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INTRODUCTION
The concept of “congenital fibrosis of the extra ocular 

muscles” (CFEOM) was proposed in view of increasingly common 
observation by the ophthalmologists where in it was noticed 
that many children born with disorders of ocular motility had 
fibrotic extra ocular muscles pointing to a myogenic pathology 
abnormal neuronal development [1-4]. However there was a shift 
in the opinion relating to etio-pathogenesis and a neurogenic and 
genetic basis was emphasized for these group of ocular motility 
disorders that share common features of dysinnervation to the 
ocular and facial musculature presently termed as the “congenital 
cranial dysinnervation disorders” by Gutowski et al., in 2003 [4]. 
These cases at times pose a diagnostic challenge because of a 
conserved partial or anomalous paradoxical innervation to the 
muscles which result in different combinations of involuntary 
eye movements.

Congenital innervation disorder (CID) syndromes are a 
group of ocular motor abnormalities associated with congenital 
loss/abnormality of innervation as proposed by Assaf [5]. The 
following features are observed in these disorders:

-Congenital defect in the innervation of extra ocular muscles 
(EOM).

-Present since birth, and non-progressive.

-Unilateral or bilateral.

-Findings are not explained by purely isolated oculomotor 
nerve palsy/palsies.

-Anatomical muscle changes, including tight muscle.

-Can be associated with synkinesis phenomena and/or co-
contraction.

-Abnormal head posture is common.

CCDD syndromes result from mutations in genes essential for 
correct axonal targeting of the motor neurons (ROBO3), motor 
neuron development (HOXA1, PHOX2A, and likely SALL4), and 
correct axonal targeting of the extra ocular muscles (KIF21A) [6].

CCDD’s can present with preserved ocular motility or 
limitation of the same, which is the basis of their categorisation. 

The disorders with involvement of ocular movements include:

-	 Duane Retraction syndrome(DRS)

-	 Moebius syndrome

-	 Monocular elevation deficiency (MED)

-	 Congenital fibrosis of extra-ocular muscles (CFEOM, 
type1,2,3)

-	 HOXA1 spectrum

-	 Horizontal gaze palsy and progressive scoliosis

Keywords
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Abstract

Strabismus affects 2–4% of the population and causes loss of binocularity and 
amblyopia. In the absence of structural brain abnormalities the cause for strabismus 
remains uncertain. Various research studies have been conducted on the genetic basis 
involved in etio-pathogenesis of a series of complex strabismus syndromes resulting from 
mutations in genes necessary for the normal development and connectivity of brainstem 
ocular motor neurons, including PHOX2A, SALL4, KIF21A, ROBO3, and HOXA1, which 
is collectively referred to as “congenital cranial dysinnervation disorders,” or CCDD. 
There is growing evidence that complex strabismus can primarily result from aberrant 
signalling to the extra ocular muscles by neurons in the CNS and hence this terminology 
to name these complex form of strabismus. This review briefly summarises the shifting 
paradigms in the understanding of etio-pathogenesis of these CCDD. 
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Disorders without limited ocular motility include:

-	 Hereditary congenital facial palsy (HCFP)

-	 Hereditary congenital ptosis (HCP)

The review summarises various disorders classified under 
the CCDD’s, their etio-pathological and genetic basis, clinical 
manifestations and a brief outline of the management approach 
to these patients with these disorders. To begin with, a tabulated 
summary of the genetic basis of various CCDD’s has been 
elaborated followed by emphasis on the more common disorders 
like DRS, Moebius syndrome and MED and subsequently shifting 
emphasis on the not so common clinical entities. Table 1 mentions 
various syndromes, associated genes and clinical features, their 
inheritance pattern and the innervational abnormalities linked 
with the CCDDs followed by an elaborative review of each of the 
enlisted disorders.

These clinical entities are:

A. Duane Retraction Syndrome

Isolated Duane retraction syndrome (DRS) is the most 
common CCDD, typically unilateral with female predisposition 
and is a congenital non-progressive ocular motility defect. Its 
most common type 1 is characterised by limited abduction with 
variable limitation of adduction along-with globe retraction and 
narrowing of the palpebral fissure (Figure 1a,b) [6]. Primary 

