genes and 16% PTEN 
genes occurred in invasive lobular carcinoma (ILC), a histologic 
subtype of invasive breast cancer [1].

The development of inhibitors targeting PI3K/AKT/
mTOR pathway

As described earlier, activation of the PI3K/AKT/mTOR 
signal pathway often were related with the multidrug resistance 
(MDR) phenotype in breast cancer. Therefore, a number of 
preclinical inhibitors targeting PI3K/AKT/mTOR pathway have 

been reported effective for different types of breast cancer both 
in vitro and in vivo [31-33]. And more and more inhibitors of this 
pathway were undergoing clinical trials (Table 1). BKM120 can 
significantly inhibit the proliferation of the triple-negative breast 
cancer cell lines [34]. Y Hu et al., reported that BKM120 showed 
significant cytotoxic activity on MDR breast cancer cells both in 
vitro and in vivo [3]. A phase I clinical study of BKM120 has been 
done in patients with advanced breast cancers. And the results 
demonstrated that BKM120, at the maximum-tolerated dose 
(MTD) of 100 mg/d, is safe and well tolerated, with a favorable 
pharmacokinetics (PK) profile, clear evidence of target inhibition, 
and preliminary antitumor activity [35]. BKM120 single drug has 
been completed the phase clinical trials (NCT01629615) (Table 
1). Besides, BKM120 was also reported to be effective when in 
combination with other drugs [36,37]. And now phase clinical 
trials on BKM120 in combination with trastuzumaband paclitaxel 
for HER2-positive primary breast cancer was in the completed 
status (NCT01816594) (Table 1).

Because of AKT playing a central role in the PI3K/AKT/mTOR 
pathway, inhibitors targeting AKT were also critical in blocking 
the pathway. Allosteric AKT inhibitor MK-2206 has antitumor 
activity alone and in combination with chemotherapy [38]. Some 
other reports showed that combining anastrozole with AKT 
inhibitor MK-2206 showed more sensitivity to breast cancer 
cells in vitro [39]. MK-2206 in combination with lapatiniband 
ditosylateon HER2-positive breast cancer was completed in 
phase Ι clinical trials (NCT01245205) (Table 1) [7]. Hudis 
C, Swanton C et al., has reported the AKT inhibitor MK-2206 can 
be safely combined with trastuzumab, and is associated with 
clinical activity in a phase I study on HER2-positive patients 
[40]. A Phase I b study on MK-2206 at a dose of 135 mg/week 
in combination with weekly paclitaxel and trastuzumab was 
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Table 1: Clinical trials targeting PI3K/AKT/mTOR pathway.
Drug Targets Combination 

Partner 
Patient group Phase State Trail ID 

BKM120 PI3K triple-negative
 breast cancer II completed NCT01629615

BKM120,
Neoadjuvant Trastu-
zumab

PI3K,
HER2 Paclitaxel HER2-positive primary 

breast cancer II completed NCT01816594

BKM120
BEZ235

PI3K,
PI3K/mTOR Letrozole HR-positive breast cancer II completed NCT01248494

BEZ235 PI3K advanced breast cancer Ι completed NCT00620594
BKM120,
GSK1120212

PI3K,
MEK

 triple-negative
 breast cancer Ιb completed NCT01155453

MK2206 AKT LapatinibDitosylate HER2-positive breast 
cancer Ι completed NCT01245205

AZD5363 AKT invasive breast cancer II recruiting NCT02077569

GSK2141795 AKT Trametinib triple-negative
 breast cancer II recruiting NCT01964924

AZD5363 AKT Paclitaxel triple-negative
 breast cancer II recruiting NCT02423603

AZD5363,
AZD2014

AKT,
mTORC1/2

triple-negative
 breast cancer Ι/II recruiting NCT02208375

GSK1120212,
GSK2110183

AKT,
MEK breast cancer Ι completed NCT01476137

Everolimus mTOR Erlotinib metastatic breast cancer Ι/II completed NCT00574366
Lapatinib,
Everolimus

EGFR,
mTOR

triple-negative breast 
cancer II terminated NCT01272141

Everolimus mTOR Trastuzumab HER2-positive breast 
cancer Ι completed NCT00317720

Everolimus mTOR Exemestane ER-positive breast cancer III completed NCT00863655

Everolimus mTOR Cisplatin,
Paclitaxel metastatic breast cancer Ι/II completed NCT01031446

Tamoxifen mTOR Tamoxifen-RAD001 anti-aromatase resistant 
breast cancer II ongoing NCT01298713

Everolimus mTOR Everolimus-Placebo metastatic breast cancer III terminated NCT01773460

Everolimus mTOR Exemestane,Everolimus -Pla-
cebo ER-positive breast cancer III completed NCT00863655

Everolimus mTOR Trastuzumab, Paclitaxel HER2-Positive breast 
cancer III ongoing NCT00876395

Abbreviations: HR-Hormone Receptor; HER2-Human Epidermal growth Factor Receptor-2; ER-Estrogen receptor.

conducted, the results of which was demonstrated safe and 
well tolerated [8]. Another specific AKT inhibitor was reported 
to effectively induce cancer cell apoptosis [41,42]. AZD5363 
single drug was ongoing phase clinical trial with the invasive 
breast cancer (NCT02077569) (Table 1). The combination 
of AZD5363 with fulvestrant was reported as a potential therapy 
for  breast cancer  that is sensitive or resistant to E-deprivation 
or tamoxifen [43]. Now a phase clinical trial on AZD5363 in 
combination with paclitaxel for triple-negative  breast cancer is 
recruiting (NCT02423603) (Table 1).

