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Abstract

Purpose: Evidence suggests developmental disorders are best viewed from a multidimensional approach, where the disorder deficit profile may be 
highly variable due to the complex interaction of factors that vary along a continuum. In this study, we leverage individual variability to determine whether a 
multidimensional disorder, such as developmental language disorder (DLD), can be identified.

Method: We used repeated elastic net logistic regression with 71 high-density measures from 223 children ages 7 - 11 (DLD = 110; typically developing 
(TD) controls = 113) from the Montgomery et al. [1] study.. In Study 1, we trained the model on 70% of the data and tested its performance on the remaining 
30% holdout set. In the second study, we utilized the complete data set to derive the fitted models to compare the characteristics of the best- and worst-
performing models. 

Results: Area under the receiver operating characteristic curve (AUROC) was used to evaluate the performance of the fitted models. For the fitted model 
in Study 1, the average AUROC in the training set was 0.88 (SD = 0.017) in discriminating DLD-TD groups, and the holdout set was 0.85 (SD = 0.04). The 
average AUROC for discriminating the fitted modes in Study 2 was 0.87 (SD = 0.002). The model-estimated probability scores for both Study 1 & 2 models 
were also significantly correlated with the language severity measure. 

Conclusion: Our successful development of a predictive model based on an elastic net algorithm that classified children with DLD from those without, using 
a multidimensional dataset, provides indirect support for the notion that DLD is a multidimensional disorder. Some of the conundrums of data-driven model 
derivation and complementary findings, as well as the pros and cons of methodologies in Study 1 and Study 2, are discussed.

morphosyntactic aspects of DLD; however, deficits in 
lexical processing, including slower word retrieval [11], 
spoken word recognition [6,12,13], and comprehension 
of both simple and complex syntax [1,14,15] have been 
well documented in this population. Similarly, cognitive 
deficits, including verbal working memory [16,17], speed 
of processing, selective attention, and interference control 
[18,19], have also been well documented in this population. 

Among the most scientifically challenging and 
unanswered questions is whether the underlying latent 
structure of DLD is categorical and constitutes children 
who differ qualitatively and non-arbitrarily from normal, 
or is dimensional and constitutes children whose language 
skills fall below some arbitrary threshold at the lower 
end of a continuous normal distribution on standardized 
tests [20,21]. Specifically, the question has been whether 

INTRODUCTION 

Developmental Language Disorder (DLD) is a 
neurodevelopmental disorder characterized by the failure 
to master spoken and written language comprehension 
and production in the absence of any medical condition or 
syndrome known to cause language disorders in children 
[2-4]. While numbers vary slightly across countries, DLD 
occurs in ~ 7% of school-aged children in the United 
States [5]. Unidentified or left untreated, DLD persists into 
adulthood [6-8]. Approximately 7% or 1.8 million young 
adults ages 18 – 23, based on the 2024 US Census data, are 
currently struggling with the profound social, emotional, 
and economic consequences of the disorder in the United 
States alone [9,10].

Most research has focused on the expressive 
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children with DLD constitute a distinct group with language 
skills that differ qualitatively and nonarbitrarily from 
typical children; or are children with DLD not clinically 
unique and merely have language skills that fall below 
some arbitrary threshold at the lower end of a continuous 
distribution on standardized tests [22-24]?  Leonard first 
proposed that children with “DLD” were no different 
from children with poor musical, spatial, or mathematical 
abilities, and that the same types of variations in genetic 
and environmental factors that lead some children to be 
clumsy or amusical lead children with “DLD” to simply be 
poor at language [22]. Specifically, Leonard argued that the 
lack of evidence of neurological impairment was evidence 
for a dimensional account of DLD; however, there is a 
consistent pattern in studies of the neurobiology of DLD 
that is characterized not by a single brain measure or 
by global abnormality, but by a pattern of atypical brain 
morphology and tissue properties for some brain regions 
but not others, coupled with atypical patterns of neural 
activity mediating some aspects of language processing 
but not others [25,26]. 

As traditionally conceived, the categorical-dimensional 
debate views DLD as being quantitatively rather than 
qualitatively different from normal. A true disorder 
must: (a) be naturally occurring as opposed to artificially 
and arbitrarily created; (b) have clearly demarcated 
boundaries separating members of the natural kind from 
non-members (i.e. normal vs. disordered); (c) possess 
observable features that are causally produced by internal 
properties and which can be used to objectively validate 
category membership; and (d) show all the instances of a 
“kind” with features in common, which allows clinicians 
and researchers to distinguish a single instance of the 
“kind” where the child either does or does not possess the 
traits or symptoms of the disorder.

From a dimensional standpoint, the behavioral and 
cognitive characteristics of DLD are better understood 
as quantitative differences in general learning and 
processing mechanisms rather than as categorical deficits. 
Consistent with this view, Gillam et al. [27], demonstrated 
that four cognitive mechanisms—fluid reasoning, 
controlled attention, working memory, and long-term 
memory for language knowledge—accounted for more 
than 90% of the variance in standardized measures of 
language comprehension and production among school-
age children with and without DLD. Their GEM (Gillam, 
Evans, & Montgomery) model indicated that linguistic 
performance in DLD reflects graded weaknesses in these 
interrelated cognitive systems rather than a distinct 
separation from typical development. This dimensional 

perspective implies that boundaries between “typical” 
and “disordered” language functions are probabilistic and 
continuous, rather than categorical.

