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Abstract

Purpose: Evidence suggests developmental disorders are best viewed from a multidimensional approach, where the disorder deficit profile may be
highly variable due to the complex interaction of factors that vary along a continuum. In this study, we leverage individual variability to determine whether a
multidimensional disorder, such as developmental language disorder (DLD), can be identified.

Method: We used repeated elastic net logistic regression with 71 high-density measures from 223 children ages 7 - 11 (DLD = 110; typically developing
(TD) controls = 113) from the Montgomery et al. [1] study.. In Study 1, we trained the model on 70% of the data and tested its performance on the remaining
30% holdout set. In the second study, we utilized the complete data set to derive the fitted models to compare the characteristics of the best- and worst-
performing models.

Results: Area under the receiver operating characteristic curve (AUROC) was used to evaluate the performance of the fitted models. For the fitted model
in Study 1, the average AUROC in the training set was 0.88 (SD = 0.017) in discriminating DLD-TD groups, and the holdout set was 0.85 (SD = 0.04). The
average AUROC for discriminating the fitted modes in Study 2 was 0.87 (SD = 0.002). The model-estimated probability scores for both Study 1 & 2 models
were also significantly correlated with the language severity measure.

Conclusion: Our successful development of a predictive model based on an elastic net algorithm that classified children with DLD from those without, using
a multidimensional dataset, provides indirect support for the notion that DLD is a multidimensional disorder. Some of the conundrums of data-driven model

derivation and complementary findings, as well as the pros and cons of methodologies in Study 1 and Study 2, are discussed.
INTRODUCTION morphosyntactic aspects of DLD; however, deficits in
lexical processing, including slower word retrieval [11],
spoken word recognition [6,12,13], and comprehension
of both simple and complex syntax [1,14,15] have been
well documented in this population. Similarly, cognitive
deficits, including verbal working memory [16,17], speed
of processing, selective attention, and interference control
[18,19], have also been well documented in this population.

Developmental Language Disorder (DLD) is a
neurodevelopmental disorder characterized by the failure
to master spoken and written language comprehension
and production in the absence of any medical condition or
syndrome known to cause language disorders in children
[2-4]. While numbers vary slightly across countries, DLD
occurs in ~ 7% of school-aged children in the United

States [5]. Unidentified or left untreated, DLD persists into Among the most scientifically challenging and

adulthood [6-8]. Approximately 7% or 1.8 million young
adults ages 18 - 23, based on the 2024 US Census data, are
currently struggling with the profound social, emotional,
and economic consequences of the disorder in the United
States alone [9,10].

Most research has focused on the expressive

unanswered questions is whether the underlying latent
structure of DLD is categorical and constitutes children
who differ qualitatively and non-arbitrarily from normal,
or is dimensional and constitutes children whose language
skills fall below some arbitrary threshold at the lower
end of a continuous normal distribution on standardized
tests [20,21]. Specifically, the question has been whether
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children with DLD constitute a distinct group with language
skills that differ qualitatively and nonarbitrarily from
typical children; or are children with DLD not clinically
unique and merely have language skills that fall below
some arbitrary threshold at the lower end of a continuous
distribution on standardized tests [22-24]? Leonard first
proposed that children with “DLD” were no different
from children with poor musical, spatial, or mathematical
abilities, and that the same types of variations in genetic
and environmental factors that lead some children to be
clumsy or amusical lead children with “DLD” to simply be
poor atlanguage [22]. Specifically, Leonard argued that the
lack of evidence of neurological impairment was evidence
for a dimensional account of DLD; however, there is a
consistent pattern in studies of the neurobiology of DLD
that is characterized not by a single brain measure or
by global abnormality, but by a pattern of atypical brain
morphology and tissue properties for some brain regions
but not others, coupled with atypical patterns of neural
activity mediating some aspects of language processing
but not others [25,26].

As traditionally conceived, the categorical-dimensional
debate views DLD as being quantitatively rather than
qualitatively different from normal. A true disorder
must: (a) be naturally occurring as opposed to artificially
and arbitrarily created; (b) have clearly demarcated
boundaries separating members of the natural kind from
non-members (i.e. normal vs. disordered); (c) possess
observable features that are causally produced by internal
properties and which can be used to objectively validate
category membership; and (d) show all the instances of a
“kind” with features in common, which allows clinicians
and researchers to distinguish a single instance of the
“kind” where the child either does or does not possess the
traits or symptoms of the disorder.

From a dimensional standpoint, the behavioral and
cognitive characteristics of DLD are better understood
as quantitative differences in general learning and
processing mechanisms rather than as categorical deficits.
Consistent with this view, Gillam et al. [27], demonstrated
that four cognitive mechanisms—fluid reasoning,
controlled attention, working memory, and long-term
memory for language knowledge—accounted for more
than 90% of the variance in standardized measures of
language comprehension and production among school-
age children with and without DLD. Their GEM (Gillam,
Evans, & Montgomery) model indicated that linguistic
performance in DLD reflects graded weaknesses in these
interrelated cognitive systems rather than a distinct
separation from typical development. This dimensional

perspective implies that boundaries between “typical”
and “disordered” language functions are probabilistic and
continuous, rather than categorical.