absence or hypoplasia of the abducens nerve with dysinnervation 
of the ipsilateral lateral rectus by a branch of the oculomotor nerve 
has been known in its etio-pathogenesis [7-9]. Patients with DRS 
reveal CID of the lateral rectus muscle which results in abnormal 
muscle structure, loss of muscle function, co-contraction, and 
contraction against a tight muscle. Neurogenic etiology for DRS 
has been documented by electrophysiological, pathological and 
neuroradiological studies which is further strengthened by the 
association of DRS with synkinesis phenomena such as Marcus 
Gunn jaw-winking [7, 8,10,11]. Hypoplastic abducens nucleus 
with absent 6th nerve on the affected side in a DRS type 1 patient 
was first reported by Matteuci [12]. The abducens nucleus 
reveals no motor neuron cell bodies without intra-axial fibers 
within the brainstem [12]. The DURS1 locus (MIM %126800; 
Mendelian Inheritance in Man) was observed following 
overlapping cytogenetic abnormalities on chromosome 8q13 
in multiple patients with syndromic DRS including disruption 
of a carboxypeptidase A6 gene, CPAH [13]. Linkage analysis 
of families suggested DURS2 locus by segregating dominant 
DRS (MIM#604356) with patients commonly manifesting with 
bilateral involvement and vertical movement anomalies [6]. 
CHN1 gene is responsible for 3rd and 6th nerve axon pathway 
development but is uninvolved in sporadic DRS [9,10]. SALL4 
gene, which is involved in abducens nerve, limbs, and heart 
development is involved in syndromic DRS [11] and is associated 
with Holt–Oram and acro-renal-ocular syndromes [17]. Linkage 

Table 1: Genetic basis of CCDDs.

Syndrome Gene *Inh. Associated features Innervational abnormality

Non syndromic Duane retraction 
syndrome
Familial DS

CHN1 AD Type 1 or 3 DRS & vertical motility anomalies
Abnormal CN VI & III with/
without SO hypoplasia

Syndromic DRS
Duane radial ray
(Okihiro)
Arco-renal-ocular syndrome
Townes-Brock syndrome

SALL4

SALL4

SALL1

AD

AD

AD

DRS, radial ray± Hearing Loss

DRS, radial ray, kidney defects

Imperforate anus, hearing loss, thumb 
malformation ± DRS

Hypoplastic /absent CN VI, 
aberrant innervation of LR 
muscle

HOX mutations
Bosley-Salih-Alorainy syndrome

Athabaskan brain dysgenesis

HoxB1

HOXA1

HOXA1

HOXB1

AR

AR

AR

DRS, SNHL, Cardiac malformation, autism

Horizontal gaze restriction, SNHL, Facial 
weakness

Esotropia, Cranial nerve VII palsy, HL

Non-innervated EOM, 
Hypoplastic cranial nerve 
VI, Hypoplastic /absent ICA, 
double aortic arch, absent 
CN VII

Horizontal gaze palsy with progressive 
scoliosis (HGPPS)

ROBO3 AR Horizontal gaze limitation, scoliosis Flattened pons with midline 
cleft

CFEOM
CFEOM 1

CFEOM2

CFEOM3

KIF21A

PHOX2A

TUBB3

AD

AR

AD

Restrictive ophthalmoplegia, blepharoptosis

Ptosis, restrictive ophthalmoplegia, exotropia, 
poorly reactive pupils

Variable unilateral blepharoptosis, 
ophthalmoplegia

Hypoplastic CN III >VI, 
Hypoplastic LPS, SR
Hypoplastic EOM, large LR, 
absent CN III & VI

Abbrevations: *Inh: Inheritance; AR: Autosomal Recessive; AD: Autosomal Dominant; CN: Cranial Nerve; SO: Superior Oblique; SNHL: Sensory 
Neural Hearing Loss; HL: Hearing Loss; LPS: Levetor Palpebrae Superioris; SR: Superior Rectus; EOM: Extra Ocular Muscle; LR: Lateral Rectus; ICA: 
Internal Carotid Artery
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Figure 1 Child with bilateral DRS. Note the restriction of abduction 
bilaterally and retraction of the palpebral aperture on adduction.

Figure 2 Patient with Moebius syndrome with bilateral abduction 
deficiency, esotropia and lagophthalmos due to facial nerve aplasia.

analysis of pedigrees with Bosley–Salih–Alorainy syndrome (a 
condition with bilateral DRS and systemic findings) is localised to 
the gene on chromosome 7p15.2, encompassing the HOXA gene 
cluster [18]. Functional MRI has added to in depth analysis of this 
group of CCDD’s [14]. Most DRS patients do not need any surgical 
intervention and remain asymptomatic [12]. However, 80 % 
patients with abnormal head posture benefit from eye muscle 
surgery but the successful restoration of normal ocular motility is 
unlikely [12] Surgery in DRS aims to improve face turn, alignment 
in primary gaze, globe retraction, to eliminate upshot and to 
maintain ocular rotations [12]. Most DRS patients compensate 
well for the disorder and do not require further management 
[12]. Transposition procedures improve abduction in a few cases 
with some compromise on adduction [19]. Fixation of lateral 
rectus to the lateral orbital wall with transposition of the vertical 
muscles can be performed in patients with severe DRS associated 
with up shoots and down shoots on adduction [19].