Resolving the dimensional-categorical debate in DLD 
is particularly challenging because it relies on a Boolean, 
polythetic classification approach based on the presence 
or absence of symptoms, and/or a single underlying cause. 
Such approaches artificially create the appearance 
of variability and heterogeneity in the deficit profile 
because they cannot account for differences in the clinical 
presentation of the disorder (e.g., symptoms, age of onset, 
severity, etc.) or the presence of an underlying unobservable 
dimension. This means that the more heterogeneous the 
observed symptoms are, the more difficult it is to identify 
the causal properties that objectively validate the disorder. 
Because the vast majority of symptoms, signs, and 
laboratory tests used in organic medicine are quantitative 
in nature and language is a developmental phenomenon, 
the observable traits of DLD will always be evident to some 
degree in both children with DLD and children with low 
normal language, and the observable dimensions along 
which DLD can be characterized will differ at different 
developmental stages. 

The problem is further complicated because the 
majority of diagnostic criteria for DLD involve cutoff 
scores on a continuous normal distribution. Not all 
children with DLD will always score at the low end of a 
given standardized test because individual tests differ 
in their normative distributions. A child who truly has 
DLD has a roughly equal chance of being correctly or 
incorrectly identified, depending on the test used [28,29]. 
Even if clinicians and researchers use standardized tests 
with high sensitivity and specificity, there is a chance that 
some proportion of participants in an “DLD participant 
group” may be children with low normal language abilities 
This raises the question: how much of the variability and 
heterogeneity in the DLD behavioral phenotype is the 
result of non-homogeneous subject groups comprised of 
both children with DLD and unimpaired children with low 
normal language? 

Dollaghan was one of the first researchers to ask 
if a distinct DLD deficit “profile” could be identified 
categorically, that nonarbitrarily demarcated a clear 
boundary between DLD and “normal using a taxometric 
approach. This approach enables researchers to examine 
the relationship among variables to determine if a 
nonarbitrary category or natural kind (e.g., taxon) exists 
on the variables (i.e., biological species, clinical category, 
etc. Meehl, [30-32]). Using this approach, Dollaghan 
examined vocabulary, mean length of utterance (MLU), 
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number of different words, and non-word repetition 
scores at ages 4;0 and 6;0 as potential diagnostic indicators 
of “DLD.”  She found no evidence of a qualitatively distinct 
group corresponding to children with DLD. Instead, she 
observed that the children’s language skills in her sample 
were distributed in a dimensional rather than categorical 
fashion [23,24].

Recently, Lancaster and Camarata [33] also addressed 
this question using two clustering techniques—K-
means clustering and Ward’s hierarchical method—with 
Bayesian Information Criterion (BIC) on 505 children 
classified as SLI/DLD from the Epidemiological Study of 
Specific Language Impairment (EpiSLI) database (Tomblin 
et al, 2010). Their analysis suggested that there might be 
more than 10 clusters within the DLD group that did not 
align with any previously hypothesized subtype model. 
According to them, the possibility of more than 10 clusters 
also supports the premise that DLD is a continuous 
spectrum disorder. 

A framework has important implications for 
research methodology. If DLD represents a continuum of 
cognitive–linguistic efficiency, then models that assume 
linear separability between groups may fail to capture 
the true data structure. Instead, multivariate analytic 
approaches that leverage the continuous and correlated 
nature of linguistic and cognitive variables and capture 
the variability inherent across members of the disorder 
groups may provide more accurate and theoretically 
coherent representations of the mechanisms underlying 
DLD [34-36]. Multidimensional approaches, such as elastic 
Net Regression, have been successful in characterizing 
the nature of the disorder, even for Williams Syndrome, 
a neurogenetic disorder with a single-gene mutation, 
yet complex behavioral, neuroanatomical, and cognitive 
manifestations [37,38]. Elastic net models are particularly 
suited for this purpose because they can handle large, 
intercorrelated predictor sets while shrinking coefficients 
toward zero to prevent overfitting, thereby identifying the 
most predictive variables in a high-dimensional space.

Purpose

The central motivating theory in this study is that if 
the latent structure of DLD is dimensional, then, despite 
individual differences, measures of language and cognitive 
processing will be fundamentally similar for DLD and 
typical children. Alternatively, if the latent structure of DLD 
is categorical, we predict notable differences in language 
processing and cognitive processing for children with/
without DLD. Dollaghan posited that a reason she may not 
have identified a DLD taxon was that her data did not meet 

the independence requirements for taxometric analysis. A 
requirement, and limitation of the taxonomic approach, is 
that the results are not valid if the data fail to meet key 
requirements which include sufficiently large sample size 
(e.g., n = ~ 500-600), and more importantly for studies 
of cognition and language, that data must vary along a 
continuous scale and the indicators cannot be correlated 
(e.g., ≤ .30, [39]). Similarly, Lancaster and Camarata 
[33], used hard-clustering techniques such as K-means 
and Ward’s hierarchical clustering to examine whether 
subtypes exist within DLD. One property of hard clustering 
methodology is that it does not provide gradation or 
likelihood of belonging to each clustering for children; it 
instead assigns them to one group or the other based on 
participants’ similarity with others [40]. Even though this 
statistical approach has the potential to identify the nature 
of the disorder and subtypes within a disorder when it 
is regular and varies simply over one variable, such as 
language expressive abilities, this technique, when used 
to explore an irregular, heterogeneous, and potentially 
multidimensional disorder, could overlook the complexity 
and oversimplify the nature of the disorder. 