Resolving the dimensional-categorical debate in DLD
is particularly challenging because it relies on a Boolean,
polythetic classification approach based on the presence
or absence of symptoms, and/or a single underlying cause.
Such approaches artificially create the appearance
of variability and heterogeneity in the deficit profile
because they cannot account for differences in the clinical
presentation of the disorder (e.g., symptoms, age of onset,
severity,etc.) orthe presence ofanunderlyingunobservable
dimension. This means that the more heterogeneous the
observed symptoms are, the more difficult it is to identify
the causal properties that objectively validate the disorder.
Because the vast majority of symptoms, signs, and
laboratory tests used in organic medicine are quantitative
in nature and language is a developmental phenomenon,
the observable traits of DLD will always be evident to some
degree in both children with DLD and children with low
normal language, and the observable dimensions along
which DLD can be characterized will differ at different
developmental stages.

The problem is further complicated because the
majority of diagnostic criteria for DLD involve cutoff
scores on a continuous normal distribution. Not all
children with DLD will always score at the low end of a
given standardized test because individual tests differ
in their normative distributions. A child who truly has
DLD has a roughly equal chance of being correctly or
incorrectly identified, depending on the test used [28,29].
Even if clinicians and researchers use standardized tests
with high sensitivity and specificity, there is a chance that
some proportion of participants in an “DLD participant
group” may be children with low normal language abilities
This raises the question: how much of the variability and
heterogeneity in the DLD behavioral phenotype is the
result of non-homogeneous subject groups comprised of
both children with DLD and unimpaired children with low
normal language?

Dollaghan was one of the first researchers to ask
if a distinct DLD deficit “profile” could be identified
categorically, that nonarbitrarily demarcated a clear
boundary between DLD and “normal using a taxometric
approach. This approach enables researchers to examine
the relationship among variables to determine if a
nonarbitrary category or natural kind (e.g., taxon) exists
on the variables (i.e., biological species, clinical category,
etc. Meehl, [30-32]). Using this approach, Dollaghan
examined vocabulary, mean length of utterance (MLU),
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number of different words, and non-word repetition
scores at ages 4;0 and 6;0 as potential diagnostic indicators
of “DLD.” She found no evidence of a qualitatively distinct
group corresponding to children with DLD. Instead, she
observed that the children’s language skills in her sample
were distributed in a dimensional rather than categorical
fashion [23,24].

Recently, Lancaster and Camarata [33] also addressed
this question wusing two clustering techniques—K-
means clustering and Ward’s hierarchical method—with
Bayesian Information Criterion (BIC) on 505 children
classified as SLI/DLD from the Epidemiological Study of
Specific Language Impairment (EpiSLI) database (Tomblin
et al, 2010). Their analysis suggested that there might be
more than 10 clusters within the DLD group that did not
align with any previously hypothesized subtype model.
According to them, the possibility of more than 10 clusters
also supports the premise that DLD is a continuous
spectrum disorder.

A framework has important implications for
research methodology. If DLD represents a continuum of
cognitive-linguistic efficiency, then models that assume
linear separability between groups may fail to capture
the true data structure. Instead, multivariate analytic
approaches that leverage the continuous and correlated
nature of linguistic and cognitive variables and capture
the variability inherent across members of the disorder
groups may provide more accurate and theoretically
coherent representations of the mechanisms underlying
DLD [34-36]. Multidimensional approaches, such as elastic
Net Regression, have been successful in characterizing
the nature of the disorder, even for Williams Syndrome,
a neurogenetic disorder with a single-gene mutation,
yet complex behavioral, neuroanatomical, and cognitive
manifestations [37,38]. Elastic net models are particularly
suited for this purpose because they can handle large,
intercorrelated predictor sets while shrinking coefficients
toward zero to prevent overfitting, thereby identifying the
most predictive variables in a high-dimensional space.

Purpose

The central motivating theory in this study is that if
the latent structure of DLD is dimensional, then, despite
individual differences, measures of language and cognitive
processing will be fundamentally similar for DLD and
typical children. Alternatively, if the latent structure of DLD
is categorical, we predict notable differences in language
processing and cognitive processing for children with/
without DLD. Dollaghan posited that a reason she may not
have identified a DLD taxon was that her data did not meet

the independence requirements for taxometric analysis. A
requirement, and limitation of the taxonomic approach, is
that the results are not valid if the data fail to meet key
requirements which include sufficiently large sample size
(e.g, n = ~ 500-600), and more importantly for studies
of cognition and language, that data must vary along a
continuous scale and the indicators cannot be correlated
(e.g, < .30, [39]). Similarly, Lancaster and Camarata
[33], used hard-clustering techniques such as K-means
and Ward'’s hierarchical clustering to examine whether
subtypes exist within DLD. One property of hard clustering
methodology is that it does not provide gradation or
likelihood of belonging to each clustering for children; it
instead assigns them to one group or the other based on
participants’ similarity with others [40]. Even though this
statistical approach has the potential to identify the nature
of the disorder and subtypes within a disorder when it
is regular and varies simply over one variable, such as
language expressive abilities, this technique, when used
to explore an irregular, heterogeneous, and potentially
multidimensional disorder, could overlook the complexity
and oversimplify the nature of the disorder.