As the downstream of activated AKT, mTOR was another 
therapeutic target to block the transduction of PI3K/AKT/
mTOR pathway. As mTOR plays a key role in the initiation 
and development of breast cancer, and its inhibitor CCI-779 
exerts a strong suppressive activity against MDA-MB-231 cells 
[44]. The safety, tolerability and pharmacokinetic parameters 
were demonstrated to be reasonable in the phase I study. Also, 

the Phase I study results showed that CCI-779 displayed no 
immunosuppressive effects with manageable and reversible 
adverse events at doses up to 220 mg [45]. A Phase II Study of 
temsirolimus (CCI-779) was conducted by Stephen Chan, Max 
E. Scheulen, et al. In this study, two groups of different doses 
were set in heavily pretreated patients with locally advanced 
or metastatic breast cancer, 75 and 250 mg temsirolimus. The 
results showed both groups presented the antitumor activity 
and 75 mg temsirolimus showed a generally tolerable safety 
profile [46]. Another mTOR inhibitor, everolimus was rapamycin 
analogues and one of the important mTORC1 inhibitors especially 
in breast cancer [47-49]. A Phase Ι/II clinical trial showed that 
inhibition of mTOR restored the sensitivity to  trastuzumab-
treatment in  patient HER2-overexpressing metastatic 
breast cancer MBC (NCT00317720) [50]. To evaluate the efficacy 
and safety of  everolimus  in  combination  with  tamoxifen, the 
randomized Phase II TAMRAD (everolimus plus tamoxifen) was 
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performed in the aromatase inhibitors (AIs) resistance MBC 
patients. The results showed that clinical benefit rate (CBR) 
was 61% in the combination group whereas it was 42% in the 
tamoxifen monotherapy group (P = 0.04) [51]. In this study, 
time to progression (TTP) was 4.5 months and 8.6 months in 
the tamoxifen and combination groups, respectively (P = 0.002) 
[52]. However, the incidences of serious side effects were similar 
in both groups, with 32% for each group. In overall, the Phase 
II TAMRAD study demonstrated that tamoxifen plus everolimus 
increased CBR and TTP comparedto tamoxifen monotherapy in 
aromatase inhibitor resistant postmenopausal MBC patients. 

In a Phase III randomized BOLERO-2 (The Breast Cancer Trials 
of Oral Everolimus-2) trial, HER2-negative MBC patients were 
recruited. Median PFS of the exemestane plus everolimus group 
was 6.9 months, while the exemestane plus placebo group was 
2.8 months (P < 0.001) [53]. After a median 18months follow-up, 
the final PFS analysis of the BOLERO-2 trial show edeverolimus 
plus exemestane compared to exemestane plus placebo had 
significantly higher PFS (7.8 months vs 3.2 months; P < 0.0001) 
[54]. The exemestane plus everolimus group was reported 
a 25.4% death rate, fewer than the exemestane plus placebo 
group with a 32.2% death rate [52]. Thus, the exemestanein 
combination with everolimus may be more promising for future 
clinical application. 

A randomized Phase III study (BOLERO-3) was designed to 
assess whether the addition of the mTOR inhibitor everolimus 
to trastuzumab might restore sensitivity to trastuzumab in 
trastuzumab-resistant, taxane-pretreated HER2-positive MBC 
patients [52]. Median PFS was 7.00 months with everolimus and 
5.78 months with placebo (p = 0.0067). Serious adverse events 
were reported in 117 (42%) patients in the everolimus group 
and 55 (20%) in the placebo group; two on-treatment deaths due 
to adverse events occurred in each group [55]. The BOLERO-3 
clinical trial results showed that the addition of everolimus to 
trastuzumabin combination with vinorelbine could significantly 
prolong PFS in patients with trastuzumab-resistant and taxane-
pretreated, HER2-positive, advanced breast cancer. 

A Phase III, randomized BOLERO-1 trial was conducted. And 
it aimed to assess the efficacy and safety of the combination 
of everolimus with trastuzumab plus paclitaxelas first-line 
treatment for patients with HER2-positiveadvanced breast 
cancer [56]. In the full population, median progression free 
survival (PFS) was 14.95 months with everolimus versus 
14.49 months with placebo (p = 0.1166). In the HR-negative 
subpopulation (n = 311), median progression-free survival with 
everolimus was 20.27 months versus 13.08 months with placebo 
(p = 0.0049). In this BOLERO-1 trial results, progression-free 
survival was not significantly different between groups in the full 
analysis population, however, the 7.2 months prolongation was 
noted with the addition of everolimus in the HR-negative, HER2-
positivepopulation. Clinical application of everolimus is generally 
very well tolerated with most common  side  effects including 
stomatitis, rash, fatigue, hyperglycemia, hyperlipidemia, and 
myelosuppression [57]. So, other mTOR analogues including CCI-
779 (temsirolimus) and AP23573 (ridaforolimus) are developed 
[58,59]. 

CONCLUSIONS 
As we discussed here, PI3K/AKT/mTOR signal pathway 

plays an important role in proliferation and survival of breast 
cancer. Different subtypes of breast cancer had mutations of 
this pathway, which induced multidrug resistance phenotype in 
breast cancer. Therefore, inhibitors targeting this pathway seem 
promising and rational in the breast cancer therapy. Although 
more and more inhibitors targeting PI3K/AKT/mTOR pathway 
have been reported, most of them stayed preclinical research 
stage because of existed problems including poor solubility, poor 
stability, cytotoxicity. Breast cancer also had complex conditions 
compared to other solid tumors. Different subtypes of breast 
cancers presented mutations of PI3K/AKT/mTOR pathway 
in different degrees, which resulting in different sensitivity to 
these inhibitors. Collectively, there are all relevant restrictions to 
targeted therapy based on PI3K signal pathway. Combination of 
multiple targets and personalized treatment may be the future 
perspective for breast cancer therapy.
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