An alternative approach is to use a regularized 
regression approach such as elastic Net Regression that 
combines Ridge and lasso regression [41,42]. elastic Net 
Regression is a regularized regression method that linearly 
combines the L1 and L2 penalties of the lasso and ridge 
methods. The approach is particularly useful when dealing 
with a large number of predictors and multicollinearity. 
Notably, as can be seen clearly in Fan et al. [37], modeling 
work, they used this novel approach to derive a Williams 
Syndrome (WS)-specific profile from a very small number 
of features from structural MRI measurements in a cohort 
of WS adults (n = 22) and healthy controls (n = 16). Their 
index for the model performance was area under the 
curve (AUC) in the receiver operating characteristic (ROC) 
analysis. Their model showed that even though each input 
measure only contributed a small portion of explained 
variance of a high-level construct (e.g., clinical diagnosis), 
when it was aggregated across individual differences in 
their WS population, the result was a multidimensional 
probabilistic composite score that accurately predicted 
each WS individual’s membership in the clinical group 
with an extremely high degree of accuracy. Despite the 
high multicollinearity in brain measures and substantial 
individual differences in WS behavioral profiles, Fan et al. 
were able to use this novel approach to derive a Williams 
Syndrome (WS)-specific profile. 

In addition to addressing potentially high 
multicollinearity among predictor variables, another 
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strength of the elastic net approach is that, by using high-
density sampling across a large number of input variables, 
the need for extremely large subject sample sizes is reduced. 
The current study builds on the GEM model (Gillam, Evans, 
& Montgomery), a psycholinguistic framework that posits 
that sentence comprehension and broader language 
performance emerge from the dynamic interaction of fluid 
reasoning, controlled attention, working memory, and 
long-term memory for language knowledge [15,43]. We 
use all of these measures of sentence comprehension and 
the cognition from Montgomery and colleagues’ study to 
determine whether a DLD-specific profile based on these 
predictors effectively differentiates children with DLD 
from their typically developing language peers.

To create a high-density sample across a large number 
of predictors, in this study we used all of measures (e.g., 
number correct, percent correct, reaction time, error 
pattern, etc.) of working memory, attentional control, speed 
of processing, lexical access, and real-time accuracy in the 
comprehension of canonical and noncanonical sentences 
from the original Montgomery project [15,27,43,44] to ask 
if there is a DLD-specific profile based on these predictors 
that uniquely identify and differentiate children with 
DLD from their typical language peers. In particular, we 
conducted two studies and analyzed the consistency and 
stability in the results. The first included a 70-30% split 
in the training-holdout analysis, and the second used 
all 223 participants from the Montgomery database to 
train the fitted models. As a whole, investigating the 
model’s performance and output characteristics across 
groups using analytical complementary approaches 
with a multidimensional statistical framework helps us 
understand the inherent nature of DLD and address the 
long-standing discourse in the literature.

STUDY ONE 

Methods

Participants: Our model is based on measures from a 
total of 234 children (ages 7;0 to 11;11), 117 children with 
DLD (72 boys and 45 girls), and 117 children with typical 
language (TD) (83 boys and 34 girls). All children met the 
following inclusion criteria: a) normal nonverbal IQ (NVIQ) 
as measured by the Leiter International Performance 
Scale-Revised [45]; (b) normal-range hearing sensitivity 
at the time of testing [46]; (c) normal or corrected vision; 
(d) normal oral and speech production as measured by 
the Articulation subtest on the TOLD-P4 [47], and (e) 
a monolingual, English speaking home environment. 
Children were excluded from participation if parents 
reported that their child had (a) neurodevelopmental 

disorder, (b) emotional or behavioral disturbances, (c) 
motor deficit or frank neurological signs, or (d) seizure 
disorders or use of medication to control seizures. English 
was the primary language spoken by all the children. 

Classification of DLD and TD participants: The 
participants were classified as DLD-TD based on scores 
from four standardized assessment measures: the receptive 
and expressive portions of the Comprehensive Receptive 
and Expressive Vocabulary Test (CREVT-2; [48]), and the 
concepts and following directions subtest and recalling 
sentences subtest of the Clinical Evaluation of Language 
Fundamentals (CELF-4; [49]). In keeping with the DSM-
5 definition of language disorder and multi-dimensional 
systems for defining DLD (e.g., [3,4]), Montgomery et al.[1] 
classified the participants as DLD if their mean composite 
language z-score on the three lowest of the four measure 
was at or below -1. The average composite z-score for the 
DLD group was -1.48 (range = -2.73 to -1.00) with a SD of 
.39. The average composite z-score for the TD group was 
.08 (range = -.96 to 1.89) with a SD of .60. 