An alternative approach is to use a regularized
regression approach such as elastic Net Regression that
combines Ridge and lasso regression [41,42]. elastic Net
Regression is a regularized regression method that linearly
combines the L1 and L2 penalties of the lasso and ridge
methods. The approach is particularly useful when dealing
with a large number of predictors and multicollinearity.
Notably, as can be seen clearly in Fan et al. [37], modeling
work, they used this novel approach to derive a Williams
Syndrome (WS)-specific profile from a very small number
of features from structural MRI measurements in a cohort
of WS adults (n = 22) and healthy controls (n = 16). Their
index for the model performance was area under the
curve (AUC) in the receiver operating characteristic (ROC)
analysis. Their model showed that even though each input
measure only contributed a small portion of explained
variance of a high-level construct (e.g., clinical diagnosis),
when it was aggregated across individual differences in
their WS population, the result was a multidimensional
probabilistic composite score that accurately predicted
each WS individual’s membership in the clinical group
with an extremely high degree of accuracy. Despite the
high multicollinearity in brain measures and substantial
individual differences in WS behavioral profiles, Fan et al.
were able to use this novel approach to derive a Williams
Syndrome (WS)-specific profile.

In addition to addressing potentially high
multicollinearity among predictor variables, another
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strength of the elastic net approach is that, by using high-
density sampling across a large number of input variables,
theneed for extremelylarge subject sample sizesisreduced.
The current study builds on the GEM model (Gillam, Evans,
& Montgomery), a psycholinguistic framework that posits
that sentence comprehension and broader language
performance emerge from the dynamic interaction of fluid
reasoning, controlled attention, working memory, and
long-term memory for language knowledge [15,43]. We
use all of these measures of sentence comprehension and
the cognition from Montgomery and colleagues’ study to
determine whether a DLD-specific profile based on these
predictors effectively differentiates children with DLD
from their typically developing language peers.

To create a high-density sample across a large number
of predictors, in this study we used all of measures (e.g.,
number correct, percent correct, reaction time, error
pattern, etc.) of working memory, attentional control, speed
of processing, lexical access, and real-time accuracy in the
comprehension of canonical and noncanonical sentences
from the original Montgomery project [15,27,43,44] to ask
if there is a DLD-specific profile based on these predictors
that uniquely identify and differentiate children with
DLD from their typical language peers. In particular, we
conducted two studies and analyzed the consistency and
stability in the results. The first included a 70-30% split
in the training-holdout analysis, and the second used
all 223 participants from the Montgomery database to
train the fitted models. As a whole, investigating the
model’s performance and output characteristics across
groups using analytical complementary approaches
with a multidimensional statistical framework helps us
understand the inherent nature of DLD and address the
long-standing discourse in the literature.

STUDY ONE
Methods

Participants: Our model is based on measures from a
total of 234 children (ages 7;0 to 11;11), 117 children with
DLD (72 boys and 45 girls), and 117 children with typical
language (TD) (83 boys and 34 girls). All children met the
following inclusion criteria: a) normal nonverbal IQ (NVIQ)
as measured by the Leiter International Performance
Scale-Revised [45]; (b) normal-range hearing sensitivity
at the time of testing [46]; (c) normal or corrected vision;
(d) normal oral and speech production as measured by
the Articulation subtest on the TOLD-P4 [47], and (e)
a monolingual, English speaking home environment.
Children were excluded from participation if parents
reported that their child had (a) neurodevelopmental

disorder, (b) emotional or behavioral disturbances, (c)
motor deficit or frank neurological signs, or (d) seizure
disorders or use of medication to control seizures. English
was the primary language spoken by all the children.

Classification of DLD and TD participants: The
participants were classified as DLD-TD based on scores
fromfour standardized assessment measures: the receptive
and expressive portions of the Comprehensive Receptive
and Expressive Vocabulary Test (CREVT-2; [48]), and the
concepts and following directions subtest and recalling
sentences subtest of the Clinical Evaluation of Language
Fundamentals (CELF-4; [49]). In keeping with the DSM-
5 definition of language disorder and multi-dimensional
systems for defining DLD (e.g., [3,4]), Montgomery et al.[1]
classified the participants as DLD if their mean composite
language z-score on the three lowest of the four measure
was at or below -1. The average composite z-score for the
DLD group was -1.48 (range = -2.73 to -1.00) with a SD of
.39. The average composite z-score for the TD group was
.08 (range = -.96 to 1.89) with a SD of .60.