Moebius syndrome

This syndrome consists of congenital complete or partial 
facial nerve palsy with or without paralysis of other cranial 
nerves (most commonly an abducens paralysis) and often 
associated with other malformations of the limbs and orofacial 
structures (Figure 2a,b) [20]. Esotropia is common and needs 
to be differentiated from strabismus fixus [6]. The syndrome 
has been variably labeled as congenital facial diplegia, nuclear 
agenesis, congenital nuclear hypoplasia, congenital oculofacial 
paralysis, and congenital abducens-facial paralysis [20].

Criteria for diagnosing Moebius syndrome include [20].

(1) Complete or partial facial nerve paralysis which is an 
essential criteria.

(2) Limb malformations (syndactyly, brachydactyly or absent 
digits, and talipes) are often present.

(3) The additional clinical features which aid in diagnosis 

include bilateral or unilateral ocular nerve palsies (commonly 
of the abducens (VI) and less commonly the oculomotor (III) 
and trochlear (IV) nerves); hypoplasia of the tongue owing 
to hypoglossal (XII) nerve paralysis; swallowing and speech 
difficulties owing to trigeminal (V), glossopharyngeal (IX), and 
vagus (X) nerve palsies; malformations of the orofacial structures 
(bifid uvula, micrognathia, and ear deformities); other anomalies 
of the musculoskeletal system, for example, Klippel-Feil anomaly, 
absence of the sternal head of the pectoralis major, rib defects, 
and brachial muscle defects.

Most cases of Moebius syndrome are sporadic without any 
evidence of a known environmental etiological factor and there 
is not much evidence to support autosomal dominant mode of 
inheritance, however, the syndrome may result from a new 
dominant mutation [21-24]. Reciprocal translocation between 
chromosomes 1 and 13, t (lp34; 13ql3) has also been reported 
[20]. It is likely quite heterogeneous in origin and may have more 
than one genetic and/or developmental etiology with HOXA1 and 
TUBB3 mutations noted in atypical Moebius phenotypes [18,25]. 

Most ophthalmologists recommend delaying surgery for 
strabismus because the condition frequently improves with age and 
ocular surgical procedures have been successful in some patients 
with Moebius syndrome [26]. Some strabismologists believe that 
patients with Moebius syndrome are not optimal candidates for 
transposition surgeries [27]. In view of combined restrictive and 
paralytic strabismus in these patients, transposition surgery may 
be problematic if restrictions are enhanced [27]. Vertical rectus 
transposition is now recommended as a first choice procedure 
because large medial rectus recessions if performed will further 
weaken the adduction commonly associated with gaze palsies 
as also observed in these patients [27]. Medial rectus recession 
may be considered as a second surgery for residual esotropia if 
it persists after 1st surgery [28]. In older patients, insertion of a 
gold weight into the eyelid may allow lid closure to protect the 
cornea [29].

Monocular Elevation Deficiency (MED)

MED, also known as double elevator palsy (DEP), is inability 
to elevate one eye in both adduction and abduction, resulting 
in relative hypotropia of that eye. MED may be congenital or 
acquired via restrictive or paretic etiology. Combined palsy of the 
inferior oblique (IO) and superior rectus (SR) muscles is unlikely; 
paresis of the SR muscle alone is sufficient to produce the 
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clinical manifestations of the disease [30]. A significant number 
of patients with congenital MED show synkinesis phenomena 
such as Marcus Gunn jaw-winking [31,32]. Dissociated vertical 
deviation (DVD) is noted in 29% of MED patients suggesting 
innervational rather than anatomical aetiology [30]. The disorder 
is classified into three subtypes: 1) restrictive form, with positive 
forced duction test (FDT) for elevation, normal elevation forced 
generation test (FGT), and elevation saccadic velocity, often 
an extra or deeper lower eyelid fold on attempted upgaze and 
poor or absent Bell phenomenon; 2) paretic form with elevator 
muscle weakness, free FDT, reduced elevation FGT and saccadic 
velocity, in which the Bell phenomenon is often preserved; and 3) 
a combination form, presenting with positive FDT for elevation 
and reduced FGT and saccadic velocity for elevation [33].