Experimental Features included in the Elastic Net 
regressions: The Montgomery study included a large 
set of measures of spoken sentence comprehension and 
cognitive processing measures that were likely to be 
relevant to sentence comprehension. These included 
syntactic measures of comprehension of canonical and 
noncanonical spoken sentences. They also included lexical 
processing measures including word finding and spoken 
word recognition, and cognitive measures of controlled 
attention, phonological short-term memory, and verbal 
and nonverbal working memory. For the current study, 
we used all 71 experimental measures from the original 
Montgomery et al. [1], study as features to derive the 
elastic Net Regression model. This resulted in a high-
density sample of all aspects of the experimental measures 
(e.g., total trials correct, precent correct, number and 
type of errors, etc.) of the measures of comprehension of 
canonical and non-canonical sentences, lexical processing, 
working memory, attentional control and inhibition for 
us to include in the model (see Montgomery et al. [1] for 
detail description of the experimental measures). 

Data Set for the Modeling: Of the 234 participants in 
the database, values were missing for one or more features 
in only eleven participants. For the DLD group, this 
included seven of them (four boys, three girls), and the TD 
group included the remaining four (three boys, one girl). 
Since these omissions were not reflective of experimental 
material difficulty, these 11 participants were screened 
out under the MCAR (missing completely at random) 
assumption. This resulted in a final sample of 223 children 
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(DLD = 110; 69 boys, 41 girls; TD = 113; 70 boys, 43 girls) 
for our statistical model. 

Modeling Methodologies

Logistic Regression Modeling: A logistic model infers 
the probability that a binary (0/1) outcome variable 
(y) takes on the value of 1, given a list of input values 
represented by the vector x. Let  pi(β) denote the probability 
that the outcome variable yi takes on the value of 1. This 
probability is conditioned on a d-dimensional feature 
vector xi that corresponds to d distinct numerical features 
weighted by β, a (d+1)-dimensional vector of weights 
that includes an additional weight for the intercept. The 
complete formula follows:

( )
( )

1,
1 1

( ) iT
ip

exp

æ öé ù÷ç ÷ê úç= z b z f =÷ç ÷ê ú÷ç + -fè øë û
b

x ,  		            (1)

In this application, y taking on the value of 1 indicates 
the presence of DLD, but taking on the value of 0 indicates 
the absence of DLD. This setup allows the use of the 
logistic regression modeling defined in (1) to estimate 
the probability that a participant in the database has DLD, 
given their language and cognitive attributes encoded in 
the feature vector, x (see Figure 1).

The feature weight β must be learned from the data 
first. Learning the feature weights from the data is 
synonymous with identifying a weighting of features that 
best separates individuals with DLD from those without, 
while minimizing misclassification. In statistical terms, 
this is framed as minimizing an objective function, which 
quantifies the error between the model’s predicted class 
based on an individual’s features and their actual class 
label. In this case, the objective of a binomial logistic 
regression model is to find the weight vector β that results 
in the least amount of prediction error. This corresponds 
to the following formulation: 

  1

1( )  ( ),  ( )  ( )  (1 ) (1  ( )
n
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Where the objective function is the total negative 

log likelihood, lnβ, averaged across all individuals in our 
dataset. Here, ci(β) is the negative log likelihood loss of 
single individual i in our dataset, measuring how far off our 
model’s prediction was from the individual’s actual label. 
For instance, if our model predicts a probability close to 
0, given the features of a particular individual with DLD, 
instead of a probability close to 1, then our ci(β) outputs 
a high error, and vice versa. The objective function is then 
the sum of all ci(β) over the entire set of individuals in our 
data, divided by the number of individuals.

Elastic Net Logistic Regression Modeling

Regularized Objective Function: elastic net logistic 
regression incorporates a penalty term, which is added 
to regression objective function to avoid overly complex 
models. This approach addresses several limitations in 
unregularized logistic regression, such as multicollinearity, 
generalizability, and overfitting [42]. The elastic net 
logistic regression’s objective function is defined as the 
regularized average negative log-likelihood:

( ) ( ) ( )
2
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11
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 		             (3)

Minimizing the regularized negative log-likelihood 
in (3), tends to simultaneously minimize the negative 
log-likelihood corresponding to the first term on the 
right-hand side of (3) and minimize the second term on 
the right-hand side of (3), which is called the “penalty 
term.” Note that minimizing the penalty term will tend 
to generate a parameter vector β whose elements have 
magnitudes that are not close to zero. More specifically, 
the non-negative parameter λ is called the regularization 
term and the constant α specifies a trade-off between the 
effect of L1 (lasso) penalty 1

b , which is the sum of the 
absolute values of all elements of β, and the effect of L2 
(ridge) penalty 2

2
b , which is the sum of the squares of all 

elements of β. Minimizing equation (3) is equivalent to the 
standard maximum likelihood estimation procedure for 
logistic regression in equation (1) when λ is equal to 0. The 
other hyperparameter α was set to a fixed value (around 
0.4 to 0.5) in the algorithm to balance the contributions of 
lasso and ridge equally. 

Repeated Model Run Procedure: We utilized the “cv.
glmnet” function from the glmnet package in R [50,51], 
which allowed us to combine elastic net logistic regression 
with 10-fold cross-validation to determine the optimal 

Figure 1 Representation of the logistic regression model
Note: This is a model of logistic regression, where the language and cognitive 
features are multiplied by the estimated weights β, and their linear combination 
is passed through a logistic function to produce a probability score for DLD.
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λ that ensures the selection of a low-dimensional set 
of features that reliably predict the presence of DLD in 
participants. 