Experimental Features included in the Elastic Net
regressions: The Montgomery study included a large
set of measures of spoken sentence comprehension and
cognitive processing measures that were likely to be
relevant to sentence comprehension. These included
syntactic measures of comprehension of canonical and
noncanonical spoken sentences. They also included lexical
processing measures including word finding and spoken
word recognition, and cognitive measures of controlled
attention, phonological short-term memory, and verbal
and nonverbal working memory. For the current study,
we used all 71 experimental measures from the original
Montgomery et al. [1], study as features to derive the
elastic Net Regression model. This resulted in a high-
density sample of all aspects of the experimental measures
(e.g., total trials correct, precent correct, number and
type of errors, etc.) of the measures of comprehension of
canonical and non-canonical sentences, lexical processing,
working memory, attentional control and inhibition for
us to include in the model (see Montgomery et al. [1] for
detail description of the experimental measures).

Data Set for the Modeling: Of the 234 participants in
the database, values were missing for one or more features
in only eleven participants. For the DLD group, this
included seven of them (four boys, three girls), and the TD
group included the remaining four (three boys, one girl).
Since these omissions were not reflective of experimental
material difficulty, these 11 participants were screened
out under the MCAR (missing completely at random)
assumption. This resulted in a final sample of 223 children
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(DLD =110; 69 boys, 41 girls; TD = 113; 70 boys, 43 girls)
for our statistical model.

Modeling Methodologies

Logistic Regression Modeling: A logistic model infers
the probability that a binary (0/1) outcome variable
(v) takes on the value of 1, given a list of input values
represented by the vector x. Let p () denote the probability
that the outcome variable y, takes on the value of 1. This
probability is conditioned on a d-dimensional feature
vector x that corresponds to d distinct numerical features
weighted by 3, a (d+1)-dimensional vector of weights
that includes an additional weight for the intercept. The
complete formula follows:

- 1
1 -+ exp(ftt) ’

X;

1

pi<s>—c[sf 1)

],Q(d>)

In this application, y taking on the value of 1 indicates
the presence of DLD, but taking on the value of 0 indicates
the absence of DLD. This setup allows the use of the
logistic regression modeling defined in (1) to estimate
the probability that a participant in the database has DLD,
given their language and cognitive attributes encoded in
the feature vector, x (see Figure 1).

The feature weight $ must be learned from the data
first. Learning the feature weights from the data is
synonymous with identifying a weighting of features that
best separates individuals with DLD from those without,
while minimizing misclassification. In statistical terms,
this is framed as minimizing an objective function, which
quantifies the error between the model’s predicted class
based on an individual’s features and their actual class
label. In this case, the objective of a binomial logistic
regression model is to find the weight vector 3 that results
in the least amount of prediction error. This corresponds
to the following formulation:

Probahility
of LD

Laogistic
function

Digit Span

oy

Languag: and Cognitive Features

N-hack

Figure 1 Representation of the logistic regression model

Note: This is a model of logistic regression, where the language and cognitive
features are multiplied by the estimated weights 8, and their linear combination
is passed through a logistic function to produce a probability score for DLD.

ln (B):%ici(6)7ci (B):_yilogpi (B)_ (1 - yi)log(l_pi(s) (2)

Where the objective function is the total negative

log likelihood, InB, averaged across all individuals in our
dataset. Here, ¢ () is the negative log likelihood loss of
single individual i in our dataset, measuring how far off our
model’s prediction was from the individual’s actual label.
For instance, if our model predicts a probability close to
0, given the features of a particular individual with DLD,
instead of a probability close to 1, then our ¢,(f) outputs
a high error, and vice versa. The objective function is then
the sum of all ci(ﬁ) over the entire set of individuals in our
data, divided by the number of individuals.

Elastic Net Logistic Regression Modeling

Regularized Objective Function: elastic net logistic
regression incorporates a penalty term, which is added
to regression objective function to avoid overly complex
models. This approach addresses several limitations in
unregularized logistic regression, such as multicollinearity,
generalizability, and overfitting [42]. The elastic net
logistic regression’s objective function is defined as the
regularized average negative log-likelihood:

U (8)=1,(8)+X 3)

(==l 5+ o,

Minimizing the regularized negative log-likelihood
in (3), tends to simultaneously minimize the negative
log-likelihood corresponding to the first term on the
right-hand side of (3) and minimize the second term on
the right-hand side of (3), which is called the “penalty
term.” Note that minimizing the penalty term will tend
to generate a parameter vector 3 whose elements have
magnitudes that are not close to zero. More specifically,
the non-negative parameter A is called the regularization
term and the constant a specifies a trade-off between the
effect of L1 (lasso) penalty |8, , which is the sum of the
absolute values of all elements of 3, and the effect of L2

(ridge) penalty "BlE , which is the sum of the squares of all

elements of 8. Minimizing equation (3) is equivalent to the
standard maximum likelihood estimation procedure for
logistic regression in equation (1) when A is equal to 0. The
other hyperparameter a was set to a fixed value (around
0.4 to 0.5) in the algorithm to balance the contributions of
lasso and ridge equally.

Repeated Model Run Procedure: We utilized the “cv.
glmnet” function from the glmnet package in R [50,51],
which allowed us to combine elastic net logistic regression
with 10-fold cross-validation to determine the optimal
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A that ensures the selection of a low-dimensional set
of features that reliably predict the presence of DLD in
participants.