The goal of surgery is to improve the position of the affected 
eye in primary gaze, by increasing the field of binocular vision 
[34]. Indications for surgery include vertical deviation in primary 
gaze, deviation-induced amblyopia, diplopia in primary gaze, 
and restricted binocular fields [34]. Inferior rectus recession, 
Knapp procedure, partial tendon transposition, and combined 
procedure are different surgical procedures in the management 
of monocular elevation deficiency (MED) [34].

The Human HOXA1-Related Syndromes: Bosley-
Salih-Alorainy Syndrome (BSAS) and Athabascan 
Brainstem Dysgenesis Syndrome (ABDS)

Affected children with this syndrome manifest with bilateral 
Duane syndrome, congenital sensorineural deafness secondary 
to bilateral absence of the cochlea, semicircular canals, and 
vestibule suggesting common cranial nerve involvement, 
malformations of the internal carotid arteries (unilateral 
hypoplasia to bilateral agenesis), delayed motor milestones and 
autism spectrum disorder (ASD) [35,36]. ABDS children manifest 
with horizontal gaze restriction, sensorineural deafness, central 
hypoventilation, mental retardation, and subsets have facial 
weakness, vocal cord paralysis, and conotruncal heart defects, 
including tetralogy of Fallot (TOF) and double aortic arch and 
delayed motor development with MRI suggestive of internal 
carotid artery anomalies [37]. Genomic analysis pointed BSAS 
to region of chromosome 7 encompassing the HOXA gene cluster 
[38]. Homozygous truncating HOXA1 mutation that result in 
complete loss of HOXA1 function cause more diffuse error in 
hindbrain segmentation leading to aberrant abducens and inner 
ear development [39,40]. Differences in genetic background or 
environment between the Turkish, Saudi Arabian and Native 
American populations account for phenotypic variability between 
these two syndromes [18]. These syndromes are now called the 
HOXA1 related syndromes because the common loss of HOXA1 
gene leads to brainstem dysgenesis and cortical dysfunction in 
these patients. These manifestations suggest new functions of 
this gene in humans unlike what has been demonstrated in vivo 
in mice with HOXA1 mutations [39].

Horizontal gaze palsy with progressive scoliosis 
(HGPPS)

HGPPS is a rare autosomal recessive disorder first 
documented in consanguineous Greek pedigrees wherein 
the patient manifests with absent horizontal eye movements 

and develops severe progressive scoliosis starting in infancy 
or childhood [41]. Bi-allelic mutations in the roundabout 
homolog of Drosophila 3 (ROBO3) gene cause horizontal gaze 
palsy with progressive scoliosis (HGPPS; OMIM 607313) [42]. 
ROBO3is a large gene which encodes a cell adhesion molecule 
containing five extracellular immunoglobulin-like motifs, 
three fibronectin-like motifs, a transmembrane domain, and 
an intracellular tail containing signalling motifs [43]. ROBO3 is 
expressed in the human fetal hind brain and shares homology 
with roundabout genes which directs the axons in developing 
Drosophila, zebrafish, and mouse [44]. Human ROBO3 is most 
closely related to mouse ROBO3 (Rig1), and its mutations lead 
to complete loss of gene function manifesting with failure of 
spinal commissure axons to cross the midline [44]. 24 distinct 
mutations located in different domains of the ROBO3 gene have 
been described [44-47]. Splice-site mutation i.e. a homozygous 
missense mutation (c.3319A>C) next to the splice donor site 
of exon 22 of the ROBO3 gene, homozygous deletion of 31bp 
(c.2769_2779del11, 2779+1_+20del20) spanning the splice 
donor site of exon 17 of the ROBO3 gene leading to an altered 
splicing and an insertion/deletion mutation in the ROBO3 gene in 
have been reported in patients of three consanguineous families 
from Turkey and Saudi Arabia by a study conducted by Alexandar 
E Volk et al., [48]. MRI has identified hypoplasia of the Pons and 
medulla with an unusual anterior and posterior midline cleft 
in the medulla giving a butterfly like bifid appearance in axial 
sections [44]. However, optic chiasma and corpus callosum 
appear normal with shortening of anterior posterior diameter 
of pons and medulla and cerebellar peduncles is observed [49]. 
Somatosensory and motor evoked potentials show responses 
predominantly on the same side of stimulation on functional 
MRI [44]. Electrophysiological studies have suggested that the 
corticospinal and dorsal somatosensory tracts do not cross the 
midline in HGPPS patients causing midline medullary clefts in 
these patients [43]. Congenital absence of horizontal gaze with 
preserved adduction in convergence, saccades, and vestibulo-
ocular or optokinetic responses is observed [50]. Vertical 
eye movements are mainly unaffected [45,50]. Patients have 
been reported with horizontal and pendular low amplitude 
nystagmus [45,46,51], asynchronous blinking [47,50], and 
bilateral synergistic convergence without pupil constriction 
upon attempting to gaze horizontally to one side or the other 
[47]. Visual fields, pupil function, accommodation, and anterior 
and posterior segments of the eye are usually normal without any 
deterioration in visual acuity [47]. Apart from motor impairment 
and subnormal intelligence in a few patients, cognitive functions 
are usually unaffected [45,47,50,52] . Failure of axons together 
with that of commissural fibers of the abducent inters nuclear 
neurons which fail to cross the midline during development has 
been presumed to be a possible pathogenetic mechanism in this 
disorder [53]. 