Unlike unregularized regression, which produces a 
consistent model configuration regardless of participant 
arrangement, Elastic Net Models are highly sensitive to 
variation in how participants are distributed across the 
dataset. Specifically, changes in participant arrangement, 
the choice of λ [52], the optimization path, and fold 
assignment in cross-validation [53] can all lead to different 
fitted models, with different sets of selected features and 
estimated coefficients. That is, the cv.glmnet elastic net 
logistic regression algorithm, which searches for the 
best lambda regularization constant using 10-fold cross-
validation, could generate entirely different feature sets 
and estimated coefficients for the same data set, when 
the records are arranged in a different order. Therefore, 
recent work has emphasized the importance of repeated 
model fitting to characterize and reduce the effects of 
data arrangement variability [53,54]. In line with this 
approach, we reshuffled the dataset 200 times and fit the 
elastic net model to each resample to evaluate variability 
in performance and feature selection. 

Using the model to explore DLD characteristics

In this first study we follow Fan et al. [37], to our 
exploration of DLD-related behavioral characteristics. 
Fan et al., developed their model on a small adult cohort 
with Williams Syndrome using extensive neuroanatomical 
data and then evaluated the model’s performance on an 
independent child cohort. Because we did not have access 
to an independent cohort, we adopted their approach 
by partitioning the Montgomery et al. database into two 
subsets of the entire database: 1) a training set comprising 
70% of the data (n = 156) and 2) a holdout set comprising 
the remaining 30% (n = 67). We first trained on the 70% 
of the data and then validating the model on the remaining 
30% of the data. We then reshuffled database, repartitioned 
into the two 70/30 and tested the model again 200 times.

 The training set was used to fit the elastic net algorithm 
using the “cv.glmnet” function in R by determining the 
value of 𝜆 and the other model parameters. In contrast, the 
holdout set was used to test the model’s generalizability 
in distinguishing participants from an independent group 
of children. Once model development was completed for 
each resample, the resulting model for a given sample was 
used to compute a probability score for every participant 
in both the training and holdout sets. This evaluation 
step was repeated over all 200 samples to reveal overall 
performance.

We assessed the discrimination ability of each of the 
200 fitted models using Area under the receiver operating 
characteristic (ROC) curve (AUROC) analysis. Average 
AUROC values for the training and holdout sets were then 
computed to provide an overall measure of model stability, 
generalizability, and predictive performance. To illustrate 
how an individual model distinguished participants, we 
report the results for two models from the 200 runs: (1) the 
model that achieved the highest AUROC in discriminating 
DLD from TD participants on the training set (“best 
training model”), and (2) the model that achieved the 
highest AUROC in discriminating DLD from TD participants 
on the holdout set (“best holdout model”). The complete 
modeling procedures for Study 1 are outlined in Figure 2. 

RESULTS 

The range of the AUROC for the 200 fitted elastic net 
models was 0.84–0.93 (mean = 0.88; SD = 0.017) and the 
range of the AUROC for the holdout set was 0.74–0.94 
(mean = 0.85, SD = 0.04). These results indicate that the 
set of fitted models was effective in identifying both true 
positives and true negatives, both within in-sample and 
out-of-sample data.

Best Training Model

Figure 3 (A) presents the ROC curves of the best training 
model on its training and holdout sets. The AUROC for its 
training set (0.9287) was notably higher than that of its 
holdout set (0.8099). Figure 3 (B) displays the probability 
scores generated by this model for DLD and TD children 
in both the training and holdout sets. Although some 
overlap in scores was observed between groups, the model 
generally separated them, with DLD children tending to 
receive higher probabilities (above 0.5) and TD children 
receiving lower probabilities (below 0.5). Figure 3 (C) 
compares the average probability score with composite 
language z-scores, a measure originally introduced by 
Montgomery et al. [55] to classify participants in the 
database into DLD and TD groups. Although the elastic net 
algorithm was trained on categorical group labels (DLD 
vs. TD) derived from these scores, but not trained on the 
z-scores themselves, a strong negative correlation was 
observed between predicted probabilities and composite 
language z-scores, r (221) = -0.75, p < 0.001. Children with 
lower language performance scores were more likely to be 
classified with DLD, and vice versa.

Best Holdout Model

Figure 3 (D) shows the ROC curves for the best holdout 
model on both the training and holdout sets. The AUROC 
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Figure 2 Illustration of elastic net logistic modeling methodology on the GEM database.
Note: Steps 1-7 illustrate the steps carried out in our elastic net logistic regression algorithm. Step 8 includes the steps taken to obtain the 
performance metric and characteristics of fitted models.

Figure 3 Best Training Model vs. Best Holdout Model in the 70% Sample Fit
Note: Figure 3 (A- C) was derived using the best training model, and 3 (D-F) was derived using the best holdout model. The best training 
model is the classifier that discriminated participants in the training set the best, whereas the best holdout model discriminated participants 
in the holdout set the best. (A, D) Receiver operating characteristics (ROC) on the training (blue) and holdout (green) set. (B, E) Boxplots of 
the probability of DLD presence for DLD (grey) and TD (yellow). (C, F) Scatterplot of Predicted DLD probabilities Across Composite Language 
Z-Scores for DLD (red) and TD (royal blue).
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for the training set (0.84) was lower than that for its 
holdout set (0.95). Figure 3 (F) presents the relationship 
between composite language z-scores and the model-
derived probability scores. Probability scores were again 
strongly and significantly correlated with composite 
language z-scores, r (221) = -0.72, p < 0.001, indicating 
that children with lower composite language scores had a 
higher probability of DLD, and vice versa.