Unlike unregularized regression, which produces a
consistent model configuration regardless of participant
arrangement, Elastic Net Models are highly sensitive to
variation in how participants are distributed across the
dataset. Specifically, changes in participant arrangement,
the choice of A [52], the optimization path, and fold
assignment in cross-validation [53] can all lead to different
fitted models, with different sets of selected features and
estimated coefficients. That is, the cv.glmnet elastic net
logistic regression algorithm, which searches for the
best lambda regularization constant using 10-fold cross-
validation, could generate entirely different feature sets
and estimated coefficients for the same data set, when
the records are arranged in a different order. Therefore,
recent work has emphasized the importance of repeated
model fitting to characterize and reduce the effects of
data arrangement variability [53,54]. In line with this
approach, we reshuffled the dataset 200 times and fit the
elastic net model to each resample to evaluate variability
in performance and feature selection.

Using the model to explore DLD characteristics

In this first study we follow Fan et al. [37], to our
exploration of DLD-related behavioral characteristics.
Fan et al,, developed their model on a small adult cohort
with Williams Syndrome using extensive neuroanatomical
data and then evaluated the model’s performance on an
independent child cohort. Because we did not have access
to an independent cohort, we adopted their approach
by partitioning the Montgomery et al. database into two
subsets of the entire database: 1) a training set comprising
70% of the data (n = 156) and 2) a holdout set comprising
the remaining 30% (n = 67). We first trained on the 70%
of the data and then validating the model on the remaining
30% ofthe data. We then reshuffled database, repartitioned
into the two 70/30 and tested the model again 200 times.

The training set was used to fit the elastic net algorithm
using the “cv.glmnet” function in R by determining the
value of 1 and the other model parameters. In contrast, the
holdout set was used to test the model’s generalizability
in distinguishing participants from an independent group
of children. Once model development was completed for
each resample, the resulting model for a given sample was
used to compute a probability score for every participant
in both the training and holdout sets. This evaluation
step was repeated over all 200 samples to reveal overall
performance.

We assessed the discrimination ability of each of the
200 fitted models using Area under the receiver operating
characteristic (ROC) curve (AUROC) analysis. Average
AUROC values for the training and holdout sets were then
computed to provide an overall measure of model stability,
generalizability, and predictive performance. To illustrate
how an individual model distinguished participants, we
reportthe results for two models from the 200 runs: (1) the
model that achieved the highest AUROC in discriminating
DLD from TD participants on the training set (“best
training model”), and (2) the model that achieved the
highest AUROC in discriminating DLD from TD participants
on the holdout set (“best holdout model”). The complete
modeling procedures for Study 1 are outlined in Figure 2.

RESULTS

The range of the AUROC for the 200 fitted elastic net
models was 0.84-0.93 (mean = 0.88; SD = 0.017) and the
range of the AUROC for the holdout set was 0.74-0.94
(mean = 0.85, SD = 0.04). These results indicate that the
set of fitted models was effective in identifying both true
positives and true negatives, both within in-sample and
out-of-sample data.

Best Training Model

Figure 3 (A) presents the ROC curves of the best training
model on its training and holdout sets. The AUROC for its
training set (0.9287) was notably higher than that of its
holdout set (0.8099). Figure 3 (B) displays the probability
scores generated by this model for DLD and TD children
in both the training and holdout sets. Although some
overlap in scores was observed between groups, the model
generally separated them, with DLD children tending to
receive higher probabilities (above 0.5) and TD children
receiving lower probabilities (below 0.5). Figure 3 (C)
compares the average probability score with composite
language z-scores, a measure originally introduced by
Montgomery et al. [55] to classify participants in the
database into DLD and TD groups. Although the elastic net
algorithm was trained on categorical group labels (DLD
vs. TD) derived from these scores, but not trained on the
z-scores themselves, a strong negative correlation was
observed between predicted probabilities and composite
language z-scores, r (221) =-0.75, p < 0.001. Children with
lower language performance scores were more likely to be
classified with DLD, and vice versa.

Best Holdout Model

Figure 3 (D) shows the ROC curves for the best holdout
model on both the training and holdout sets. The AUROC
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Steps to Model Development
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Figure 2 Illustration of elastic net logistic modeling methodology on the GEM database.
Note: Steps 1-7 illustrate the steps carried out in our elastic net logistic regression algorithm. Step 8 includes the steps taken to obtain the
performance metric and characteristics of fitted models.
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Figure 3 Best Training Model vs. Best Holdout Model in the 70% Sample Fit

Note: Figure 3 (A- C) was derived using the best training model, and 3 (D-F) was derived using the best holdout model. The best training
model is the classifier that discriminated participants in the training set the best, whereas the best holdout model discriminated participants
in the holdout set the best. (A, D) Receiver operating characteristics (ROC) on the training (blue) and holdout (green) set. (B, E) Boxplots of
the probability of DLD presence for DLD (grey) and TD (yellow). (C, F) Scatterplot of Predicted DLD probabilities Across Composite Language
Z-Scores for DLD (red) and TD (royal blue).
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for the training set (0.84) was lower than that for its
holdout set (0.95). Figure 3 (F) presents the relationship
between composite language z-scores and the model-
derived probability scores. Probability scores were again
strongly and significantly correlated with composite
language z-scores, r (221) = -0.72, p < 0.001, indicating
that children with lower composite language scores had a
higher probability of DLD, and vice versa.