CFEOM

It is a type of CCDD phenotype and is classified based on the 
presence of congenital eye movement disorder that primarily 
affects function of the extra ocular muscles in the oculomotor 
nerve distribution [54,55] It is further sub-classified as CFEOM1, 
CFEOM2, or CFEOM3 based on specific phenotypic features [6]. 
Three CFEOM genetic loci (FEOM1, FEOM2, and FOM3) have 
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been mapped of which KIF21A and PHOX2A are referred to as 
the FEOM1and FEOM2 genes, respectively [10]. A phenotypic 
and genotypic correlation exists, such that most individuals 
with CFEOM1 harbour KIF21A mutations, most individuals with 
CFEOM2 harbour PHOX2A mutations, and those with CFEOM3 
map to the FEOM3 locus (a locus with unidentified disease 
causing gene) [56].

CFEOM1 (MIM135700)

A patient with CFEOM1 phenotype (MIM135700) 
presents with congenital non-progressive bilateral external 
ophthalmoplegia, where both eyes are downward (infraducted) 
with limitation of elevation above the horizontal midline along-
with congenital bilateral ptosis with papillary sparing [38]. The 
etio-pathogenesis lies in the absence of the superior division 
of the oculomotor nerve (CNIII) and the corresponding motor 
neurons in the mid brain oculomotor nucleus with marked 
abnormalities of the levetor palpebrae superioris (LPS) and SR 
muscles, confirmed on high-resolution MRI of the brainstem and 
orbit [57]. These findings suggest that FEOM1 gene, mapped to 
centromeric region of chromosome 12 [58], now referred to as 
the FEOM1 locus is of prime importance in the development of 
superior division of the oculomotor nerve & is likely important 
for axonal targeting of the extra ocular muscles. KIF21A 
(Developmental kinesin) gene contains 38 exons and encodes a 
1674 amino acid protein [56]. Structurally it resembles classical 
kinesin with three domains namely motor, stalk, and tail (which 
carries an unknown cargo [59]. Interaction between these 
three domains results in homo- or heterodimerization [59]. 
Heterozygous mutations in this gene in patients with CFEOM1 
inhibit dimerization of KIF21A to itself or another binding partner, 
or may interfere with the ability of KIF21A to move into and out 
of an active state resulting in inhibition of KIF21A to deliver its 
un identified moiety that it carries from the oculomotor neurons 
to the synapse of the developing neuromuscular junction of the 
extra-ocular muscle [56].

CFEOM2 (MIM 602078)

This disorder results from aberrant axonal targeting of the 
extra ocular muscles by a branch of the oculomotor nerve [60]. It 
is autosomal recessive syndrome characterised by bilateral ptosis 
and absent adduction, up gaze, and down gaze mimicking bilateral 
third nerve palsies [60]. Abduction is incomplete, anisocoria 
with non reacting pupils to light with preserved reactions to 
drugs [61]. MRI reveals absence of third nerve bilaterally [56] 

genotypically, homozygous loss-of-function mutations in the 
PHOX2A gene (previously termed ARIX, also identified in an 
Iranian pedigree) [61]. A home domain transcription factor that is 
prominently expressed in developing oculomotor and trochlear 
motor neurons nearly indispensible for their survival. Linkage 
analysis mapped CFEOM2 to chromosome11q13, referred to as 
the FEOM2 locus [62].