The best training model retained 22 of the 71 features 
from the Montgomery et al dataset to classify DLD from 
TD, while the coefficients of the remaining features were 
shrunk to zero. In the best-performing holdout model, only 
9 of the 71 features had non-zero coefficients.

STUDY TWO

If researchers who do not have access to an independent 
cohort, to be able to use the approach of Fan et al. [37] 
in Study 1, they must divide their data into training and 
holdout subsets. This strategy is highly valuable because 
the holdout set functions as an external validity test, 
providing insight into the real-world clinical usefulness of 
the fitted model. Yet, it also introduces challenges. Primary 
among them is greater variability in model configurations, 
stemming from the limited number of data points 
available for training. For example, the best-performing 
training model selected 22 of 71 features as DLD-specific, 
whereas the best holdout model retained only 9, yielding 
inconclusive evidence for DLD’s defining characteristics. 
A similar discrepancy emerged in discrimination ability: 
in Figure 3 (A), the best training model classified many 
children accurately within the training set but performed 
poorly on the holdout set. Conversely, in Figure 3 (D), the 
best holdout model achieved stronger holdout predictions 
but performed much worse on the training set.

METHODS

Given the substantial variability observed in Study 1, 
instead of using the hold-out approach, in Study 2 we use 
an “in-sample” approach where the elastic net algorithm 
is derived from all the participants at once. The result was 
200 fitted models. We then examined the best- and worst-
performing models among the 200 runs. We also evaluated 
each model’s performance using cross-validated (CV) 
binomial deviance, obtained during the λ optimization and 
model fitting process. The model with the lowest mean 
CV deviance was designated the best-performing, as it 
achieved the most accurate out-of-sample classification. 
Conversely, the model with the highest mean CV deviance 
was deemed the worst-performing, reflecting the greatest 
out-of-sample classification error. To assess consistency, 
we also calculated average AUROC runs on the in-sample 

data. The complete modeling procedures for Study 2 are 
outlined in Figure 4. 

RESULTS 

The range of the AUROC from the 200 models of elastic 
net modeling was 0.87–0.88 (mean = 0.87, SD = 0.002). 
These results indicate that the fit of all 200 models was 
consistently able to identify both true positives and true 
negatives. The ROCs of the best- and worst-performing 
elastic net models are shown in Figure 5 (A). The AUROC 
curve of the best-performing model on the participants 
was 0.87, while the worst-performing model achieved 
an AUROC of 0.88. Figure 5 (B) shows the predicted 
probabilities of DLD presence for individuals with and 
without DLD, as estimated by both the best and worst-
performing models. While some overlap exists between 
the two distributions of scores, children with DLD 
consistently received higher probability scores than those 
without, regardless of model quality. Specifically, the 
median probability for children with DLD was 0.67 in the 
worst-performing model and 0.60 in the best-performing 
model. Whereas for the children without DLD, the medians 
were 0.28 and 0.38, respectively. These stable separations 
between groups demonstrate that the elastic net approach 
reliably distinguished DLD from TD participants.

Finally, in Figure 5 (C) and (D), we compared the model-
derived probability scores with the composite language 
z-scores, a measure originally introduced by Montgomery 
et al. (2017), to classify participants in the database as DLD 
or TD. Although the elastic net algorithm was trained on 
the categorical labels (DLD vs. TD), which was a derivative 
of the composite language z-scores, it was not trained on 
the composite language z-scores themselves. Even so, 
the predicted probabilities were strongly correlated with 
composite language z-scores for both the best-performing 
model, r (221) = -0.75, p < 0.001, and the worst-performing 
model, r (221) = -0.75, p < 0.001. Children who had lower 
composite language scores had a higher probability of 
having DLD, and vice versa.

Table 1 presents the features and their estimated 
coefficients in the highest-performing elastic net logistic 
model (.88) and those in the lowest-performing elastic net 
model (.87). Nine of the 71 experimental measures (e.g., 
features) were the same for both models. There were also 
features that were uniquely present in either the highest 
or the lowest performing model.

SUMMARY AND DISCUSSION

The purpose of this paper was to demonstrate how a 
statistical learning algorithm, specifically repeated elastic 
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Figure 4 Illustration of elastic net logistic modeling methodology on the GEM database
Note: Steps 1-6 illustrate the steps carried out in our elastic net logistic regression algorithm. Step 7 includes the steps taken to obtain the 
performance metric and characteristics of fitted models.