The best training model retained 22 of the 71 features
from the Montgomery et al dataset to classify DLD from
TD, while the coefficients of the remaining features were
shrunk to zero. In the best-performing holdout model, only
9 of the 71 features had non-zero coefficients.

STUDY TWO

Ifresearchers who donothave access to anindependent
cohort, to be able to use the approach of Fan et al. [37]
in Study 1, they must divide their data into training and
holdout subsets. This strategy is highly valuable because
the holdout set functions as an external validity test,
providing insight into the real-world clinical usefulness of
the fitted model. Yet, it also introduces challenges. Primary
among them is greater variability in model configurations,
stemming from the limited number of data points
available for training. For example, the best-performing
training model selected 22 of 71 features as DLD-specific,
whereas the best holdout model retained only 9, yielding
inconclusive evidence for DLD’s defining characteristics.
A similar discrepancy emerged in discrimination ability:
in Figure 3 (A), the best training model classified many
children accurately within the training set but performed
poorly on the holdout set. Conversely, in Figure 3 (D), the
best holdout model achieved stronger holdout predictions
but performed much worse on the training set.

METHODS

Given the substantial variability observed in Study 1,
instead of using the hold-out approach, in Study 2 we use
an “in-sample” approach where the elastic net algorithm
is derived from all the participants at once. The result was
200 fitted models. We then examined the best- and worst-
performing models among the 200 runs. We also evaluated
each model's performance using cross-validated (CV)
binomial deviance, obtained during the A optimization and
model fitting process. The model with the lowest mean
CV deviance was designated the best-performing, as it
achieved the most accurate out-of-sample classification.
Conversely, the model with the highest mean CV deviance
was deemed the worst-performing, reflecting the greatest
out-of-sample classification error. To assess consistency,
we also calculated average AUROC runs on the in-sample

data. The complete modeling procedures for Study 2 are
outlined in Figure 4.

RESULTS

The range of the AUROC from the 200 models of elastic
net modeling was 0.87-0.88 (mean = 0.87, SD = 0.002).
These results indicate that the fit of all 200 models was
consistently able to identify both true positives and true
negatives. The ROCs of the best- and worst-performing
elastic net models are shown in Figure 5 (A). The AUROC
curve of the best-performing model on the participants
was 0.87, while the worst-performing model achieved
an AUROC of 0.88. Figure 5 (B) shows the predicted
probabilities of DLD presence for individuals with and
without DLD, as estimated by both the best and worst-
performing models. While some overlap exists between
the two distributions of scores, children with DLD
consistently received higher probability scores than those
without, regardless of model quality. Specifically, the
median probability for children with DLD was 0.67 in the
worst-performing model and 0.60 in the best-performing
model. Whereas for the children without DLD, the medians
were 0.28 and 0.38, respectively. These stable separations
between groups demonstrate that the elastic net approach
reliably distinguished DLD from TD participants.

Finally, in Figure 5 (C) and (D), we compared the model-
derived probability scores with the composite language
z-scores, a measure originally introduced by Montgomery
etal. (2017), to classify participants in the database as DLD
or TD. Although the elastic net algorithm was trained on
the categorical labels (DLD vs. TD), which was a derivative
of the composite language z-scores, it was not trained on
the composite language z-scores themselves. Even so,
the predicted probabilities were strongly correlated with
composite language z-scores for both the best-performing
model, r(221)=-0.75, p < 0.001, and the worst-performing
model, r (221) = -0.75, p < 0.001. Children who had lower
composite language scores had a higher probability of
having DLD, and vice versa.

Table 1 presents the features and their estimated
coefficients in the highest-performing elastic net logistic
model (.88) and those in the lowest-performing elastic net
model (.87). Nine of the 71 experimental measures (e.g.,
features) were the same for both models. There were also
features that were uniquely present in either the highest
or the lowest performing model.

SUMMARY AND DISCUSSION

The purpose of this paper was to demonstrate how a
statistical learning algorithm, specifically repeated elastic
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Note: Among the 200 elastic net runs, “best-performing model” and “worst-performing model” corresponded to the run with the highest CV and
the lowest CV model performance, respectively. (A) ROC of the best (blue) and worst (grey) performing models. (B) Boxplots of the probability
of DLD presence for DLD (grey) and TD (yellow) given by the “best-performing model” and the “worst-performing model”. (C) Predicted DLD
probabilities Across Composite Language Z-scores for DLD (green) and TD (steel blue) using the best-performing model. (D) Predicted DLD
probabilities Across Composite Language Z-scores for DLD (green) and TD (steel blue) using the worst-performing model.
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Table 1: Features and the Estimated Coefficients in the Single Best and the Worst-
Performing Elastic Net Models