CFFEOM3 (MIM 600638)

CFEOM3 is an autosomal dominant disorder with clinical 
manifestations similar to CFEOM1except for retained ability to 
elevate the eyes above midline in a few cases [63]. Heterozygous 
mutations in at least two genes, TUBB3 (CFEOM3A; MIM 

#600638), a component of microtubules [25] and rarely KIF21A 
(CFEOM3B) have been found to be mutated in these cases Other 
manifestations noted in these patients include facial palsy, 
peripheral neuropathy, wrist and finger contractures, and 
intellectual, social, and behavioural impairments [6]. Corpus 
callosum and anterior commissure dysgenesis have been 
reported on neuro imaging [25]. A CFEOM3C variant (MIM % 
609384) has been described wherein a reciprocal translocation in 
chromosome 2q and 13q have been documented in 3 subsequent 
generations of a family [64]. Literature is scanty pertaining to 
surgical management of patients with CCDD’s [65-69]. Large 
recessions with/without adjustable suture technique, resections, 
tenotomise, myectomies, fixation of a muscle to the orbital wall, 
and botulinum toxin injection are the surgical modalities for 
managing CCDD’s [66,67]. Resections are generally avoided, 
in the management of CFEOM [67,69]. The need for multiple 
surgical procedures should be clearly explained to the patients 
emphasizing the under-correction after single surgical procedure 
and early surgery should be considered in adults in view of more 
tight and friable muscle in this group of patients unlike paediatric 
age group [66-69].

Two disorders are associated with normal ocular motility:

Hereditary congenital facial palsy (HCFP) HCFP is 
bilateral, autosomal dominant disorder presenting with isolated 
asymmetric facial weakness [70-72]. Reduced number of neurons 
within the facial nerve motor nuclei and poorly developed facial 
nerve roots has been observed on pathological examination. 
HCFP1 (MIM %601471) and HCFP2 (MIM %604185) are the 
genetic loci associated with the disorder [18,70]. 

Hereditary congenital ptosis (HCP) 

Bilateral asymmetric mild to severe isolated upper eye lid 
ptosis without associated ocular features are the presenting 
features of HCP [73,74]. Two loci have been mapped by 
linkage analysis namely an autosomal dominant (AD) locus on 
chromosome 1 (PTOS1; MIM %178300) and other X-linked locus 
[73]. Electromyography studies have suggested paradoxical 
innervation of superior oblique muscle in some patients with 
absence of trochlear nerve without hypoplastic or atrophic 
superior oblique muscle in patients with Brown’s syndrome thus 
pointing to neurogenic etiology [75,76].

DISCUSSION AND CONCLUSIONS
Seven genes are now recognized to cause 10 phenotypes 

of CCDD’s and six syndromes are associated with at least 11 
genetic loci [4]. CCDDs are neurogenic in origin [77]. Which can 
be supported by a genetic basis wherein a gene is responsible for 
nuclear, brainstem and peripheral nerve development [4]? MRI 
has shown reliable observations that the EOMs are stabilized 
without slipping over the globe in relation to the orbit is that 
they pass through structures known as the rectus “pulleys of 
Miller.” which constitute the fundamental origin of EOM and act 
as effective mechanical origins of the rectus EOMs causing their 
paths to change systematically with gaze [78]. High resolution 
MRI provides microscopic resolution of EOM and orbit [77,79]. 
DRS which was earlier considered misinnervation of the lateral 
rectus by a branch of the oculomotor nerve can now be confirmed 
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radio logically [14,80-83] Additionally, a common observation 
reported in DRS is a double-headed LR muscle whose superior 
and inferior divisions of the global layer are typically separated 
and act at scleral insertion points separated by several 
millimetres vertically [14] has now also been reported in normal 
individuals. It is now routinely possible to demonstrate the 
motor nerve entries into EOM’s [14,77]. High resolution magnetic 
resonance imaging in multiple gaze positions can now routinely 
demonstrate the size, paths and contractile states of EOMs along-
with motor nerve entries into EOMs [14,77,79,84]. Preoperative 
evaluation of orbits, EOM functional anatomy by imaging would 
become significantly important in the management of these 
complex strabismus syndromes in the near future. Strabismus 
and ocular motility disorders are in the zone of paradigm shift 
wherein the EOM anatomy is being evaluated in functional terms 
and genetic basis of this group of ocular motility disorders is 
being comprehensively studied for focussed, evidence based 
management. 
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