Figure 5 Best and Worst Model in the Full Sample Fit
Note: Among the 200 elastic net runs, “best-performing model” and “worst-performing model” corresponded to the run with the highest CV and 
the lowest CV model performance, respectively. (A) ROC of the best (blue) and worst (grey) performing models. (B) Boxplots of the probability 
of DLD presence for DLD (grey) and TD (yellow) given by the “best-performing model” and the “worst-performing model”. (C) Predicted DLD 
probabilities Across Composite Language Z-scores for DLD (green) and TD (steel blue) using the best-performing model. (D) Predicted DLD 
probabilities Across Composite Language Z-scores for DLD (green) and TD (steel blue) using the worst-performing model.
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net regression, can be applied to derive predictive models 
that reveal underlying factors within complex, correlated 
behavioral datasets often observed in multidimensional 
disorders such as DLD. To this end, we examined 71 
cognitive and language features from the Montgomery 
et al. [1, 55] database across two studies. In Study 1, the 
dataset was partitioned into a 70% training set and a 30% 
holdout set, enabling model development on the training 
subset and validation on the holdout subset. On average, 
the models achieved AUROCs of 0.88 and 0.85 for the 
training data and holdout data, demonstrating that they 
successfully captured the core characteristics of DLD and 
provided fair and accurate discrimination of DLD presence 
both in training and holdout sets. Specifically, these findings 
support a dimensional, probabilistic conceptualization 
of DLD consistent with both Dollaghan’s [23,24], and 
Gillam et al.’s [27], proposals that language impairment 
exists on a continuum of ability rather than as a discrete 
disorder. This study demonstrated that, unlike traditional 
unregularized regression, which needs hundreds or 
thousands of samples, requires researchers to choose 
“important”, independent, and uncorrelated features, and 
could still lead to overfitting issues, regularized regression, 
such as elastic net, can build a reliable model with high 
AUROC by leveraging the larger number of features from 
participants in a dataset.

However, the number of features and participants the 
elastic net needs comes with a caveat. Although Fan et al. 

[37] identified a WS-specific neuroanatomical profile by 
training the elastic net algorithm on only a small subset 
of participants (38 participants), they had a separate test 
cohort and large number (over 25,000) of neuroanatomical 
features. Because we did not have a separate test cohort, 
and our behavioral measures did not include as many 
features as the neuroanatomical ones in Fan et al.’s work, 
our splitting the data into a training and holdout set in study 
1 led to some disadvantages. The first was that a smaller 
number of data points were in the training sets, leading 
to greater variability. We observed that subtle variations 
in the composition of participants in the training set, such 
as slightly higher versus lower scores on some features, 
produced notably different model configurations. Some 
runs included as few as nine features, and others included 
as many as twenty-seven. The AUROC of the fitted models 
also fluctuated remarkably across the training (range, 
0.84–0.93) and holdout (range, 0.74–0.95) sets. 

To address the variability in DLD feature selection and 
model performance observed in Study 1, we conducted 
a second study using the full set of participants from 
the database. This approach significantly improved the 
stability of the models’ performance on in-sample data, 
with AUROC values consistently ranging from 0.87 to 0.88 
across runs. Furthermore, as summarized in the feature 
comparison table, models trained on the complete dataset 
tended to select a smaller subset of DLD-specific features 
on average than models trained on only 70% of the data.

A concern with our approach in Study 2 is that it was 
not tested and validated on an independent set. However, 
having conducted Study 1, the fitted models in Study 2 
become more reliable. Despite being trained only on 70% 
of the data, the AUROC of the fitted models in Study 1 was 
around 0.85 on the holdout set. The fitted models in Study 
2, which were trained on the entire database, include a 
larger representation of DLD-TD participants compared 
to Study 1; therefore, it is reasonable to infer that they 
should be equally or more reliable in identifying TD-DLD 
participants in an independent set. The studies together 
enable us to assess the effectiveness of the modeling output 
while evaluating a set of correlated behavioral measures.

Reconsidering the Categorical–Dimensional Debate

A central question raised in the introduction, and 
one that has shaped decades of inquiry, is whether DLD 
represents a distinct diagnostic category or the lower end 
of a continuous distribution of language ability. Dollaghan’s 
taxometric analyses were among the first to empirically 
test this issue, using distributional evidence to evaluate 

Table 1: Features and the Estimated Coefficients in the Single Best and the Worst-
Performing Elastic Net Models

 Best Performing 
Model

Worst Performing 
Model

Features Coefficients Coefficients
Digit Span -0.0816 -0.2290

Digit Span trial score -0.0375 -0.0633
Nonword Repetition Percent Correct -0.0123 -0.029

Rapid Picture Naming RT 0.0002 0.0009
Rapid Picture Naming Percent Correct NA -0.0163

Rapid Picture Naming Raw Score NA -0.0768
High Low Count Acc -0.0003 NA

Verbal Working Memory Span -0.0518 -0.0905
Working Memory Trials Corr. -0.0467 -0.0683

Suffix_0_n_1 NA -0.0006
Suffix_1_n NA -0.0289

Passive Comprehension Accuracy -0.0012 -0.0027
Object Relative Comprehension 

Accuracy NA -0.0011

Non-Canonical Comprehension Accuracy -0.0014 -0.0037
Total Sentence Comprehension Accuracy -0.0075 -0.0078

Note: A value of “NA” in the coefficients indicates that the feature is not significant 
in classifying children with DLD from those without, according to the specific fitted 
model. The negative signed coefficients indicate an inverse relationship between 
that feature and DLD. For instance, when a participant has a higher value in features 
with negative value, the probability of the participant having DLD goes down and 
vice-versa. 
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whether a natural “taxon” for DLD could be observed 
in linguistic data. Her results revealed no categorical 
boundary separating children with DLD from typically 
developing peers. Instead, language skills were distributed 
continuously, with considerable overlap between groups. 
The current findings echo and extend those results using a 
contemporary multivariate modeling approach.