Best Performing Worst Performing
Model Model
Features Coefficients Coefficients
Digit Span -0.0816 -0.2290
Digit Span trial score -0.0375 -0.0633
Nonword Repetition Percent Correct -0.0123 -0.029
Rapid Picture Naming RT 0.0002 0.0009
Rapid Picture Naming Percent Correct NA -0.0163
Rapid Picture Naming Raw Score NA -0.0768
High Low Count Acc -0.0003 NA
Verbal Working Memory Span -0.0518 -0.0905
Working Memory Trials Corr. -0.0467 -0.0683
Suffix_0_n_1 NA -0.0006
Suffix_1_n NA -0.0289
Passive Comprehension Accuracy -0.0012 -0.0027
Object Relative Comprehension NA 0.0011
Accuracy
Non-Canonical Comprehension Accuracy -0.0014 -0.0037
Total Sentence Comprehension Accuracy -0.0075 -0.0078

Note: A value of “NA” in the coefficients indicates that the feature is not significant
in classifying children with DLD from those without, according to the specific fitted
model. The negative signed coefficients indicate an inverse relationship between
that feature and DLD. For instance, when a participant has a higher value in features
with negative value, the probability of the participant having DLD goes down and
vice-versa.

net regression, can be applied to derive predictive models
that reveal underlying factors within complex, correlated
behavioral datasets often observed in multidimensional
disorders such as DLD. To this end, we examined 71
cognitive and language features from the Montgomery
et al. [1, 55] database across two studies. In Study 1, the
dataset was partitioned into a 70% training set and a 30%
holdout set, enabling model development on the training
subset and validation on the holdout subset. On average,
the models achieved AUROCs of 0.88 and 0.85 for the
training data and holdout data, demonstrating that they
successfully captured the core characteristics of DLD and
provided fair and accurate discrimination of DLD presence
bothintrainingand holdoutsets. Specifically, these findings
support a dimensional, probabilistic conceptualization
of DLD consistent with both Dollaghan’s [23,24], and
Gillam et al’s [27], proposals that language impairment
exists on a continuum of ability rather than as a discrete
disorder. This study demonstrated that, unlike traditional
unregularized regression, which needs hundreds or
thousands of samples, requires researchers to choose
“important”, independent, and uncorrelated features, and
could still lead to overfitting issues, regularized regression,
such as elastic net, can build a reliable model with high
AUROC by leveraging the larger number of features from
participants in a dataset.

However, the number of features and participants the
elastic net needs comes with a caveat. Although Fan et al.

[37] identified a WS-specific neuroanatomical profile by
training the elastic net algorithm on only a small subset
of participants (38 participants), they had a separate test
cohortand large number (over 25,000) of neuroanatomical
features. Because we did not have a separate test cohort,
and our behavioral measures did not include as many
features as the neuroanatomical ones in Fan et al.’s work,
our splitting the datainto a training and holdout setin study
1 led to some disadvantages. The first was that a smaller
number of data points were in the training sets, leading
to greater variability. We observed that subtle variations
in the composition of participants in the training set, such
as slightly higher versus lower scores on some features,
produced notably different model configurations. Some
runs included as few as nine features, and others included
as many as twenty-seven. The AUROC of the fitted models
also fluctuated remarkably across the training (range,
0.84-0.93) and holdout (range, 0.74-0.95) sets.

To address the variability in DLD feature selection and
model performance observed in Study 1, we conducted
a second study using the full set of participants from
the database. This approach significantly improved the
stability of the models’ performance on in-sample data,
with AUROC values consistently ranging from 0.87 to 0.88
across runs. Furthermore, as summarized in the feature
comparison table, models trained on the complete dataset
tended to select a smaller subset of DLD-specific features
on average than models trained on only 70% of the data.

A concern with our approach in Study 2 is that it was
not tested and validated on an independent set. However,
having conducted Study 1, the fitted models in Study 2
become more reliable. Despite being trained only on 70%
of the data, the AUROC of the fitted models in Study 1 was
around 0.85 on the holdout set. The fitted models in Study
2, which were trained on the entire database, include a
larger representation of DLD-TD participants compared
to Study 1; therefore, it is reasonable to infer that they
should be equally or more reliable in identifying TD-DLD
participants in an independent set. The studies together
enable us to assess the effectiveness of the modeling output
while evaluating a set of correlated behavioral measures.

Reconsidering the Categorical-Dimensional Debate

A central question raised in the introduction, and
one that has shaped decades of inquiry, is whether DLD
represents a distinct diagnostic category or the lower end
of a continuous distribution of language ability. Dollaghan’s
taxometric analyses were among the first to empirically
test this issue, using distributional evidence to evaluate

Ann Otolaryngol Rhinol 12(4): 1368 (2025)

10/13



@SCiMedCentral

Sharma S, et al. (2025)

whether a natural “taxon” for DLD could be observed
in linguistic data. Her results revealed no categorical
boundary separating children with DLD from typically
developing peers. Instead, language skills were distributed
continuously, with considerable overlap between groups.
The current findings echo and extend those results using a
contemporary multivariate modeling approach.