Whereas Dollaghan’s analyses relied on a small number 
of language measures and the assumption of uncorrelated 
indicators, the Elastic Net algorithm allowed for correlated, 
high-dimensional input and directly modeled probabilistic 
membership along a continuum. The strong correlation 
between model-derived probability scores and continuous 
language measures replicates the core of Dollaghan’s insight 
that linguistic abilities vary by degree rather than kind, 
but does so within a modern computational framework 
capable of handling complex, interdependent features. 
Thus, our results lend quantitative and methodological 
reinforcement to the conclusion that DLD does not meet 
the criteria for a “natural kind” of disorder with distinct 
causal boundaries, but instead reflects gradations in 
general learning and processing efficiency.

Beyond assessing the classification performance of 
the elastic net algorithm, the analyses of both our studies 
indicate that model-derived probability scores may also 
capture meaningful variation in children’s language 
abilities. Although the algorithm was trained on a binary 
DLD vs. TD label rather than directly on composite language 
z-scores, the resulting probability scores were strongly 
correlated with those z-scores. This strong association 
suggests that, in addition to estimating the likelihood of 
DLD, the probability scores also reflect the severity of a 
child’s language impairment.

The present findings also converge with the GEM 
(Gillam, Evans, & Montgomery) model, which posits that 
sentence comprehension and broader language ability 
emerge from the dynamic interaction of fluid reasoning, 
controlled attention, working memory, and long-term 
language knowledge [1,27,43,44]. In this view, individual 
differences in language performance—whether labeled 
“DLD” or “typical”—reflect variation in the coordination of 
these mechanisms rather than the presence or absence of 
a categorical deficit.

By identifying the same domains as the most reliable 
predictors of diagnostic probability, the Elastic Net analysis 
demonstrates that language impairment is best modeled 
as a graded outcome of cognitive–linguistic integration, 
consistent with the GEM framework. Together, Dollaghan’s 
dimensional reasoning and the GEM model’s mechanistic 
structure provide complementary perspectives. Dollaghan 

showed that DLD lacks categorical distinctiveness at the 
behavioral level, while the GEM model explains that this 
happens because the same cognitive systems underlie 
language performance across the full ability continuum.

The Elastic Net model’s identification of predictors in 
the same domains as the GEM model supports the core 
claim that language proficiency depends on the coordinated 
functioning of general cognitive resources rather than 
isolated linguistic mechanisms. In both the confirmatory 
structural modeling of Gillam et al. [27], and the penalized 
regression approach used here the data converge on the 
same conclusion: linguistic skill reflects the integration of 
memory-related cognitive processes distributed along a 
continuum of efficiency.

Conceptually, these results reinforce the shift toward 
a multidimensional and probabilistic understanding of 
DLD. From this perspective, language difficulties are 
not a categorical “deficit” but a manifestation of subtle, 
continuous differences in the strength and coordination 
of cognitive mechanisms underlying language. This 
view challenges traditional diagnostic frameworks that 
impose arbitrary cut points on continuous distributions 
and supports emerging approaches that use multivariate 
profiles and continuous risk metrics to identify children 
who may benefit from intervention.

Clinically, this dimensional conceptualization aligns 
with precision-medicine approaches that emphasize 
individual variability and probabilistic risk rather than 
binary classification. Machine learning methods such as 
Elastic Net regression provide tools for developing data-
driven, individualized predictions of language performance 
that incorporate multiple interrelated sources of 
variance—cognitive, linguistic, and environmental—
within a unified framework.

Future Directions

Future research should consider fitted models 
generated from multiple reshuffled datasets to better 
identify features that are truly DLD-specific. Even in 
Study 2, substantial differences in selected features 
emerged solely as a consequence of data reshuffling. 
This underscores that, rather than seeking a single “best” 
model with an optimal feature set, it is more informative to 
evaluate patterns across all 200 fitted models to pinpoint 
the cognitive and language processes most consistently 
impaired in children with DLD. Such ensemble-based 
approaches not only enhance clinical utility but may also 
provide insight into the causal mechanisms underlying 
DLD etiologies.
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Similarly, the current use of elastic net also leaves open 
questions about the relative contribution of the predictive 
features it identified. For instance, in both the best- and 
worst-fitted models in study 2, the estimated coefficients 
for the Digit Span score are higher than those for total 
accuracy in the sentence comprehension task. Does the 
fitted model suggest that digit span, a working memory 
ability in children, is more salient in classifying children 
with DLD than the language ability itself? Future research 
could leverage the relative influence of features in the 
classification process and aggregate the output from the 
200 runs of the elastic net model and Bayesian learning. 
Such analysis may underpin the relative weight of features 
in DLD—such as whether phonological working memory 
carries more weight than sentence comprehension—which 
may also specify screening and therapeutic strategies. 

CONCLUSIONS

The present findings demonstrate that Elastic 
Net regression captures the dimensional, cognitively 
grounded structure of DLD predicted by the GEM model 
and supported by prior confirmatory analyses [27]. Both 
theory-driven and data-driven approaches converge 
on a unified view: language impairment in DLD reflects 
quantitative variation across interconnected cognitive 
systems, not a categorical disorder. This integration of 
cognitive theory and modern statistical modeling offers 
a powerful framework for understanding, predicting, and 
ultimately supporting language development across the 
full continuum of ability.
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