Whereas Dollaghan’s analyses relied on a small number
of language measures and the assumption of uncorrelated
indicators, the Elastic Net algorithm allowed for correlated,
high-dimensional input and directly modeled probabilistic
membership along a continuum. The strong correlation
between model-derived probability scores and continuous
language measuresreplicatesthe core of Dollaghan’sinsight
that linguistic abilities vary by degree rather than kind,
but does so within a modern computational framework
capable of handling complex, interdependent features.
Thus, our results lend quantitative and methodological
reinforcement to the conclusion that DLD does not meet
the criteria for a “natural kind” of disorder with distinct
causal boundaries, but instead reflects gradations in
general learning and processing efficiency.

Beyond assessing the classification performance of
the elastic net algorithm, the analyses of both our studies
indicate that model-derived probability scores may also
capture meaningful variation in children’s language
abilities. Although the algorithm was trained on a binary
DLDvs. TD label rather than directly on composite language
z-scores, the resulting probability scores were strongly
correlated with those z-scores. This strong association
suggests that, in addition to estimating the likelihood of
DLD, the probability scores also reflect the severity of a
child’s language impairment.

The present findings also converge with the GEM
(Gillam, Evans, & Montgomery) model, which posits that
sentence comprehension and broader language ability
emerge from the dynamic interaction of fluid reasoning,
controlled attention, working memory, and long-term
language knowledge [1,27,43,44]. In this view, individual
differences in language performance—whether labeled
“DLD” or “typical”—reflect variation in the coordination of
these mechanisms rather than the presence or absence of
a categorical deficit.

By identifying the same domains as the most reliable
predictors of diagnostic probability, the Elastic Net analysis
demonstrates that language impairment is best modeled
as a graded outcome of cognitive-linguistic integration,
consistent with the GEM framework. Together, Dollaghan’s
dimensional reasoning and the GEM model’s mechanistic
structure provide complementary perspectives. Dollaghan

showed that DLD lacks categorical distinctiveness at the
behavioral level, while the GEM model explains that this
happens because the same cognitive systems underlie
language performance across the full ability continuum.

The Elastic Net model’s identification of predictors in
the same domains as the GEM model supports the core
claim thatlanguage proficiency depends on the coordinated
functioning of general cognitive resources rather than
isolated linguistic mechanisms. In both the confirmatory
structural modeling of Gillam et al. [27], and the penalized
regression approach used here the data converge on the
same conclusion: linguistic skill reflects the integration of
memory-related cognitive processes distributed along a
continuum of efficiency.

Conceptually, these results reinforce the shift toward
a multidimensional and probabilistic understanding of
DLD. From this perspective, language difficulties are
not a categorical “deficit” but a manifestation of subtle,
continuous differences in the strength and coordination
of cognitive mechanisms underlying language. This
view challenges traditional diagnostic frameworks that
impose arbitrary cut points on continuous distributions
and supports emerging approaches that use multivariate
profiles and continuous risk metrics to identify children
who may benefit from intervention.

Clinically, this dimensional conceptualization aligns
with precision-medicine approaches that emphasize
individual variability and probabilistic risk rather than
binary classification. Machine learning methods such as
Elastic Net regression provide tools for developing data-
driven, individualized predictions oflanguage performance
that incorporate multiple interrelated sources of
variance—cognitive, linguistic, and environmental—
within a unified framework.

Future Directions

Future research should consider fitted models
generated from multiple reshuffled datasets to better
identify features that are truly DLD-specific. Even in
Study 2, substantial differences in selected features
emerged solely as a consequence of data reshuffling.
This underscores that, rather than seeking a single “best”
model with an optimal feature set, it is more informative to
evaluate patterns across all 200 fitted models to pinpoint
the cognitive and language processes most consistently
impaired in children with DLD. Such ensemble-based
approaches not only enhance clinical utility but may also
provide insight into the causal mechanisms underlying
DLD etiologies.
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Similarly, the current use of elastic net also leaves open
questions about the relative contribution of the predictive
features it identified. For instance, in both the best- and
worst-fitted models in study 2, the estimated coefficients
for the Digit Span score are higher than those for total
accuracy in the sentence comprehension task. Does the
fitted model suggest that digit span, a working memory
ability in children, is more salient in classifying children
with DLD than the language ability itself? Future research
could leverage the relative influence of features in the
classification process and aggregate the output from the
200 runs of the elastic net model and Bayesian learning.
Such analysis may underpin the relative weight of features
in DLD—such as whether phonological working memory
carries more weight than sentence comprehension—which
may also specify screening and therapeutic strategies.

CONCLUSIONS

The present findings demonstrate that Elastic
Net regression captures the dimensional, cognitively
grounded structure of DLD predicted by the GEM model
and supported by prior confirmatory analyses [27]. Both
theory-driven and data-driven approaches converge
on a unified view: language impairment in DLD reflects
quantitative variation across interconnected cognitive
systems, not a categorical disorder. This integration of
cognitive theory and modern statistical modeling offers
a powerful framework for understanding, predicting, and
ultimately supporting language development across the
full continuum of ability.
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